Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 5, Issue 3, Article 65, 2004

EXTENDING MEANS OF TWO VARIABLES TO SEVERAL VARIABLES
 JORMA K. MERIKOSKI
 Department of Mathematics, Statistics and Philosophy
 FIN-33014 University of TAMPERE
 Finland
 jorma.merikoski@uta.fi

Received 22 January, 2004; accepted 10 June, 2004
Communicated by S. Puntanen

AbSTRACT. We present a method, based on series expansions and symmetric polynomials, by which a mean of two variables can be extended to several variables. We apply it mainly to the logarithmic mean.

Key words and phrases: Means, Logarithmic mean, Divided differences, Series expansions, Symmetric polynomials.
2000 Mathematics Subject Classification. 26E60, 26D15.

1. Introduction

Throughout this paper, $n \geq 2$ is an integer and x_{1}, \ldots, x_{n} are positive real numbers.
The logarithmic mean of x_{1} and x_{2} is defined by

$$
\begin{align*}
& L\left(x_{1}, x_{2}\right)=\frac{x_{1}-x_{2}}{\ln x_{1}-\ln x_{2}} \quad \text { if } x_{1} \neq x_{2} \tag{1.1}\\
& L\left(x_{1}, x_{1}\right)=x_{1}
\end{align*}
$$

There are several ways to extend this to n variables. Bullen ([1, p. 391]) writes that perhaps the most natural extension is due to Pittenger [13]. Based on an integral, it is

$$
\begin{equation*}
L\left(x_{1}, \ldots, x_{n}\right)=\left[(n-1) \sum_{i=1}^{n} \frac{x_{i}^{n-2} \ln x_{i}}{\prod_{\substack{j=1 \\ j \neq i}}^{n}\left(\ln x_{i}-\ln x_{j}\right)}\right]^{-1} \tag{1.2}
\end{equation*}
$$

if all the x_{i} 's are unequal. Bullen ([1, p. 392]) also writes that another natural extension has been given by Neuman [9]. Based on the integral (6.3), it is

$$
\begin{equation*}
L\left(x_{1}, \ldots, x_{n}\right)=(n-1)!\sum_{i=1}^{n} \frac{x_{i}}{\prod_{\substack{j=1 \\ j \neq i}}^{n}\left(\ln x_{i}-\ln x_{j}\right)} \tag{1.3}
\end{equation*}
$$

if all the x_{i} 's are unequal. It is obviously different from (1.2).
If some of the x_{i} 's are equal, then (1.2) and (1.3) are defined by continuity.

[^0]Mustonen [6] gave (1.3) in 1976 but published it only recently [7] in the home page of his statistical data processing system, not in a journal. We will present his method. It is based on a series expansion and supports the notion that (1.3) is the most natural extension of (1.1).

In general, we call a continuous real function μ of two positive (or nonnegative) variables a mean if, for all $x_{1}, x_{2}, c>0$ (or $x_{1}, x_{2}, c \geq 0$),
$\left(i_{1}\right) \mu\left(x_{1}, x_{2}\right)=\mu\left(x_{2}, x_{1}\right)$,
(i2) $\mu\left(x_{1}, x_{1}\right)=x_{1}$,
(i, $) \mu\left(c x_{1}, c x_{2}\right)=c \mu\left(x_{1}, x_{2}\right)$,
(i, $i_{4} x_{1} \leq y_{1}, x_{2} \leq y_{2} \Rightarrow \mu\left(x_{1}, x_{2}\right) \leq \mu\left(y_{1}, y_{2}\right)$,
(i5) $\min \left(x_{1}, x_{2}\right) \leq \mu\left(x_{1}, x_{2}\right) \leq \max \left(x_{1}, x_{2}\right)$.
Axiomatization of means is widely studied, see e.g. [1] and references therein.

2. Polynomials Corresponding to a Mean

To extend the arithmetic and geometric means

$$
A\left(x_{1}, x_{2}\right)=\frac{x_{1}+x_{2}}{2}, \quad G\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}\right)^{\frac{1}{2}}
$$

to n variables is trivial, but to visualize our method, it may be instructive.
Substituting

$$
\begin{equation*}
x_{1}=\mathrm{e}^{u_{1}}, x_{2}=\mathrm{e}^{u_{2}} \tag{2.1}
\end{equation*}
$$

we have

$$
\begin{align*}
A\left(x_{1}, x_{2}\right) & =\tilde{A}\left(u_{1}, u_{2}\right) \tag{2.2}\\
& =\frac{1}{2}\left(\mathrm{e}^{u_{1}}+\mathrm{e}^{u_{2}}\right) \\
& =\frac{1}{2}\left(1+u_{1}+\frac{u_{1}^{2}}{2!}+\cdots+1+u_{2}+\frac{u_{2}^{2}}{2!}+\cdots\right) \\
& =1+\frac{u_{1}+u_{2}}{2}+\frac{1}{2!} \cdot \frac{u_{1}^{2}+u_{2}^{2}}{2}+\frac{1}{3!} \cdot \frac{u_{1}^{3}+u_{2}^{3}}{2}+\cdots,
\end{align*}
$$

$$
\begin{align*}
G\left(x_{1}, x_{2}\right) & =\tilde{G}\left(u_{1}, u_{2}\right) \tag{2.3}\\
& =\left(\mathrm{e}^{u_{1}} \mathrm{e}^{u_{2}}\right)^{\frac{1}{2}} \\
& =\mathrm{e}^{\frac{u_{1}+u_{2}}{2}} \\
& =1+\frac{u_{1}+u_{2}}{2}+\frac{1}{2!}\left(\frac{u_{1}+u_{2}}{2}\right)^{2}+\cdots \\
& =1+\frac{u_{1}+u_{2}}{2}+\frac{1}{2!} \cdot \frac{\left(u_{1}+u_{2}\right)^{2}}{2^{2}}+\frac{1}{3!} \cdot \frac{\left(u_{1}+u_{2}\right)^{3}}{2^{3}}+\cdots,
\end{align*}
$$

(2.4) $L\left(x_{1}, x_{2}\right)=\tilde{L}\left(u_{1}, u_{2}\right)$

$$
\begin{aligned}
& =\frac{\mathrm{e}^{u_{1}}-\mathrm{e}^{u_{2}}}{u_{1}-u_{2}} \\
& =\left(1+u_{1}+\frac{u_{1}^{2}}{2!}+\cdots-1-u_{2}-\frac{u_{2}^{2}}{2!}-\cdots\right)\left(u_{1}-u_{2}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(u_{1}-u_{2}+\frac{u_{1}^{2}-u_{2}^{2}}{2!}+\frac{u_{1}^{3}-u_{2}^{3}}{3!}+\cdots\right)\left(u_{1}-u_{2}\right)^{-1} \\
& =1+\frac{u_{1}+u_{2}}{2}+\frac{1}{2!} \cdot \frac{u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}}{3}+\frac{1}{3!} \cdot \frac{u_{1}^{3}+u_{1}^{2} u_{2}+u_{1} u_{2}^{2}+u_{2}^{3}}{4}+\cdots .
\end{aligned}
$$

All these expansions are of the form

$$
\begin{equation*}
1+P_{1}\left(u_{1}, u_{2}\right)+\frac{1}{2!} P_{2}\left(u_{1}, u_{2}\right)+\frac{1}{3!} P_{3}\left(u_{1}, u_{2}\right)+\cdots, \tag{2.5}
\end{equation*}
$$

where the P_{m} 's are symmetric homogeneous polynomials of degree m. In all of them,

$$
P_{1}\left(u_{1}, u_{2}\right)=\frac{u_{1}+u_{2}}{2}=A\left(u_{1}, u_{2}\right) .
$$

The coefficients of

$$
\begin{equation*}
P_{m}\left(u_{1}, u_{2}\right)=b_{0} u_{1}^{m}+b_{1} u_{1}^{m-1} u_{2}+\cdots+b_{m} u_{2}^{m} \tag{2.6}
\end{equation*}
$$

are nonnegative numbers with sum 1 . They are for A

$$
b_{0}=\frac{1}{2}, b_{1}=\cdots=b_{m-1}=0, b_{m}=\frac{1}{2},
$$

for G

$$
b_{k}=\binom{m}{k} 2^{-m} \quad(0 \leq k \leq m),
$$

and for L

$$
b_{0}=\cdots=b_{m}=\frac{1}{m+1}
$$

Let μ be a mean of two variables. Assume that it has a valid expansion (2.5). Fix $m \geq 2$, and denote by $P_{m}[\mu]$ the polynomial 2.6 . Its coefficients define a discrete random variable, denoted by $X_{m}[\mu]$, whose value is $k(0 \leq k \leq m)$ with probability b_{k}. In particular, $X_{m}[A]$ is distributed uniformly over $\{0, m\}$, and $X_{m}[G]$ binomially and $X_{m}[L]$ uniformly over $\{0, \ldots, m\}$. Their variances satisfy

$$
\operatorname{Var} X_{m}[G] \leq \operatorname{Var} X_{m}[L] \leq \operatorname{Var} X_{m}[A],
$$

which is an interesting reminiscent of

$$
\begin{equation*}
G\left(x_{1}, x_{2}\right) \leq L\left(x_{1}, x_{2}\right) \leq A\left(x_{1}, x_{2}\right) \tag{2.7}
\end{equation*}
$$

Let $u_{1}, u_{2} \geq 0$, then (2.7) holds in fact termwise:

$$
\begin{equation*}
P_{m}[G]\left(u_{1}, u_{2}\right) \leq P_{m}[L]\left(u_{1}, u_{2}\right) \leq P_{m}[A]\left(u_{1}, u_{2}\right) \tag{2.8}
\end{equation*}
$$

for all $m \geq 1$. The functions

$$
R_{m}[\mu]\left(u_{1}, u_{2}\right)=\left(P_{m}[\mu]\left(u_{1}, u_{2}\right)\right)^{\frac{1}{m}}
$$

are means. In particular, for A they are moment means

$$
R_{m}[A]\left(u_{1}, u_{2}\right)=\left(\frac{u_{1}^{m}+u_{2}^{m}}{2}\right)^{\frac{1}{m}}=M_{m}\left(u_{1}, u_{2}\right),
$$

for G all of them are equal to the arithmetic mean

$$
R_{m}[G]\left(u_{1}, u_{2}\right)=\frac{u_{1}+u_{2}}{2}=A\left(u_{1}, u_{2}\right),
$$

and for L they are special cases of complete symmetric polynomial means and Stolarsky means (see e.g. [1, pp. 341, 393])

$$
R_{m}[L]\left(u_{1}, u_{2}\right)=\left[\frac{u_{1}^{m+1}-u_{2}^{m+1}}{(m+1)\left(u_{1}-u_{2}\right)}\right]^{\frac{1}{m}}=\left(\frac{u_{1}^{m}+u_{1}^{m-1} u_{2}+\cdots+u_{2}^{m}}{m+1}\right)^{\frac{1}{m}}
$$

Since the $\left.P_{m} \mid \mu\right]$'s are symmetric and homogeneous polynomials of two variables, they can be extended to n variables. Thus μ can also be likewise extended.

3. Trivial Extensions: A and G

Consider first A. By (2.2),

$$
P_{m}[A]\left(u_{1}, u_{2}\right)=\frac{u_{1}^{m}+u_{2}^{m}}{2} .
$$

To extend it to n variables is actually as trivial as to extend A directly. We obtain

$$
P_{m}[A]\left(u_{1}, \ldots, u_{n}\right)=\frac{u_{1}^{m}+\cdots+u_{n}^{m}}{n}
$$

and so

$$
\begin{aligned}
A\left(x_{1}, \ldots, x_{n}\right) & =\sum_{m=0}^{\infty} \frac{1}{m!} P_{m}[A]\left(u_{1}, \ldots, u_{n}\right) \\
& =\frac{1}{n}\left(\sum_{m=0}^{\infty} \frac{u_{1}^{m}}{m!}+\cdots+\sum_{m=0}^{\infty} \frac{u_{n}^{m}}{m!}\right) \\
& =\frac{1}{n}\left(\mathrm{e}^{u_{1}}+\cdots+\mathrm{e}^{u_{n}}\right)=\frac{x_{1}+\cdots+x_{n}}{n} .
\end{aligned}
$$

Next, study G. By (2.3),

$$
P_{m}[G]\left(u_{1}, u_{2}\right)=\left(\frac{u_{1}+u_{2}}{2}\right)^{m}
$$

which can be immediately extended to

$$
P_{m}[G]\left(u_{1}, \ldots, u_{n}\right)=\left(\frac{u_{1}+\cdots+u_{n}}{n}\right)^{m}
$$

and so

$$
\begin{aligned}
G\left(x_{1}, \ldots, x_{n}\right) & =\sum_{m=0}^{\infty} \frac{1}{m!} P_{m}[G]\left(u_{1}, \ldots, u_{n}\right) \\
& =\sum_{m=0}^{\infty} \frac{1}{m!}\left(\frac{u_{1}+\cdots+u_{n}}{n}\right)^{m} \\
& =\mathrm{e}^{\frac{u_{1}+\cdots+u_{n}}{n}}=\left(\mathrm{e}^{u_{1}} \cdots \mathrm{e}^{u_{n}}\right)^{\frac{1}{n}}=\left(x_{1} \cdots x_{n}\right)^{\frac{1}{n}} .
\end{aligned}
$$

We present a "termwise" (cf. (2.8)) proof of the geometric-arithmetic mean inequality

$$
\begin{equation*}
G\left(x_{1}, \ldots, x_{n}\right) \leq A\left(x_{1}, \ldots, x_{n}\right) \tag{3.1}
\end{equation*}
$$

We can assume that $u_{1}, \ldots, u_{n} \geq 0$; if not, consider $c G \leq c A$ for a suitable $c>0$. Let $m \geq 1$. Then

$$
\begin{equation*}
P_{m}[G]\left(u_{1}, \ldots, u_{n}\right) \leq P_{m}[A]\left(u_{1}, \ldots, u_{n}\right) \tag{3.2}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
R_{m}[G]\left(u_{1}, \ldots, u_{n}\right) \leq R_{m}[A]\left(u_{1}, \ldots, u_{n}\right), \tag{3.3}
\end{equation*}
$$

since

$$
\frac{u_{1}+\cdots+u_{n}}{n} \leq\left(\frac{u_{1}^{m}+\cdots+u_{n}^{m}}{n}\right)^{\frac{1}{m}}
$$

by Schlömilch's inequality (see e.g. [1, p. 203]). Therefore (3.1) follows.

4. Extending L

Let $1 \leq m \leq n$. The m th complete symmetric polynomial of $u_{1}, \ldots, u_{n} \geq 0$ (see e.g. [1] p. 341]) is defined by

$$
C_{m}\left(u_{1}, \ldots, u_{n}\right)=\sum_{i_{1}+\cdots+i_{n}=m} u_{1}^{i_{1}} \cdots u_{n}^{i_{n}} .
$$

(Here $i_{1}, \ldots, i_{n} \geq 0$, and we define $0^{0}=1$.)
Let us now study L. Denote $Q_{m}=P_{m}[L]$. By (2.4],

$$
Q_{m}\left(u_{1}, u_{2}\right)=\frac{u_{1}^{m}+u_{1}^{m-1} u_{2}+\cdots+u_{2}^{m}}{m+1} .
$$

This can be easily extended to

$$
\begin{equation*}
Q_{m}\left(u_{1}, \ldots, u_{n}\right)=\binom{n+m-1}{m}^{-1} C_{m}\left(u_{1}, \ldots, u_{n}\right) \tag{4.1}
\end{equation*}
$$

The corresponding mean,

$$
R_{m}[L]\left(u_{1}, \ldots, u_{n}\right)=Q_{m}\left(u_{1}, \ldots, u_{n}\right)^{\frac{1}{m}}
$$

is called [1] the m th complete symmetric polynomial mean of u_{1}, \ldots, u_{n}.
Thus we extend

$$
\begin{equation*}
L\left(x_{1}, \ldots, x_{n}\right)=1+\sum_{m=1}^{\infty} \frac{1}{m!} Q_{m}\left(u_{1}, \ldots, u_{n}\right) . \tag{4.2}
\end{equation*}
$$

We compute this explicitly. Fix $m \geq 2$. Assume that $u_{1}, \ldots, u_{n} \geq 0$ are all unequal. We claim that if $2 \leq n \leq m+1$, then $C_{m-n+1}\left(u_{1}, \ldots, u_{n}\right)$ is the $(n-1)$ th divided difference of the function $f(u)=u^{m}$ with arguments u_{1}, \ldots, u_{n}. In other words,

$$
\begin{equation*}
C_{m-n+1}\left(u_{1}, \ldots, u_{n}\right)=\frac{C_{m-n+2}\left(u_{2}, \ldots, u_{n}\right)-C_{m-n+2}\left(u_{1}, \ldots, u_{n-1}\right)}{u_{n}-u_{1}} . \tag{4.3}
\end{equation*}
$$

(For $n=2$, we have simply $C_{m-1}\left(u_{1}, u_{2}\right)=\frac{u_{2}^{m}-u_{1}^{m}}{u_{2}-u_{1}}$.)
To prove this, note that for $k \geq 1$

$$
\begin{align*}
C_{k}\left(u_{1}, \ldots, u_{n}\right)=u_{n}^{k}+u_{n}^{k-1} C_{1}\left(u_{1}\right. & \left., \ldots, u_{n-1}\right) \tag{4.4}\\
& +\cdots+u_{n} C_{k-1}\left(u_{1}, \ldots, u_{n-1}\right)+C_{k}\left(u_{1}, \ldots, u_{n-1}\right)
\end{align*}
$$

and

$$
\begin{aligned}
C_{k}\left(u_{1}, \ldots, u_{n}\right)=C_{k}\left(u_{1}, u_{n}\right) & +C_{k-1}\left(u_{1}, u_{n}\right) C_{1}\left(u_{2}, \ldots, u_{n-1}\right) \\
& +\cdots+C_{1}\left(u_{1}, u_{n}\right) C_{k-1}\left(u_{2}, \ldots, u_{n-1}\right)+C_{k}\left(u_{2}, \ldots, u_{n-1}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
C_{m-n+2}\left(u_{2},\right. & \left.\ldots, u_{n}\right)-C_{m-n+2}\left(u_{1}, \ldots, u_{n-1}\right) \\
= & C_{m-n+2}\left(u_{2}, \ldots, u_{n}\right)-C_{m-n+2}\left(u_{2}, \ldots, u_{n-1}, u_{1}\right) \\
= & u_{n}^{m-n+2}+u_{n}^{m-n+1} C_{1}\left(u_{2}, \ldots, u_{n-1}\right)+\cdots+C_{m-n+2}\left(u_{2}, \ldots, u_{n-1}\right) \\
& \quad-u_{1}^{m-n+2}-u_{1}^{m-n+1} C_{1}\left(u_{2}, \ldots, u_{n-1}\right)-\cdots-C_{m-n+2}\left(u_{2}, \ldots, u_{n-1}\right) \\
= & \left(u_{n}^{m-n+2}-u_{1}^{m-n+2}\right)+\left(u_{n}^{m-n+1}-u_{1}^{m-n+1}\right) C_{1}\left(u_{2}, \ldots, u_{n-1}\right)+\cdots \\
& \quad+\left(u_{n}-u_{1}\right) C_{m-n+1}\left(u_{2}, \ldots, u_{n-1}\right) \\
= & \left(u_{n}-u_{1}\right)\left[C_{m-n+1}\left(u_{1}, u_{n}\right)+C_{m-n}\left(u_{1}, u_{n}\right) C_{1}\left(u_{2}, \ldots, u_{n-1}\right)+\cdots\right. \\
& \left.\quad+C_{m-n+1}\left(u_{2}, \ldots, u_{n-1}\right)\right] \\
= & \left(u_{n}-u_{1}\right) C_{m-n+1}\left(u_{1}, \ldots, u_{n}\right),
\end{aligned}
$$

and (4.3) follows.
By a well-known formula of divided differences (see e.g. [4] p. 148]), we now have

$$
C_{m-n+1}\left(u_{1}, \ldots, u_{n}\right)=\sum_{i=1}^{n} \frac{u_{i}^{m}}{U_{i}}
$$

where

$$
U_{i}=\prod_{\substack{j=1 \\ j \neq i}}^{n}\left(u_{i}-u_{j}\right)
$$

Therefore, since

$$
\frac{1}{(m-n+1)!}\binom{n+(m-n+1)-1}{m-n+1}^{-1}=\frac{(n-1)!}{m!}
$$

we obtain

$$
\begin{aligned}
\frac{1}{(m-n+1)!} Q_{m-n+1}\left(u_{1}, \ldots, u_{n}\right) & =\frac{(n-1)!}{m!} C_{m-n+1}\left(u_{1}, \ldots, u_{n}\right) \\
& =\frac{(n-1)!}{m!} \sum_{i=1}^{n} \frac{u_{i}^{m}}{U_{i}}
\end{aligned}
$$

Hence, and because the m th divided difference of the function $f(u)=u^{m}$ is 1 if $m=n-1$ and 0 if $m \leq n-2$, we have

$$
\begin{aligned}
L\left(x_{1}, \ldots, x_{n}\right) & =1+\sum_{k=1}^{\infty} \frac{1}{k!} Q_{k}\left(u_{1}, \ldots, u_{n}\right) \\
& =1+\sum_{m=n}^{\infty} \frac{1}{(m-n+1)!} Q_{m-n+1}\left(u_{1}, \ldots, u_{n}\right) \\
& =1+(n-1)!\sum_{m=n}^{\infty} \frac{1}{m!} \sum_{i=1}^{n} \frac{u_{i}^{m}}{U_{i}} \\
& =(n-1)!\sum_{m=n-1}^{\infty} \frac{1}{m!} \sum_{i=1}^{n} \frac{u_{i}^{m}}{U_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& =(n-1)!\sum_{m=0}^{\infty} \frac{1}{m!} \sum_{i=1}^{n} \frac{u_{i}^{m}}{U_{i}} \\
& =(n-1)!\sum_{i=1}^{n} \frac{1}{U_{i}} \sum_{m=0}^{\infty} \frac{u_{i}^{m}}{m!} \\
& =(n-1)!\sum_{i=1}^{n} \frac{\mathrm{e}^{u_{i}}}{U_{i}} \\
& =(n-1)!\sum_{i=1}^{n} \frac{\mathrm{e}^{u_{i}}}{\prod_{\substack{j=1 \\
j \neq i}}^{n}\left(u_{i}-u_{j}\right)} \\
& =(n-1)!\sum_{i=1}^{n} \frac{x_{i}}{\prod_{\substack{n=1 \\
j \neq i}}^{n}\left(\ln x_{i}-\ln x_{j}\right)} .
\end{aligned}
$$

Thus (1.3) is found.

5. Numerical Computation of L

Mustonen [7] noted that, in computing L numerically, the explicit formula (1.3) is very unstable. He programmed a fast and stable algorithm based on (4.1), (4.2), and (4.4). His experiments lead to a conjecture that, denoting $G_{n}=G(1, \ldots, n)$ and $L_{n}=L(1, \ldots, n)$, we have

$$
\lim _{n \rightarrow \infty}\left(G_{n+1}-G_{n}\right)=\lim _{n \rightarrow \infty}\left(L_{n+1}-L_{n}\right)=\frac{1}{\mathrm{e}}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{G_{n}}{n}=\lim _{n \rightarrow \infty} \frac{L_{n}}{n}=\frac{1}{\mathrm{e}} .
$$

For G_{n}, these limit conjectures can be proved by using Stirling's formula. For L_{n}, they remain open.

6. Inequality $G \leq L \leq A$

It is natural to ask, whether

$$
\begin{equation*}
G\left(x_{1}, \ldots, x_{n}\right) \leq L\left(x_{1}, \ldots, x_{n}\right) \leq A\left(x_{1}, \ldots, x_{n}\right) \tag{6.1}
\end{equation*}
$$

is generally valid.
For $n=2$, this inequality is old (see e.g. [1, pp. 168-169]). Carlson [2] (see also [1, p. 388]) sharpened the first part and Lin [5] (see also [1, p. 389]) the second:

$$
\begin{equation*}
\left(G\left(x_{1}, x_{2}\right) M_{1 / 2}\left(x_{1}, x_{2}\right)\right)^{\frac{1}{2}} \leq L\left(x_{1}, x_{2}\right) \leq M_{1 / 3}\left(x_{1}, x_{2}\right) \tag{6.2}
\end{equation*}
$$

Neuman [9] defined (as a special case of [9, Eq. (2.3)])

$$
\begin{equation*}
L\left(x_{1}, \ldots, x_{n}\right)=\int_{E_{n-1}}\left(\exp \sum_{i=1}^{n} u_{i} \ln x_{i}\right) \mathrm{d} u \tag{6.3}
\end{equation*}
$$

where $u_{1}+\cdots+u_{n}=1$,

$$
E_{n-1}=\left\{\left(u_{1}, \ldots, u_{n-1}\right) \mid u_{1}, \ldots, u_{n-1} \geq 0, u_{1}+\cdots+u_{n-1} \leq 1\right\},
$$

and $\mathrm{d} u=\mathrm{d} u_{1} \cdots \mathrm{~d} u_{n-1}$. He ([9], Theorem 1 and the last formula) proved (6.1) and reduced (6.3) into (1.3).

Pečarić and Šimić [12] tied Neuman's approach to a wider context. As a special case ([12, Remark 5.4]), they obtained (1.3).

Let V denote the Vandermonde determinant and let V_{i} denote its subdeterminant obtained by omitting its last row and i th column. Xiao and Zhang [14] (unaware of [9]) defined

$$
L\left(x_{1}, \ldots, x_{n}\right)=\frac{(n-1)!}{V\left(\ln x_{1}, \ldots, \ln x_{n}\right)} \sum_{i=1}^{n}(-1)^{n+i} x_{i} V_{i}\left(\ln x_{1}, \ldots, \ln x_{n}\right),
$$

which in fact equals to (1.3). Also they proved (6.1).
We conjecture that (6.2) can be extended to

$$
\left(G\left(x_{1}, \ldots, x_{n}\right) M_{1 / 2}\left(x_{1}, \ldots, x_{n}\right)\right)^{\frac{1}{2}} \leq L\left(x_{1}, \ldots, x_{n}\right) \leq M_{1 / 3}\left(x_{1}, \ldots, x_{n}\right)
$$

7. Inequalities $P_{m}[G] \leq P_{m}[L] \leq P_{m}[A]$

In view of (3.2) and (3.3), it is now natural to ask, whether (6.1) can be strengthened to hold termwise. In other words: Do we have

$$
P_{m}[G] \leq P_{m}[L] \leq P_{m}[A]
$$

or equivalently

$$
R_{m}[G] \leq R_{m}[L] \leq R_{m}[A],
$$

that is

$$
\begin{equation*}
\frac{u_{1}+\cdots+u_{n}}{n} \leq Q_{m}\left(u_{1}, \ldots, u_{n}\right)^{\frac{1}{m}} \leq\left(\frac{u_{1}^{m}+\cdots+u_{n}^{m}}{n}\right)^{\frac{1}{m}} \tag{7.1}
\end{equation*}
$$

for all $u_{1}, \ldots, u_{n} \geq 0, m \geq 1$?
Fix u_{1}, \ldots, u_{n} and denote $q_{m}=Q_{m}\left(u_{1}, \ldots, u_{n}\right)^{\frac{1}{m}}$. Neuman ([8, Corollary 3.2]; see also [1], pp. 342-343]) proved that

$$
\begin{equation*}
k \leq m \Rightarrow q_{k} \leq q_{m} \tag{7.2}
\end{equation*}
$$

The first part of (7.1), $q_{1} \leq q_{m}$, is therefore true. We conjecture that the second part is also true.
DeTemple and Robertson [3] gave an elementary proof of (7.2) for $n=2$, but Neuman's proof for general n is advanced, applying B-splines.

Mustonen [7] gave an elementary proof of (7.1) for $n=2$.

8. Other Means

Pečarić and Šimić [12] (see also [1, p. 393]) studied a very large class of means, called Stolarsky-Tobey means, which includes all the ordinary means as special cases. They first defined these means for two variables and then, applying certain integrals, extended them to n variables. It might be of interest to apply our method to all these extensions, but we take only a small step towards this direction.

Let r and s be unequal nonzero real numbers. (Actually [12] allows $s=0$ and [1] allows $r=0$, both of which are obviously incorrect.) Consider ([12, Eq. (6)]) the mean

$$
\begin{equation*}
E_{r, s}\left(x_{1}, x_{2}\right)=\left(\frac{r}{s} \cdot \frac{x_{1}^{s}-x_{2}^{s}}{x_{1}^{r}-x_{2}^{r}}\right)^{\frac{1}{s-r}} \tag{8.1}
\end{equation*}
$$

where $x_{1} \neq x_{2}$. Assuming that $s \neq-r,-2 r, \ldots,-(n-2) r$, this can be extended ([12, Theorem 5.2(i)]) to

$$
\begin{equation*}
E_{r, s}\left(x_{1}, \ldots, x_{n}\right)=\left[\frac{(n-1)!r^{n-1}}{s(s+r) \cdots(s+(n-2) r)} \sum_{i=1}^{n} \frac{x_{i}^{s+(n-2) r}}{\prod_{\substack{j=1 \\ j \neq i}}^{n}\left(x_{i}^{r}-x_{j}^{r}\right)}\right]^{\frac{1}{s-r}} \tag{8.2}
\end{equation*}
$$

where all the x_{i} 's are unequal.

To extend (8.1) by our method, we simply note that

$$
\begin{aligned}
E_{r, s}\left(x_{1}, x_{2}\right) & =\left[\frac{x_{1}^{s}-x_{2}^{s}}{s\left(\ln x_{1}-\ln x_{2}\right)} / \frac{x_{1}^{r}-x_{2}^{r}}{r\left(\ln x_{1}-\ln x_{2}\right)}\right]^{\frac{1}{s-r}} \\
& =\left(\frac{L\left(x_{1}^{s}, x_{2}^{s}\right)}{L\left(x_{1}^{r}, x_{2}^{r}\right)}\right)^{\frac{1}{s-r}}
\end{aligned}
$$

which can be immediately extended to

$$
\begin{align*}
& E_{r, s}\left(x_{1}, \ldots, x_{n}\right) \tag{8.3}\\
&=\left(\frac{L\left(x_{1}^{s}, \ldots, x_{n}^{s}\right)}{L\left(x_{1}^{r}, \ldots, x_{n}^{r}\right)}\right)^{\frac{1}{s-r}} \\
&=\left\{\sum_{i=1}^{n} \frac{x_{i}^{s}}{\prod_{\substack{j=1 \\
j \neq i}}^{n}\left[s\left(\ln x_{i}-\ln x_{j}\right)\right]} / \sum_{i=1}^{n} \frac{x_{i}^{r}}{\prod_{\substack{j=1 \\
j \neq i}}^{n}\left[r\left(\ln x_{i}-\ln x_{j}\right)\right]}\right\}^{\frac{1}{s-r}} \\
&=\left[\left(\frac{r}{s}\right)^{n-1} \sum_{i=1}^{n} \frac{x_{i}^{s}}{\prod_{\substack{j=1 \\
j \neq i}}^{n}\left(\ln x_{i}-\ln x_{j}\right)} / \sum_{i=1}^{n} \frac{x_{i}^{r}}{\prod_{\substack{j=1 \\
j \neq i}}^{n}\left(\ln x_{i}-\ln x_{j}\right)}\right]^{\frac{1}{s-r}} .
\end{align*}
$$

This is obviously different from (8.2).
Unfortunately the problem of whether (8.3) indeed is a mean, i.e., whether it lies between the smallest and largest x_{i}, remains open.

Addendum

Neuman ([10, Theorem 6.2]) proved the second part of (7.1) and [11] showed that (8.3) is a mean.

References

[1] P.S. BULLEN, Handbook of Means and Their Inequalities, Kluwer, 2003.
[2] B.C. CARLSON, The logarithmic mean, Amer. Math. Monthly, 79 (1972), 615-618.
[3] D.W. DeTEMPLE and J.M. ROBERTSON, On generalized symmetric means of two variables, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 634-677 (1979), 236-238.
[4] C.E. FRÖBERG, Introduction to Numerical Analysis, Addison-Wesley, 1965.
[5] T.P. LIN, The power mean and the logarithmic mean, Amer. Math. Monthly, 81 (1974), 879-883.
[6] S. MUSTONEN, A generalized logarithmic mean, Unpublished manuscript, University of Helsinki, Department of Statistics, 1976.
[7] S. MUSTONEN, Logarithmic mean for several arguments, (2002). ONLINE [http://www. survo.fi/papers/logmean.pdf].
[8] E. NEUMAN, Inequalities involving generalized symmetric means, J. Math. Anal. Appl., 120 (1986), 315-320.
[9] E. NEUMAN, The weighted logarithmic mean, J. Math. Anal. Appl., 188 (1994), 885-900.
[10] E. NEUMAN, On complete symmetric functions, SIAM J. Math. Anal., 19 (1988), 736-750.
[11] E. NEUMAN, Private communication (2004).
[12] J. PEČARIĆ and V. ŠIMIĆ, Stolarsky-Tobey mean in n variables, Math. Ineq. Appl., 2 (1999), 325-341.
[13] A.O. PITTENGER, The logarithmic mean in n variables, Amer. Math. Monthly, 92 (1985), 99-104.
[14] Z-G. XIAO AND Z-H. ZHANG, The inequalities $G \leq L \leq I \leq A$ in n variables, J. Ineq. Pure Appl. Math., 4(2) (2003), Article 39. ONLINE [http://jipam.vu.edu.au/article. php?sid=277].

[^0]: ISSN (electronic): 1443-5756
 (c) 2004 Victoria University. All rights reserved.

 020-04

