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Abstract

The purpose of this note is to present a theorem having conditions of new type
and to weaken some assumptions given in two previous papers simultaneously.
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1. Introduction
Recently there have been a number of papers written dealing with absolute
summability factors of infinite series, see e.g. [3] – [9]. Among others in [6]
we also proved a theorem of this type improving a result of H. Bor [3]. Very
recently H. Bor and L. Debnath [5] enhanced a theorem of S.M. Mazhar [9]
considering a quasiβ-power increasing sequence{Xn} for some0 < β < 1
instead of the caseβ = 0.

The purpose of this note is to moderate the conditions of the theorems of
Bor-Debnath and ours.

To recall these theorems we need some definitions.
A positive sequencea := {an} is said to bequasiβ- power increasingif

there exists a constantK = K(β, a) ≥ 1 such that

(1.1) K nβ an ≥ mβ am

holds for alln ≥ m. If (1.1) stays withβ = 0 thena is simply called aquasi
increasingsequence. In [6] we showed that this latter class is equivalent to the
class ofalmost increasingsequences.

A series
∑

an with partial sumssn is said to be summable|N, pn|k, k ≥ 1,
if (see [2])

∞∑
n=1

(
Pn

pn

)k−1

|tn − tn−1|k < ∞,

where{pn} is a sequence of positive numbers such that

Pn :=
n∑

ν=0

pν →∞
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and

tn :=
1

Pn

n∑
ν=0

pν sν .

First we recall the theorem of Bor and Debnath.

Theorem 1.1. Let X := {Xn} be a quasiβ-power increasing sequence for
some0 < β < 1, andλ := {λn} be a real sequence. If the conditions

(1.2)
m∑

n=1

1

n
Pn = O(Pm),

(1.3) λn Xn = O(1),

(1.4)
m∑

n=1

1

n
|tn|k = O(Xm),

(1.5)
m∑

n=1

pn

Pn

|tn|k = O(Xm),

and

(1.6)
∞∑

n=1

n Xn|∆2 λn| < ∞, (∆2 λn = ∆ λn −∆ λn+1)

are satisfied, then the series
∑

an λn is summable|N, pn|k, k ≥ 1.
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In my view, the proof of Theorem1.1 has a little gap, but the assertion is
true.

Our mentioned theorem [7] reads as follows.

Theorem 1.2. If X is a quasi increasing sequence and the conditions (1.4),
(1.5),

(1.7)
∞∑

n=1

1

n
|λn| < ∞,

(1.8)
∞∑

n=1

Xn|∆ λn| < ∞

and

(1.9)
∞∑

n=1

n Xn|∆|∆ λn|| < ∞

are satisfied, then the series
∑

an λn is summable|N, pn|k, k ≥ 1.
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2. Result
Now we prove the following theorem.

Theorem 2.1. If the sequenceX is quasiβ-power increasing for some0 ≤ β <
1, λ satisfies the conditions

(2.1)
m∑

n=1

λn = o(m)

and

(2.2)
m∑

n=1

|∆ λn| = o(m),

furthermore (1.4), (1.5) and

(2.3)
∞∑

n=1

n Xn(β)|∆|∆ λn|| < ∞

hold, whereXn(β) := max(nβ Xn, log n), then the series
∑

an λn is summable
|N, pn|k, k ≥ 1.

Remark 1. It seems to be worth comparing the assumptions of these theorems.
By Lemma3.3 it is clear that(1.7) ⇒ (2.1), furthermore ifX is quasi in-

creasing then(1.8) ⇒ (2.2). It is true that(2.3) in the caseβ = 0 claims a
little bit more than(1.9) does, but only ifXn < K log n. However, in general,
Xn ≥ K log n holds, see(1.4) and(1.5). In the latter case, Theorem2.1under
weaker conditions provides the same conclusion as Theorem1.2.
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If we analyze the proofs of Theorem1.1 and Theorem1.2, it is easy to see
that condition(1.2) replaces(1.7), (1.3) and (1.6) jointly imply (1.8), finally
(1.9) requires less than(1.6). Thus we can say that the conditions of Theorem
2.1also claim less than that of Theorem1.1.
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3. Lemmas
Later on we shall use the notationL � R if there exists a positive constantK
such thatL ≤ K R holds.

To avoid needless repetition we collect the relevant partial results proved in
[3] into a lemma.

In [3] the following inequality is verified implicitly.

Lemma 3.1. Let Tn denote then-th (N, pn) mean of the series
∑

an λn. If
{Xn} is a sequence of positive numbers, andλn → 0, plus (1.7) and (1.5) hold,
then

m∑
n=1

(
Pn

pn

)k−1

|Tn − Tn−1|k � |λm|Xm +
m∑

n=1

|∆ λn|Xn +
m∑

n=1

|tn|k|∆ λn|.

Lemma 3.2 ([7]). Let{γn} be a sequence of real numbers and denote

Γn :=
n∑

k=1

γk and Rn :=
∞∑

k=n

|∆ γk|.

If Γn = o(n) then there exists a natural numberN such that

|γn| ≤ 2Rn

for all n ≥ N.
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Lemma 3.3 ([1, 2.2.2., p. 72]).If {µn} is a positive, monotone increasing
and tending to infinity sequence, then the convergence of the series

∑
an µ−1

n

implies the estimate
n∑

i=1

ai = o(µn).
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4. Proof of Theorem2.1
In order to use Lemma3.1we first have to show that its conditions follow from
the assumptions of Theorem2.1. Thus we must show that

(4.1) λn → 0.

By Lemma3.2, condition (2.1) implies that

|λn| ≤ 2
∞∑

k=n

|∆ λk|,

and by (2.2)

(4.2) |∆ λn| ≤ 2
∞∑

k=n

|∆|∆ λk||,

whence

(4.3) |λn| �
∞∑

k=n

n|∆|∆ λn||

holds. Thus (2.3) and (4.3) clearly prove (4.1).
Next we verify (1.7). In view of (4.3) and (2.3)

∞∑
n=1

1

n
|λn| �

∞∑
n=1

1

n

∞∑
k=n

k|∆|∆ λk|| �
∞∑

k=1

k|∆|∆ λk|| log k < ∞,
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that is, (1.7) is satisfied.
In the following steps we show that

(4.4) |λn|Xn � 1,

(4.5)
∞∑

n=1

|∆ λn|Xn � 1

and

(4.6)
∞∑

n=1

|tn|k|∆ λk| � 1.

Utilizing the quasi monotonicity of{nβ Xn}, (2.3) and (4.3) we get that

|λn|Xn ≤ nβ|λn|Xn(4.7)

�
∞∑

k=n

kβ|Xk|k|∆|∆ λk||

�
∞∑

k=n

k Xk(β)|∆|∆ λk||

< ∞.
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Similar arguments give that

∞∑
n=1

|∆ λn|Xn �
∞∑

n=1

Xn

∞∑
k=n

|∆|∆ λk||(4.8)

=
∞∑

k=1

|∆|∆ λk||
k∑

n=1

nβ Xn n−β

�
∞∑

k=1

kβ Xk|∆|∆ λk||
k∑

n=1

n−β

�
∞∑

k=1

k Xk|∆|∆ λk|| < ∞.

Finally to verify (4.6) we apply Abel transformation as follows:

m∑
n=1

|tn|k|∆ λn|

�
m−1∑
n=1

|∆(n|∆ λn|)|
n∑

i=1

1

i
|ti|k + m|∆ λm|

m∑
n=1

1

n
|tn|k

�
m−1∑
n=1

n|∆|∆ λn||Xn +
m−1∑
n=1

|∆ λn+1|Xn+1 + m|∆ λm|Xm.(4.9)

Here the first term is bounded by (2.3), the second one by (4.5), and the third
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term by (2.3) and (4.2), namely

(4.10) m|∆ λm|Xm � m Xm

∞∑
n=m

|∆|∆ λn|| �
∞∑

n=m

n Xn|∆|∆ λn|| < ∞.

Herewith (4.6) is also verified.
Consequently Lemma3.1exhibits that

∞∑
n=1

(
Pn

pn

)k−1

|Tn − Tn−1|k < ∞,

and this completes the proof of our theorem.
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