Journal of Inequalities in Pure and Applied Mathematics

ON A CONJECTURE OF DE LA GRANDVILLE AND SOLOW CONCERNING POWER MEANS

GRANT KEADY AND ANTHONY PAKES

School of Mathematics and Statistics
University of Western Australia
Nedlands/Crawley, 6009, Western Australia
EMail: keady@maths.uwa.edu.au
URL: http://www.maths.uwa.edu.au/ ~ keady
EMail: pakes@maths.uwa.edu.au
volume 7 , issue 3 , article 98 , 2006.

Received 13 January, 2006; accepted 22 June, 2006.

Communicated by: S.S. Dragomir
Abstract

Abstract

In a recent paper in this journal De La Grandville and Solow [1] presented a conjecture concerning Power Means. A counterexample to their conjecture is given.

2000 Mathematics Subject Classification: 26D15.
Key words: Means.

Contents

1 Introduction.. . . . 3
2 A Counterexample with $n=3 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
3 Further Results .. 6
References

1. Introduction

We quote, with minor abbreviations, from De La Grandville and Solow:
"Let x_{1}, \ldots, x_{n} be n positive numbers and

$$
M(p)=\left(\sum_{i=1}^{n} f_{i} x_{i}^{p}\right)^{\frac{1}{p}}
$$

the mean of order p of the x_{i} 's; $0<f_{i}<1$ and $\sum_{i=1}^{n} f_{i}=1$. One of the most important theorems about a general mean is that it is an increasing function of its order. A proof can be found in Hardy, Littlewood and Polya (1952; Theorem 16, pp. 26-27). ... "
... " It is well known that $M(p)$ is increasing with p. It seems that further exact properties of the curve $M(p)$ remain to be discovered."

We now have to distinguish between a bolder conjecture in the preprint form of [1] and the published paper which was revised in view of the results we communicated to the authors of [1].

A Conjecture, from the preprint form of [1]. In (M, p) space, the curve $M(p)$ has one and only one inflection point, irrespective of the number and size of the x_{i} 's and the f_{i} 's. Between its limiting values,

$$
\lim _{p \rightarrow-\infty} M(p)=\min \left(x_{1}, \ldots, x_{n}\right) \quad \text { and } \quad \lim _{p \rightarrow \infty} M(p)=\max \left(x_{1}, \ldots, x_{n}\right)
$$

$M(p)$ is in a first phase convex, and then turns concave.
The published form of the conjecture in [1] is for $n=2$ only. Our present paper serves to show that the restriction to $n=2$ is necessary. (Whether $n=2$ is sufficient for the Conjecture to be true is unknown at this stage.)

On a Conjecture of de La Grandville and Solow concerning Power Means

Grant Keady and Anthony Pakes

Title Page
Contents

Go Back
Close
Quit
Page 3 of 7

2. A Counterexample with $n=3$

As noted in [1], the explicit expressions for the second derivative of $M(p)$ are unpleasant to behold! Computer Algebra packages, however, are less squeamish about messy expressions than are humans. In our counterexample, n is 3 . Our counterexample was obtained with Maple (and we omit the plots here and just give relevant numerical values). Maple code, and its output, which provides the counterexample, is given below. For users of Mathematica, the equivalent in Mathematica follows.

```
# maple , x3=1 and f3=(1-f1-f2)
M:= (x1,f1,x2,f2,p) ->
(f1*x1^p +f2*x2^p+(1-f1-f2))^(1/p);
M2:=unapply(diff(M(1/9,1/27,2/9,25/27,p),p$2),p);
plot(M2 (p),p=-10 .. 10);
map(evalf,[M2(-8),M2(-4),M2(0.1),M2(4)]);
# whose output is
# [0.001244859453, -0.001233658446,
0.009620297, -0.01197556909]
(* Mathematica x3=1 and f3=(1-f1-f2) *)
M[x1_,f1_,x2_,f2_,p_]
:= (f1*x1^p +f2*x2^p+(1-f1-f2))^(1/p);
M2[p_]:= Evaluate[D[M[1/9,1/27,2/9,25/27,p],{p,2}]];
Plot[M2[p],{p,-10,10}]
Map[N,{M2[-8],M2[-4],M2[0.1],M2[4]}]
```


On a Conjecture of de La Grandville and Solow concerning Power Means

Grant Keady and Anthony Pakes

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	

Page 4 of 7

```
(* whose output is
    [0.00124486, -0.00123366, 0.0096203, -0.0119756] *)
```

In the code, the function M2 denotes the second derivative of M with respect to p. It is a continuous function of p and has several sign changes. For the numeric values of x_{i} and f_{i} given in the code, the function M2 has three zeros, so the function $M(p)$ has three inflection points (in the interval of p studied).

On a Conjecture of de La Grandville and Solow concerning Power Means

Grant Keady and Anthony Pakes
Title Page

3. Further Results

Hardy, Littlewood and Polya ([2]; Theorem 86, p. 72) give that $p \log (M(p))$ is a convex function of p.

We have some further results related to means, requiring, however, further work. We hope to submit them in a later paper. See also [3].

Grant Keady and Anthony Pakes
Title Page

References

[1] O. DE LA GRANDVILLE and R.M. SOLOW, A conjecture on general means, J. Ineq. and Appl., 7(1) (2006), Art. 3. [ONLINE: http: //jipam.vu.edu.au/article.php?sid=620]
[2] G. HARDY, J.E. LITTLEWOOD and G. POLYA, Inequalities, Cam. Univ. Press, 2nd ed. 1952.
[3] H. SHNIAD, On the convexity of mean-value functions, Bull. Amer. Math. Soc., 54 (1948), 770-776.

On a Conjecture of de La Grandville and Solow concerning Power Means

Grant Keady and Anthony Pakes
Title Page

