INEQUALITIES FOR INSCRIBED SIMPLEX AND APPLICATIONS

SHIGUO YANG AND SILONG CHENG
Department of Mathematics
Anhui Institute of Education Hefei, 230061
P.R. China
sxx@ahieedu.net.cn
chenshilong2006@163.com

Received 18 January, 2005; accepted 06 June, 2005
Communicated by W.S. Cheung

AbSTRACT. In this paper, we study the problem of geometric inequalities for the inscribed simplex of an n-dimensional simplex. An inequality for the inscribed simplex of a simplex is established. Applying it we get a generalization of n-dimensional Euler inequality and an inequality for the pedal simplex of a simplex.

Key words and phrases: Simplex, Inscribed simplex, Inradius, Circumradius, Inequality.
2000 Mathematics Subject Classification. 51K16, 52A40.

1. Main Results

Let σ_{n} be an n-dimensional simplex in the n-dimensional Euclidean space E^{n}, V denote the volume of σ_{n}, R and r the circumradius and inradius of σ_{n}, respectively. Let $A_{0}, A_{1}, \ldots, A_{n}$ be the vertices of $\sigma_{n}, a_{i j}=\left|A_{i} A_{j}\right|(0 \leq i<j \leq n), F_{i}$ denote the area of the i th face $f_{i}=$ $A_{0} \cdots A_{i-1} A_{i+1} \cdots A_{n}\left((n-1)\right.$-dimensional simplex) of σ_{n}, points O and G be the circumcenter and barycenter of σ_{n}, respectively. For $i=0,1, \ldots, n$, let A_{i}^{\prime} be an arbitrary interior point of the i th face f_{i} of σ_{n}. The n-dimensional simplex $\sigma_{n}^{\prime}=A_{0}^{\prime} A_{1}^{\prime} \cdots A_{n}^{\prime}$ is called the inscribed simplex of the simplex σ_{n}. Let $a_{i j}^{\prime}=\left|A_{i}^{\prime} A_{j}^{\prime}\right|(0 \leq i<j \leq n), R^{\prime}$ denote the circumradius of σ_{n}^{\prime}, P be an arbitrary interior point of σ_{n}, P_{i} be the orthogonal projection of the point P on the i th face f_{i} of σ_{n}. The n-dimensional simplex $\sigma_{n}^{\prime \prime}=P_{0} P_{1} \cdots P_{n}$ is called the pedal simplex of the point P with respect to the simplex $\sigma_{n}[1]-[2]$, let $V^{\prime \prime}$ denote the volume of $\sigma_{n}^{\prime \prime}, R^{\prime \prime}$ and $r^{\prime \prime}$ denote the circumradius and inradius of $\sigma_{n}^{\prime \prime}$, respectively. We note that the pedal simplex $\sigma_{n}^{\prime \prime}$ is an inscribed simplex of the simplex σ_{n}. Our main results are following theorems.

Theorem 1.1. Let σ_{n}^{\prime} be an inscribed simplex of the simplex σ_{n}, then we have

$$
\begin{equation*}
\left(R^{\prime}\right)^{2}\left(R^{2}-\overline{O G}^{2}\right)^{n-1} \geq n^{2(n-1)} r^{2 n} \tag{1.1}
\end{equation*}
$$

[^0]with equality if the simplex σ_{n} is regular and σ_{n}^{\prime} is the tangent point simplex of σ_{n}.
Let T_{i} be the tangent point where the inscribed sphere of the simplex σ_{n} touches the i th face f_{i} of σ_{n}. The simplex $\bar{\sigma}_{n}=T_{0} T_{1} \cdots T_{n}$ is called the tangent point simplex of σ_{n} [3]. If we take $A_{i}^{\prime} \equiv T_{i}(i=0,1, \ldots, n)$ in Theorem 1.1, then σ_{n}^{\prime} and $\bar{\sigma}_{n}$ are the same and $R^{\prime}=r$, we get a generalization of the n-dimensional Euler inequality [4] as follows.

Corollary 1.2. For an n-dimensional simplex σ_{n}, we have

$$
\begin{equation*}
R^{2} \geq n^{2} r^{2}+\overline{O G}^{2} \tag{1.2}
\end{equation*}
$$

with equality if the simplex σ_{n} is regular.
Inequality (1.2) improves the n-dimensional Euler inequality [5] as follows.

$$
\begin{equation*}
R \geq n r \tag{1.3}
\end{equation*}
$$

Theorem 1.3. Let P be an interior point of the simplex σ_{n}, and σ_{n}^{\prime} the pedal simplex of the point P with respect to σ_{n}, then

$$
\begin{equation*}
R^{\prime \prime} R^{n-1} \geq n^{2 n-1}\left(r^{\prime \prime}\right)^{n} \tag{1.4}
\end{equation*}
$$

with equality if the simplex σ_{n} is regular and $\sigma_{n}^{\prime \prime}$ is the tangent point simplex of σ_{n}.

2. Some Lemma and Proofs of Theorems

To prove the theorems stated above, we need some lemmas as follows.
Lemma 2.1. Let σ_{n}^{\prime} be an inscribed simplex of the n-dimensional simplex σ_{n}, then we have

$$
\begin{equation*}
\left(\sum_{0 \leq i<j \leq n}\left(a_{i j}^{\prime}\right)^{2}\right)\left(\sum_{i=0}^{n} F_{i}^{2}\right) \geq n^{2}(n+1) V^{2} \tag{2.1}
\end{equation*}
$$

with equality if the simplex σ_{n} is regular and σ_{n}^{\prime} is the tangent point simplex of σ_{n}.
Proof. Let B be an interior point of the simplex σ_{n}, and $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right)$ the barycentric coordinates of the point B with respect to coordinate simplex σ_{n}. Here $\lambda_{i}=V_{i} V^{-1}(i=$ $0,1, \ldots, n), V_{i}$ is the volume of the simplex $\sigma_{n}(i)=B A_{0} \cdots A_{i-1} A_{i+1} \cdots A_{n}$ and $\sum_{i=0}^{n} \lambda_{i}=1$. Let Q be an arbitrary point in E^{n}, then

$$
\overrightarrow{Q B}=\sum_{i=0}^{n} \lambda_{i} \overrightarrow{Q A_{i}}
$$

From this we have

$$
\begin{align*}
& \sum_{i=0}^{n} \lambda_{i} \overrightarrow{B A}_{i}=\sum_{i=0}^{n} \lambda_{i}\left(\overrightarrow{Q A}_{i}-\overrightarrow{Q B}\right)=\overrightarrow{0}, \\
& \sum_{i=0}^{n} \lambda_{i}\left(\overrightarrow{Q A_{i}}\right)^{2}=\sum_{i=0}^{n} \lambda_{i}\left(\overrightarrow{Q B}+\overrightarrow{B A_{i}}\right)^{2} \tag{2.2}\\
& =\sum_{i=0}^{n} \lambda_{i} \overrightarrow{Q B}^{2}+2 \overrightarrow{Q B} \cdot \sum_{i=0}^{n} \lambda_{i} \overrightarrow{B A_{i}}+\sum_{i=0}^{n} \lambda_{i}\left(\overrightarrow{B A_{i}}\right)^{2} \\
& =\overrightarrow{Q B}^{2}+\sum_{i=0}^{n} \lambda_{i}\left(\overrightarrow{B A}_{i}\right)^{2} \text {. }
\end{align*}
$$

For $j=0,1, \ldots, n$, taking $Q \equiv A_{j}$ in (2.2) we get

$$
\begin{equation*}
\sum_{i=0}^{n} \lambda_{i} \lambda_{j}\left(\overrightarrow{A_{i} A_{j}}\right)^{2}=\lambda_{j}\left(\overrightarrow{B A_{j}}\right)^{2}+\lambda_{j} \sum_{i=0}^{n} \lambda_{i}\left(\overrightarrow{B A_{i}}\right)^{2} \quad(j=0,1, \ldots, n) \tag{2.3}
\end{equation*}
$$

Adding up these equalities in 2.3 and noting that $\sum_{j=0}^{n} \lambda_{j}=1$, we get

$$
\begin{equation*}
\sum_{0 \leq i<j \leq n} \lambda_{i} \lambda_{j}\left(\overrightarrow{A_{i} A_{j}}\right)^{2}=\sum_{i=0}^{n} \lambda_{i}\left(\overrightarrow{B A_{i}}\right)^{2} . \tag{2.4}
\end{equation*}
$$

For any real numbers $x_{i}>0(i=0,1, \ldots, n)$ and an inscribed simplex $\sigma_{n}^{\prime}=A_{0}^{\prime} A_{1}^{\prime} \cdots A_{n}^{\prime}$ of σ_{n}, we take an interior point B^{\prime} of σ_{n}^{\prime} such that $\left(\lambda_{0}^{\prime}, \lambda_{1}^{\prime}, \ldots, \lambda_{n}^{\prime}\right)$ is the barycentric coordinates of the point B^{\prime} with respect to coordinate simplex σ_{n}^{\prime}, here $\lambda_{i}^{\prime}=x_{i} / \sum_{j=0}^{n} x_{j}(i=0,1, \ldots, n)$. Using equality (2.4) we have

$$
\sum_{0 \leq i<j \leq n} \lambda_{i}^{\prime} \lambda_{j}^{\prime}\left(a_{i j}^{\prime}\right)^{2}=\sum_{i=0}^{n} \lambda_{i}^{\prime}\left(\overrightarrow{B^{\prime} A_{i}^{\prime}}\right)^{2}
$$

i.e.

$$
\begin{equation*}
\sum_{0 \leq i<j \leq n} x_{i} x_{j}\left(a_{i j}^{\prime}\right)^{2}=\left(\sum_{i=0}^{n} x_{i}\right)\left(\sum_{i=0}^{n} x_{i}\left(\overrightarrow{B^{\prime} A_{i}^{\prime}}\right)^{2}\right) . \tag{2.5}
\end{equation*}
$$

Since B^{\prime} is an interior point of σ_{n}^{\prime} and σ_{n}^{\prime} is an inscribed simplex of σ_{n}, so B^{\prime} is an interior point of σ_{n}. Let the point Q_{i} be the orthogonal projection of the point B^{\prime} on the i th face f_{i} of σ_{n}, then

$$
\begin{equation*}
\sum_{i=0}^{n} x_{i}\left(\overrightarrow{B^{\prime} A_{i}^{\prime}}\right)^{2} \geq \sum_{i=0}^{n} x_{i}\left(\overrightarrow{B^{\prime} Q_{i}}\right)^{2} \tag{2.6}
\end{equation*}
$$

Equality in (2.6) holds if and only if $Q_{i} \equiv A_{i}^{\prime}(i=0,1, \ldots, n)$. In addition, we have

$$
\begin{equation*}
\sum_{i=0}^{n}\left|\overrightarrow{B^{\prime} Q_{i}}\right| F_{i}=n V \tag{2.7}
\end{equation*}
$$

By the Cauchy's inequality and (2.7) we have

$$
\begin{equation*}
\left(\sum_{i=0}^{n} x_{i}{\overrightarrow{B^{\prime} Q_{i}}}^{2}\right)\left(\sum_{i=0}^{n} x_{i}^{-1} F_{i}^{2}\right) \geq\left(\sum_{i=0}^{n}\left|\overrightarrow{B^{\prime} Q_{i}}\right| \cdot F_{i}\right)^{2}=(n V)^{2} . \tag{2.8}
\end{equation*}
$$

Using (2.5), (2.6) and (2.8), we get

$$
\begin{equation*}
\left(\sum_{0 \leq i<j \leq n} x_{i} x_{j}\left(a_{i j}^{\prime}\right)^{2}\right)\left(\sum_{i=0}^{n} x^{-1} F_{i}^{2}\right) \geq n^{2}\left(\sum_{i=0}^{n} x_{i}\right) V^{2} . \tag{2.9}
\end{equation*}
$$

Taking $x_{0}=x_{1}=\cdots=x_{n}=1$ in (2.9), we get inequality (2.1). It is easy to prove that equality in (2.1) holds if the simplex σ_{n} is regular and σ_{n}^{\prime} is the tangent point simplex of σ_{n}.

Lemma 2.2 ([1, 6]). For the n-dimensional simplex σ_{n}, we have

$$
\begin{equation*}
\sum_{i=0}^{n} F_{i}^{2} \leq\left[n^{n-4}(n!)^{2}(n+1)^{n-2}\right]^{-1}\left(\sum_{0 \leq i<j \leq n} a_{i j}^{2}\right), \tag{2.10}
\end{equation*}
$$

with equality if the simplex σ_{n} is regular.

Lemma 2.3 ([2]). Let P be an interior point of the simplex $\sigma, \sigma_{n}^{\prime \prime}$ the pedal simplex of the point P with respect to σ_{n}, then

$$
\begin{equation*}
V \geq n^{n} V^{\prime \prime} \tag{2.11}
\end{equation*}
$$

with equality if the simplex σ_{n} is regular.
Lemma 2.4 ([1]). For the n-dimensional simplex σ_{n}, we have

$$
\begin{equation*}
V \geq \frac{n^{n / 2}(n+1)^{(n+1) / 2}}{n!} r^{n} \tag{2.12}
\end{equation*}
$$

with equality if the simplex σ_{n} is regular.
Lemma 2.5 ([4]). For the n-dimensional simplex σ_{n}, we have

$$
\begin{equation*}
\sum_{0 \leq i<j \leq n} a_{i j}^{2}=(n+1)^{2}\left(R^{2}-\overline{O G}^{2}\right) \tag{2.13}
\end{equation*}
$$

Here O and G are the circumcenter and barycenter of the simplex σ_{n}, respectively.
Proof of Theorem 1.1. Using inequalities (2.1) and (2.10), we get

$$
\begin{equation*}
\left(\sum_{0 \leq i<j \leq n}\left(a_{i j}^{\prime}\right)^{2}\right)\left(\sum_{0 \leq i<j \leq n} a_{i j}^{2}\right)^{n-1} \geq n^{n-2}(n!)^{2}(n+1)^{n-1} V^{2} \tag{2.14}
\end{equation*}
$$

By Lemma 2.5 we have

$$
\begin{equation*}
\sum_{0 \leq i<j \leq n}\left(a_{i j}^{\prime}\right)^{2} \leq(n+1)^{2}\left(R^{\prime}\right)^{2} \tag{2.15}
\end{equation*}
$$

From (2.13), (2.14) and (2.15) we get

$$
\begin{equation*}
\left(R^{\prime}\right)^{2}\left(R^{2}-\overline{O G}^{2}\right)^{n-1} \geq \frac{n^{n-1}(n!)^{2}}{(n+1)^{n+1}} V^{2} \tag{2.16}
\end{equation*}
$$

Using inequalities (2.16) and (2.12), we get inequality (1.1). It is easy to prove that equality in (1.1) holds if the simplex σ_{n} is regular and σ_{n}^{\prime} is the tangent point simplex of σ_{n}.

Proof of Theorem 1.3 . Since the pedal simplex $\sigma_{n}^{\prime \prime}$ is an inscribed simplex of the simplex σ_{n}, thus inequality 2.16 holds for the pedal simplex $\sigma_{n}^{\prime \prime}$, i.e.

$$
\begin{equation*}
\left(R^{\prime \prime}\right)^{2}\left(R^{2}-\overline{O G}^{2}\right)^{n-1} \geq \frac{n^{n-2}(n!)^{2}}{(n+1)^{n+1}} V^{2} \tag{2.17}
\end{equation*}
$$

Using inequalities (2.17) and (2.11), we get

$$
\begin{equation*}
\left(R^{\prime \prime}\right)^{2} R^{2(n-1)} \geq\left(R^{\prime \prime}\right)^{2}\left(R^{2}-\overline{O G}^{2}\right)^{n-1} \geq \frac{n^{3 n-2}(n!)^{2}}{(n+1)^{n+1}}\left(V^{\prime \prime}\right)^{2} \tag{2.18}
\end{equation*}
$$

By Lemma 2.4 we have

$$
\begin{equation*}
V^{\prime \prime} \geq \frac{n^{n / 2}(n+1)^{(n+1) / 2}}{n!}\left(r^{\prime \prime}\right)^{n} \tag{2.19}
\end{equation*}
$$

From (2.18) and (2.19) we obtain inequality (1.4). It is easy to prove that equality in (1.4) holds if the simplex σ_{n} is regular and $\sigma_{n}^{\prime \prime}$ is the tangent point simplex of σ_{n}.

References

[1] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND V. VOLENEC, Recent Advances in Geometric Inequalities, Kluwer Acad. Publ., Dordrecht, Boston, London, 1989, 425-552.
[2] Y. ZHANG, A conjecture on the pedal simplex, J. of Sys. Sci. Math. Sci., 12(4) (1992), 371-375.
[3] G.S. LENG, Some inequalities involving two simplexes, Geom. Dedicata, 66 (1997), 89-98.
[4] Sh.-G. YANG AND J. WANG, Improvements of n-dimensional Euler inequality, J. Geom., 51 (1994), 190-195.
[5] M.S. KLAMKIN, Inequality for a simplex, SIAM. Rev., 27(4) (1985), 576.
[6] L. YANG and J.Zh. ZHANG, A class of geometric inequalities on a finite number of points, Acta Math. Sinica, 23(5) (1980), 740-749.

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 019-05

