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ABSTRACT. The goal of the present paper is to generalize two theorems of R.P. Boas Jr. per-
taining toLp (p > 1) integrability of Fourier series with nonnegative coefficients and weight
xγ . In our improvement the weightxγ is replaced by a more general one, and the casep = 1
is also yielded. We also generalize an equivalence statement of Boas utilizing power-monotone
sequences instead of{nγ}.
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1. I NTRODUCTION

There are many classical and newer theorems pertaining to the integrability of formal sine
and cosine series

g(x) :=
∞∑

n=1

λn sin nx,

and

f(x) :=
∞∑

n=1

λn cos nx.

As a nice example, we recall Chen’s ([4]) theorem:If λn ↓ 0, thenx−γϕ(x) ∈ Lp (ϕ means
eitherf or g), p > 1, 1/p− 1 < γ < 1/p, if and only if

∑
npγ+p−2λp

n < ∞.
For notions and notations, please, consult the third section.
We do not recall more theorems because a nice short survey of recent results with references

can be found in a recent paper of S. Tikhonov [7], and classical results can be found in the
outstanding monograph of R.P. Boas, Jr. [2].

The generalizations of the classical theorems have been obtained in two main directions:
to weaken the classical monotonicity condition on the coefficientsλn; to replace the classical
power weightxγ by a more general one in the integrals. Lately, some authors have used both
generalizations simultaneously.
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2 L. LEINDLER

J. Németh [6] studied the class ofRBV S sequences and weight functions more general than
the power one in theL(0, π) space.

S. Tikhonov [8] also proved two general theorems of this type, but in theLp-space forp = 1;
he also used general weights.

Recently D.S. Yu, P. Zhou and S.P. Zhou [9] answered an old problem of Boas ([2], Question
6.12.) in connection withLp integrability considering weightxγ, but only under the condition
that the sequence{λn} belongs to the classMV BV S; their result is the best one among the an-
swers given earlier for special classes of sequences. The original problem concerns nonnegative
coefficients.

In the present paper we refer back to an old paper of Boas [3], which was one of the first to
study theLp-integrability withnonnegative coefficients and weightxγ.

We also intend to prove theorems withnonnegative coefficients,but withmore general weights
thanxγ.

It can be said that our theorems are the generalizations of Theorems 8 and 9 presented in
Boas’ paper mentioned above. Boas names these theorems as slight improvements of results of
Askey and Wainger [1]. Our theorems jointly generalize these by using more general weights
thanxγ, and broaden those to the casep = 1, as well.

Comparing our results with those of Tikhonov, as our generalization concerns the coefficients,
we omit the condition{λn} ∈ RBV S and prove the equivalence of (2.2) and (2.3).

In proving our theorems we need to generalize an equivalence statement of Boas [3]. At this
step we utilize the quasiβ-power-monotone sequences.

2. NEW RESULTS

We shall prove the following theorems.

Theorem 2.1.Let1 5 p < ∞ andλ := {λn} be a nonnegative null-sequence.
If the sequenceγ := {γn} is quasiβ-power-monotone increasing with a certainβ < p − 1,

and

(2.1) γ(x)g(x) ∈ Lp(0, π),

then

(2.2)
∞∑

n=1

γnn
p−2

(
∞∑

k=n

k−1λk

)p

< ∞.

If γ is also quasiβ-power-monotone decreasing with a certainβ > −1, then condition (2.2) is
equivalent to

(2.3)
∞∑

n=1

γnn
−2

(
n∑

k=1

λk

)p

< ∞.

If the sequenceγ is quasiβ-power-monotone decreasing with a certainβ > −1− p, and

(2.4)
∞∑

n=1

γnn
p−2

(
∞∑

k=n

|∆λk|

)p

< ∞,

then (2.1) holds.

Theorem 2.2.Letp andλ be defined as in Theorem 2.1.
If the sequenceγ is quasiβ-power-monotone increasing with a certainβ < p− 1, and

(2.5) γ(x)f(x) ∈ Lp(0, π),
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then (2.2) holds.
If the sequenceγ is quasiβ-power-monotone decreasing with a certainβ > −1, then (2.4)

implies (2.5).

3. NOTIONS AND NOTATIONS

We shall say that a sequenceγ := {γn} of positive terms isquasiβ-power-monotone increas-
ing (decreasing) if there exist a natural numberN := N(β, γ) and a constantK := K(β, γ) = 1
such that

(3.1) Knβγn = mβγm (nβγn 5 Kmβγm)

holds for anyn = m = N.
If (3.1) holds withβ = 0, then we omit the attribute "β-power" and use the symbols↑ (↓).
We shall also use the notationsL � R at inequalities if there exists a positive constantK

such thatL 5 KR.
A null-sequencec := {cn} (cn → 0) of positive numbers satisfying the inequalities

∞∑
n=m

|∆cn| 5 K(c)cm, (∆cn := cn − cn+1), m ∈ N,

with a constantK(c) > 0 is said to be asequence of rest bounded variation, in symbols,
c ∈ RBV S.

A nonnegative sequencec is said to be amean value bounded variation sequence, in symbols,
c ∈ MV BV S, if there exist a constantK(c) > 0 and aλ = 2 such that

2n∑
k=n

|∆ck| 5 K(c)n−1

[λn]∑
k=[λ−1n]

ck, n ∈ N,

where[α] denotes the integral part ofα.
In this paper a sequenceγ := {γn} and a real numberp = 1 are associated to a function

γ(x) (= γp(x)), being defined in the following way:

γ
(π

n

)
:= γ1/p

n , n ∈ N; and K1(γ)γn 5 γ(x) 5 K2(γ)γn

holds for allx ∈
(

π
n+1

, π
n

]
.

4. L EMMAS

To prove our theorems we recall one known result and generalize one of Boas’ lemmas ([2,
Lemma 6.18]).

Lemma 4.1([5]). Letp = 1, αn = 0 andβn > 0. Then

(4.1)
∞∑

n=1

βn

(
n∑

k=1

αk

)p

5 pp

∞∑
n=1

β1−p
n

(
∞∑

k=n

βk

)p

αp
n,

and

(4.2)
∞∑

n=1

βn

(
∞∑

k=n

αk

)p

5 pp

∞∑
n=1

β1−p
n

(
n∑

k=1

βk

)p

αp
n.
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Lemma 4.2. If bn = 0, p = 1, s > 0, then

(4.3)
∑

1
:=

∞∑
n=1

βn

(
∞∑

k=n

bk

)p

< ∞

implies

(4.4)
∑

2
:=

∞∑
n=1

βnn
−sp

(
n∑

k=1

ksbk

)p

< ∞

if nδβn ↓ with a certainδ > 1−sp; and ifnδβn ↑ with a certainδ < 1, then (4.4) implies (4.3).
Thus, if both monotonicity conditions for{βn} hold, then the conditions (4.3) and (4.4) are

equivalent.

Proof of Lemma 4.2.First, suppose (4.3) holds. Write

Tn :=
∞∑

k=n

bk;

then ∑
2

=
∞∑

n=1

βnn
−sp

(
n∑

k=1

ks(Tk − Tk+1)

)p

.

By partial summation we obtain∑
2
� sp

∞∑
n=1

βnn
−sp

(
n∑

k=1

ks−1Tk

)p

=:
∑

3
.

Sincenδβn ↓ with δ > 1− sp, Lemma 4.1 with (4.1) shows that∑
3
�

∞∑
n=1

(ns−1Tn)p(βnn
−sp)1−p

(
∞∑

k=n

βkk
−sp

)p

�
∞∑

n=1

βnT
p
n =

∑
1
,

this proves that (4.3)⇒ (4.4).
Now suppose that (4.4) holds. First we show that

(4.5)
∞∑

n=1

bn < ∞.

Denote

Hn :=
n∑

k=1

ksbk.

Then

(4.6)
N∑

k=n

bk =
N∑

k=n

k−s(Hk −Hk−1) 5 s

N−1∑
k=n

k−s−1Hk + HNN−s.

If p > 1 then by Hölder’s inequality, we obtain

(4.7)
N−1∑
k=n

k−s−1Hkβ
1
p
− 1

p

k 5

(
N−1∑
k=n

Hp
kβkk

−sp

) 1
p
(

N−1∑
k=n

(k−1β
−1/p
k )p/(p−1)

) p−1
p

.
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Since,nδβn ↑ with δ < 1, thus
∞∑

k=1

(k−pβ−1
k k−δ+δ)1/(p−1) �

∞∑
k=1

k
δ−p
p−1 < ∞.

This, (4.4) and (4.7) imply that

(4.8)
∞∑

k=1

k−s−1Hk < ∞,

thusHNN−s tends to zero, herewith, by (4.6), (4.5) is verified, furthermore,

(4.9)
∞∑

k=n

bk �
∞∑

k=n

k−s−1Hk.

If p = 1, then without Hölder’s inequality, the assumptionnδβn ↑ with a certainδ < 1 and
(4.4) clearly imply (4.8).

Thus we can apply (4.9) and Lemma 4.1 with (4.2) for anyp = 1, whence, bynδβn ↑ with
δ < 1, we obtain that

∞∑
n=1

βn

(
∞∑

k=n

bk

)p

�
∞∑

n=1

βn

(
∞∑

k=n

k−s−1Hk

)p

�
∞∑

n=1

(n−s−1Hn)pβ1−p
n

(
n∑

k=1

βk

)p

�
∞∑

n=1

βnn
−spHp

n;

herewith (4.4)⇒ (4.3) is also proved.
The proof of Lemma 4.2 is complete. �

5. PROOF OF THE THEOREMS

Proof of Theorem 2.1.First we prove that (2.1) impliesg(x) ∈ L(0, π) and (2.2). Ifp > 1,
then, by Hölder’s inequality, we get withp′ := p/(p− 1)∫ π

0

|g(x)|dx 5

(∫ π

0

|g(x)γ(x)|pdx

) 1
p
(∫ π

0

γ(x)−p′dx

) 1
p′

.

Denotexn := π
n
, n ∈ N. Sinceγnn

β ↑ (β < p− 1)∫ π

0

γ(x)−p′dx �
∞∑

n=1

γ1/(1−p)
n

∫ xn

xn+1

dx

=
∞∑

n=1

n−2(γnn
β)1/(1−p)nβ/(p−1) � 1,

that is,g(x) ∈ L.
If p = 1, thenγnn

β ↑ with someβ < 0, thusγn ↑, whence∫ π

0

|g(x)|dx �
∞∑

n=1

1

γn

∫ xn

xn+1

|g(x)|γ(x)dx � 1

γ1

∫ π

0

|g(x)|γ(x)dx � 1.
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Integratingg(x), we obtain

G(x) :=

∫ x

0

g(t)dt =
∞∑

n=1

λn

n
(1− cos nx) = 2

∞∑
n=1

λn

n
sin2 nx

2
.

Hence

G(x2k) �
2k∑

n=k

λn

n
.

Denote

gn :=

∫ xn

xn+1

|g(x)|dx, n ∈ N.

Then
∞∑

k=n

k−1λk =
∞∑

ν=0

2ν+1n∑
k=2νn

k−1λk

�
∞∑

ν=0

G(2ν+1n)

�
∞∑

ν=0

∞∑
k=2ν+1n

gk

�
∞∑

ν=0

1

2ν+1n

2ν+1n∑
i=2νn

∞∑
k=2ν+1n

gk

�
∞∑

ν=0

2ν+1n∑
i=2νn

1

i

∞∑
k=i

gk

�
∞∑

i=n

1

i

∞∑
k=i

gk.(5.1)

Now we have∑
1

:=
∞∑

n=1

np−2γn

(
∞∑

k=n

k−1λk

)p

�
∞∑

n=1

np−2γn

(
∞∑

k=n

k−1

∞∑
i=k

gi

)p

.

Applying Lemma 4.1 with (4.2) we obtain that∑
1
�

∞∑
n=1

(
n−1

∞∑
i=n

gi

)p

(np−2γn)1−p

(
n∑

k=1

kp−2γk

)p

.

Sinceγnn
β ↑ with β < p− 1, we have

(5.2)
n∑

k=1

γkk
βkp−2−β � γnn

β

n∑
k=1

kp−2−β � γnn
p−1,

and thus

(np−2γn)1−p

(
n∑

k=1

kp−2γk

)p

� γnn
2p−2,

whence we get ∑
1
�

∞∑
n=1

γnn
2p−2

(
n−1

∞∑
i=n

gi

)p

.
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Using again Lemma 4.1 with (4.2) we have∑
1
�

∞∑
n=1

n−pgp
n(n2p−2γn)1−p

(
n∑

k=1

k2p−2γk

)p

.

A similar calculation and consideration as in (5.2) give that
n∑

k=1

k2p−2γk � γnn
2p−1,

and

(n2p−2γn)1−p

(
n∑

k=1

k2p−2γk

)p

� γnn
3p−2,

thus

(5.3)
∑

1
�

∞∑
n=1

γnn
2p−2gp

n.

Since
∞∑

n=1

γnn
2p−2gp

n =
∞∑

n=1

γnn
2p−2

(∫ xn

xn+1

|g(x)|dx

)p

�
∞∑

n=1

γnn
2p−2

∫ xn

xn+1

|g(x)|pdx

(∫ xn

xn+1

dx

)p−1

�
∞∑

n=1

∫ xn

xn+1

|γ(x)g(x)|pdx

=

∫ π

0

|γ(x)g(x)|pdx.

This and (5.3) prove the implication (2.1)⇒ (2.2).
Next we verify that (2.4) implies (2.1). Letx ∈ (xn+1, xn]. Then, using the Abel transforma-

tion and the well-known estimation

D̃n(x) :=

∣∣∣∣∣
k∑

n=1

sin nx

∣∣∣∣∣� x−1,

we obtain

(5.4) |g(x)| � x
n∑

k=1

kλk +

∣∣∣∣∣
∞∑

k=n+1

λk sin kx

∣∣∣∣∣� x
n∑

k=1

kλk + n
∞∑

k=n

|∆λk|.

Denote

∆n :=
∞∑

k=n

|∆λk|.

It is easy to see that

n∆n � n−1

n∑
k=1

k∆k

and, byλn → 0,

λn 5 ∆n.
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Thus, by (5.4), we have

|g(x)| � n−1

n∑
k=1

k∆k.

Hence ∫ π

0

|γ(x)g(x)|pdx =
∞∑

n=1

∫ xn

xn+1

|γ(x)g(x)|pdx �
∞∑

n=1

γnn
−2−p

(
n∑

k=1

k∆k

)p

.

Applying Lemma 4.1 with (4.1), we obtain∫ π

0

|γ(x)g(x)|pdx �
∞∑

n=1

(n∆n)p(γnn
−2−p)1−p

(
∞∑

k=n

γkk
−2−p

)p

.

Sinceγnn
β ↓ with β > −1− p, we have

∞∑
k=n

γkk
βk−2−p−β � γnn

β

∞∑
k=n

k−2−p−β � γnn
−1−p,

and thus

(γnn
−2−p)1−p

(
∞∑

k=n

γkk
−2−p

)p

� γnn
−2.

Collecting these estimations we obtain∫ π

0

|γ(x)g(x)|pdx �
∞∑

n=1

γnn
p−2∆p

n =
∞∑

n=1

γnn
p−2

(
∞∑

k=n

|∆λk|

)p

,

herewith the implication (2.4)⇒ (2.1) is also proved.
In order to prove the equivalence of the conditions (2.2) and (2.3), we apply Lemma 4.2 with

s = 1, βn = γnn
p−2 and bk = k−1bk.

Then the assumptionsnδβn ↑ with δ < 1 andnδβn ↓ with δ > 1 − p, determine the following
conditions pertaining toγn;

(5.5) nβγn ↑ with β < p− 1 and nβγn ↓ with β > −1.

The equivalence of (2.2) and (2.3) clearly holds if both monotonicity conditions required in
(5.5) hold.

This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2.As in the proof of Theorem 2.1, first we prove that (2.5) implies (2.2)
andf(x) ∈ L. The proof off(x) ∈ L runs as that ofg(x) ∈ L in Theorem 2.1.

Integratingf(x), we obtain

F (x) :=

∫ x

0

f(t)dt =
∞∑

n=1

λn

n
sin nx,

and integratingF (x) we get

F1(x) :=

∫ x

0

F (t)dt = 2
∞∑

n=1

λn

n2
sin2 nx

2
.

Thus we obtain

F1

( π

2k

)
�

2k∑
n=k

λn

n2
.
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Denote

fn :=

∫ xn

xn+1

|f(x)|dx, n ∈ N,
(
xn =

π

n

)
.

Then

F1(x2n) =

∫ x2n

0

F (t)dt

�
∞∑

k=2n

∫ xk

xk+1

(∫ xk

0

|f(t)|dt

)
du

�
∞∑

k=2n

1

k2

∞∑
`=k

∫ x`

x`+1

|f(t)|dt =
∞∑

k=2n

1

k2

∞∑
`=k

f`,

thus
2n∑

k=n

λk

k
� n

∞∑
k=2n

1

k2

∞∑
`=k

f`.

Using the estimation obtained above we have
∞∑

k=n

k−1λk =
∞∑

ν=0

2ν+1n∑
k=2νn

k−1λk

�
∞∑

ν=0

2νn

∞∑
k=2ν+1n

k−2

∞∑
`=k

f`

�
∞∑

ν=0

2νn
∞∑

i=ν

2i+2n∑
k=2i+1n

k−2

∞∑
`=2i+1n

f`

�
∞∑

ν=0

2νn
∞∑

i=ν

(2i
n)−1

∞∑
`=2i+1n

f`

�
∞∑
i=0

(2in)−1

∞∑
`=2i+1n

f`

(
i∑

ν=0

2νn

)

�
∞∑
i=0

∞∑
`=2i+1n

f`.

Hereafter, as in (5.1), we get that
∞∑

k=n

k−1λk �
∞∑

i=n

1

i

∞∑
`=i

f`,

and following the method used in the proof of Theorem 2.1 withfn in place ofgn, the implica-
tion (2.5)⇒ (2.2) can be proved.

The proof of the statement (2.4)⇒ (2.5) is easier. Namely

|f(x)| 5
n∑

k=1

λk +

∣∣∣∣∣
∞∑

k=n+1

λk cos kx

∣∣∣∣∣�
n∑

k=1

λk +
1

x

∞∑
k=n

|∆λk|.

Using the notations of Theorem 2.1 and assumingx ∈ (xn+1, xn], we obtain∫ xn

xn+1

|γ(x)f(x)|pdx � γnn
−2

(
n∑

k=1

λk

)p

+ γnn
−2

(
n

∞∑
k=n

|∆λk|

)p
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10 L. LEINDLER

and thus, byλn → 0,

(5.6)
∫ π

0

|γ(x)f(x)|pdx �
∞∑

n=1

γnn
−2

(
n∑

k=1

∞∑
m=k

|∆λm|

)p

+
∞∑

n=1

γnn
p−2

(
∞∑

k=n

∆λk

)p

.

To estimate the first sum, we again use Lemma 4.1 with (4.1), thus, byγnn
β ↓ with some

β > −1,
∞∑

n=1

γnn
−2

(
n∑

k=1

∆k

)p

�
∞∑

n=1

∆p
n(γnn

−2)1−p

(
∞∑

k=n

γkk
−2

)p

�
∞∑

n=1

γnn
p−2∆p

n ≡
∞∑

n=1

γnn
p−2

(
∞∑

k=n

|∆λk|

)p

.

This and (5.6) imply the second assertion of Theorem 2.2, that is, (2.4)⇒ (2.5).
We have completed our proof. �
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