Journal of Inequalities in Pure and Applied Mathematics

INEQUALITIES FOR INSCRIBED SIMPLEX AND APPLICATIONS

SHIGUO YANG AND SILONG CHENG

Department of Mathematics Anhui Institute of Education Hefei, 230061 P.R. China

EMail: sxx@ahieedu.net.cn *EMail*: chenshilong2006@163.com

volume 7, issue 5, article 165, 2006.

Received 18 January, 2005; accepted 06 June, 2005.

Communicated by: W.S. Cheung

©2000 Victoria University ISSN (electronic): 1443-5756 019-05

Abstract

In this paper, we study the problem of geometric inequalities for the inscribed simplex of an n-dimensional simplex. An inequality for the inscribed simplex of a simplex is established. Applying it we get a generalization of n-dimensional Euler inequality and an inequality for the pedal simplex of a simplex.

2000 Mathematics Subject Classification: 51K16, 52A40. Key words: Simplex, Inscribed simplex, Inradius, Circumradius, Inequality.

Contents

1	Main Results	3
2	Some Lemma and Proofs of Theorems	5
Refe	erences	

Inequalities for Inscribed Simplex and Applications

J. Ineq. Pure and Appl. Math. 7(5) Art. 165, 2006 http://jipam.vu.edu.au

1. Main Results

Let σ_n be an *n*-dimensional simplex in the *n*-dimensional Euclidean space E^n , V denote the volume of σ_n , R and r the circumradius and inradius of σ_n , respectively. Let A_0, A_1, \ldots, A_n be the vertices of $\sigma_n, a_{ij} = |A_i A_j| (0 \le i < i < j)$ i < n, F_i denote the area of the *i*th face $f_i = A_0 \cdots A_{i-1} A_{i+1} \cdots A_n$ ((n-1)dimensional simplex) of σ_n , points O and G be the circumcenter and barycenter of σ_n , respectively. For i = 0, 1, ..., n, let A'_i be an arbitrary interior point of the *i*th face f_i of σ_n . The *n*-dimensional simplex $\sigma'_n = A'_0 A'_1 \cdots A'_n$ is called the inscribed simplex of the simplex σ_n . Let $a'_{ij} = |A'_i A'_j| \ (0 \le i < j \le n), R'$ denote the circumradius of σ'_n , P be an arbitrary interior point of σ_n , P_i be the orthogonal projection of the point P on the *i*th face f_i of σ_n . The *n*-dimensional simplex $\sigma''_n = P_0 P_1 \cdots P_n$ is called the pedal simplex of the point P with respect to the simplex σ_n [1] – [2], let V'' denote the volume of σ''_n , R'' and r'' denote the circumradius and inradius of σ''_n , respectively. We note that the pedal simplex σ''_n is an inscribed simplex of the simplex σ_n . Our main results are following theorems.

Theorem 1.1. Let σ'_n be an inscribed simplex of the simplex σ_n , then we have

(1.1)
$$(R')^2 (R^2 - \overline{OG}^2)^{n-1} \ge n^{2(n-1)} r^{2n},$$

with equality if the simplex σ_n is regular and σ'_n is the tangent point simplex of σ_n .

Let T_i be the tangent point where the inscribed sphere of the simplex σ_n touches the *i*th face f_i of σ_n . The simplex $\overline{\sigma}_n = T_0T_1\cdots T_n$ is called the tangent point simplex of σ_n [3]. If we take $A'_i \equiv T_i$ (i = 0, 1, ..., n) in Theorem 1.1,

Page 3 of 11

J. Ineq. Pure and Appl. Math. 7(5) Art. 165, 2006 http://jipam.vu.edu.au

then σ'_n and $\overline{\sigma}_n$ are the same and R' = r, we get a generalization of the *n*-dimensional Euler inequality [4] as follows.

Corollary 1.2. For an *n*-dimensional simplex σ_n , we have

(1.2)
$$R^2 \ge n^2 r^2 + \overline{OG}^2,$$

with equality if the simplex σ_n is regular.

Inequality (1.2) improves the *n*-dimensional Euler inequality [5] as follows.

Theorem 1.3. Let P be an interior point of the simplex σ_n , and σ'_n the pedal simplex of the point P with respect to σ_n , then

(1.4)
$$R'' R^{n-1} \ge n^{2n-1} \left(r'' \right)^n,$$

with equality if the simplex σ_n is regular and σ''_n is the tangent point simplex of σ_n .

J. Ineq. Pure and Appl. Math. 7(5) Art. 165, 2006 http://jipam.vu.edu.au

2. Some Lemma and Proofs of Theorems

To prove the theorems stated above, we need some lemmas as follows.

Lemma 2.1. Let σ'_n be an inscribed simplex of the *n*-dimensional simplex σ_n , then we have

(2.1)
$$\left(\sum_{0 \le i < j \le n} (a'_{ij})^2\right) \left(\sum_{i=0}^n F_i^2\right) \ge n^2(n+1)V^2,$$

with equality if the simplex σ_n is regular and σ'_n is the tangent point simplex of σ_n .

Proof. Let *B* be an interior point of the simplex σ_n , and $(\lambda_0, \lambda_1, \ldots, \lambda_n)$ the barycentric coordinates of the point *B* with respect to coordinate simplex σ_n . Here $\lambda_i = V_i V^{-1} (i = 0, 1, \ldots, n)$, V_i is the volume of the simplex $\sigma_n(i) = BA_0 \cdots A_{i-1}A_{i+1} \cdots A_n$ and $\sum_{i=0}^n \lambda_i = 1$. Let *Q* be an arbitrary point in E^n , then

$$\overrightarrow{QB} = \sum_{i=0}^{n} \lambda_i \overrightarrow{QA_i}$$

From this we have

$$\sum_{i=0}^{n} \lambda_i \overrightarrow{BA_i} = \sum_{i=0}^{n} \lambda_i \left(\overrightarrow{QA_i} - \overrightarrow{QB} \right) = \overrightarrow{0},$$

J. Ineq. Pure and Appl. Math. 7(5) Art. 165, 2006 http://jipam.vu.edu.au

$$(2.2) \qquad \sum_{i=0}^{n} \lambda_i \left(\overrightarrow{QA_i}\right)^2 = \sum_{i=0}^{n} \lambda_i \left(\overrightarrow{QB} + \overrightarrow{BA_i}\right)^2 = \sum_{i=0}^{n} \lambda_i \overrightarrow{QB^2} + 2\overrightarrow{QB} \cdot \sum_{i=0}^{n} \lambda_i \overrightarrow{BA_i} + \sum_{i=0}^{n} \lambda_i \left(\overrightarrow{BA_i}\right)^2 = \overrightarrow{QB^2} + \sum_{i=0}^{n} \lambda_i \left(\overrightarrow{BA_i}\right)^2.$$

For j = 0, 1, ..., n, taking $Q \equiv A_j$ in (2.2) we get

(2.3)
$$\sum_{i=0}^{n} \lambda_i \lambda_j \left(\overrightarrow{A_i A_j}\right)^2$$
$$= \lambda_j \left(\overrightarrow{BA_j}\right)^2 + \lambda_j \sum_{i=0}^{n} \lambda_i \left(\overrightarrow{BA_i}\right)^2 \quad (j = 0, 1, \dots, n)$$

Adding up these equalities in (2.3) and noting that $\sum_{j=0}^{n} \lambda_j = 1$, we get

(2.4)
$$\sum_{0 \le i < j \le n} \lambda_i \lambda_j \left(\overrightarrow{A_i A_j} \right)^2 = \sum_{i=0}^n \lambda_i \left(\overrightarrow{BA_i} \right)^2.$$

For any real numbers $x_i > 0$ (i = 0, 1, ..., n) and an inscribed simplex $\sigma'_n = A'_0A'_1 \cdots A'_n$ of σ_n , we take an interior point B' of σ'_n such that $(\lambda'_0, \lambda'_1, ..., \lambda'_n)$ is the barycentric coordinates of the point B' with respect to coordinate simplex

Inequalities for Inscribed Simplex and Applications

J. Ineq. Pure and Appl. Math. 7(5) Art. 165, 2006 http://jipam.vu.edu.au

 σ'_n , here $\lambda'_i = x_i / \sum_{j=0}^n x_j$ (i = 0, 1, ..., n). Using equality (2.4) we have

$$\sum_{0 \le i < j \le n} \lambda'_i \lambda'_j \left(a'_{ij} \right)^2 = \sum_{i=0}^n \lambda'_i \left(\overrightarrow{B'A'_i} \right)^2,$$

i.e.

(2.5)
$$\sum_{0 \le i < j \le n} x_i x_j \left(a'_{ij} \right)^2 = \left(\sum_{i=0}^n x_i \right) \left(\sum_{i=0}^n x_i \left(\overrightarrow{B'A'_i} \right)^2 \right).$$

Since B' is an interior point of σ'_n and σ'_n is an inscribed simplex of σ_n , so B' is an interior point of σ_n . Let the point Q_i be the orthogonal projection of the point B' on the *i*th face f_i of σ_n , then

(2.6)
$$\sum_{i=0}^{n} x_i \left(\overrightarrow{B'A'_i} \right)^2 \ge \sum_{i=0}^{n} x_i \left(\overrightarrow{B'Q_i} \right)^2.$$

Equality in (2.6) holds if and only if $Q_i \equiv A'_i$ (i = 0, 1, ..., n). In addition, we have

(2.7)
$$\sum_{i=0}^{n} \left| \overrightarrow{B'Q_i} \right| F_i = nV.$$

By the Cauchy's inequality and (2.7) we have

(2.8)
$$\left(\sum_{i=0}^{n} x_i \overrightarrow{B'Q_i}^2\right) \left(\sum_{i=0}^{n} x_i^{-1} F_i^2\right) \ge \left(\sum_{i=0}^{n} \left|\overrightarrow{B'Q_i}\right| \cdot F_i\right)^2 = (nV)^2.$$

Simplex and Applications

J. Ineq. Pure and Appl. Math. 7(5) Art. 165, 2006 http://jipam.vu.edu.au

Using (2.5), (2.6) and (2.8), we get

(2.9)
$$\left(\sum_{0 \le i < j \le n} x_i x_j \left(a_{ij}'\right)^2\right) \left(\sum_{i=0}^n x^{-1} F_i^2\right) \ge n^2 \left(\sum_{i=0}^n x_i\right) V^2$$

Taking $x_0 = x_1 = \cdots = x_n = 1$ in (2.9), we get inequality (2.1). It is easy to prove that equality in (2.1) holds if the simplex σ_n is regular and σ'_n is the tangent point simplex of σ_n .

Lemma 2.2 ([1, 6]). For the *n*-dimensional simplex σ_n , we have

(2.10)
$$\sum_{i=0}^{n} F_i^2 \le [n^{n-4}(n!)^2(n+1)^{n-2}]^{-1} \left(\sum_{0 \le i < j \le n} a_{ij}^2\right),$$

with equality if the simplex σ_n is regular.

Lemma 2.3 ([2]). Let P be an interior point of the simplex σ , σ''_n the pedal simplex of the point P with respect to σ_n , then

 $(2.11) V \ge n^n V'',$

with equality if the simplex σ_n is regular.

Lemma 2.4 ([1]). For the *n*-dimensional simplex σ_n , we have

(2.12)
$$V \ge \frac{n^{n/2}(n+1)^{(n+1)/2}}{n!}r^n,$$

with equality if the simplex σ_n is regular.

Inequalities for Inscribed Simplex and Applications

J. Ineq. Pure and Appl. Math. 7(5) Art. 165, 2006 http://jipam.vu.edu.au

Lemma 2.5 ([4]). For the *n*-dimensional simplex σ_n , we have

(2.13)
$$\sum_{0 \le i < j \le n} a_{ij}^2 = (n+1)^2 \left(R^2 - \overline{OG}^2 \right).$$

Here O and G are the circumcenter and barycenter of the simplex σ_n , respectively.

Proof of Theorem 1.1. Using inequalities (2.1) and (2.10), we get

(2.14)
$$\left(\sum_{0 \le i < j \le n} \left(a'_{ij}\right)^2\right) \left(\sum_{0 \le i < j \le n} a^2_{ij}\right)^{n-1} \ge n^{n-2} (n!)^2 (n+1)^{n-1} V^2.$$

By Lemma 2.5 we have

(2.15)
$$\sum_{0 \le i \le j \le n} \left(a'_{ij} \right)^2 \le (n+1)^2 \left(R' \right)^2.$$

From (2.13), (2.14) and (2.15) we get

(2.16)
$$(R')^2 \left(R^2 - \overline{OG}^2\right)^{n-1} \ge \frac{n^{n-1}(n!)^2}{(n+1)^{n+1}} V^2.$$

Using inequalities (2.16) and (2.12), we get inequality (1.1). It is easy to prove that equality in (1.1) holds if the simplex σ_n is regular and σ'_n is the tangent point simplex of σ_n .

J. Ineq. Pure and Appl. Math. 7(5) Art. 165, 2006 http://jipam.vu.edu.au

Proof of Theorem 1.3. Since the pedal simplex σ''_n is an inscribed simplex of the simplex σ_n , thus inequality (2.16) holds for the pedal simplex σ''_n , i.e.

(2.17)
$$(R'')^2 \left(R^2 - \overline{OG}^2\right)^{n-1} \ge \frac{n^{n-2}(n!)^2}{(n+1)^{n+1}} V^2.$$

Using inequalities (2.17) and (2.11), we get

(2.18)
$$(R'')^2 R^{2(n-1)} \ge (R'')^2 \left(R^2 - \overline{OG}^2\right)^{n-1} \ge \frac{n^{3n-2}(n!)^2}{(n+1)^{n+1}} (V'')^2$$

By Lemma 2.4 we have

(2.19)
$$V'' \ge \frac{n^{n/2}(n+1)^{(n+1)/2}}{n!} (r'')^n.$$

From (2.18) and (2.19) we obtain inequality (1.4). It is easy to prove that equality in (1.4) holds if the simplex σ_n is regular and σ''_n is the tangent point simplex of σ_n .

J. Ineq. Pure and Appl. Math. 7(5) Art. 165, 2006 http://jipam.vu.edu.au

References

- D.S. MITRINOVIĆ, J.E. PEČARIĆ AND V. VOLENEC, *Recent Advances in Geometric Inequalities*, Kluwer Acad. Publ., Dordrecht, Boston, London, 1989, 425–552.
- [2] Y. ZHANG, A conjecture on the pedal simplex, J. of Sys. Sci. Math. Sci., 12(4) (1992), 371–375.
- [3] G.S. LENG, Some inequalities involving two simplexes, *Geom. Dedicata*, **66** (1997), 89–98.
- [4] Sh.-G. YANG AND J. WANG, Improvements of *n*-dimensional Euler inequality, *J. Geom.*, **51** (1994), 190–195.
- [5] M.S. KLAMKIN, Inequality for a simplex, SIAM. Rev., 27(4) (1985), 576.
- [6] L. YANG AND J.Zh. ZHANG, A class of geometric inequalities on a finite number of points, *Acta Math. Sinica*, **23**(5) (1980), 740–749.

J. Ineq. Pure and Appl. Math. 7(5) Art. 165, 2006 http://jipam.vu.edu.au