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ABSTRACT. The purpose of this present paper is to give an equivalent theorem on Lupas oper-
ators withw?, (f, ¢), wherew(, (f,t) is Ditzian-Totik modulus of smoothness for linear combi-
nation of Lupags operators.
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1. INTRODUCTION

Let C'[0,+00) be the set of continuous and bounded functions defined.onco) . For
f € C[0,400) andn € N, the Lupas operators are defined as

+o0 Lk
(11) Bn (fa I) = an,k(x>f (E) )
k=0

where
(z) = n+k—1 xk
Pl %)= k (14 z)nthk

Since the Lupas operators cannot be used for the investigation of higher orders of smoothness,
we consider combinations of these operators, which have higher orders of approximation. The
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2 NAOKANT DEO

linear combinations of Lupag operators@fv, +oo) are defined as (se€ [3, p.116])

—_

(1.2) B, (f,z) = Ci(n)By, (f,x), reN,

%

Il
=)

wheren; andC;(n) satisfy:
() n=ng <+ <mn,_1 <Ay
r—1

(i) ;) |Ci(n)| < C;

(i) Bo,(1,2) = 1;

(iv) Bnm((t —x)k,:r;) =0 k=1,2,...,r—1,

where constantd andC' are independent of.

Ditzian [1] useduik(f, t) (0 < A < 1) and studied an interesting direct result for Bernstein
polynomials and unified the results witht(f,t) andwi(f,?). In [2], wi,(f,t) was also used
for polynomial approximation.

To state our results, we give some notations (clf. [4]). &1, +o00) be the set of continuous
and bounded functions df, +oo) . Our modulus of smoothness is given by

13) = s s A (@)
<h<t a+(rh¢*(z)/2)€[0,+00)

Y

where

N f(x)=f (x—g) —f (a:—i-g), AR = AN AR, keN

and ourK —functional by

(1.4) Ko (£:8) =it {11 = gllego oy + ¢ 16797 oo 1o}
(1.5) B (£07) =it {11 = gl + 1116797 | oo
r/(1-\/2 r
Sl ] P 3
where the infimum is taken on the functions satisfyifg? € A - C,., é(z) = /2(1 + )
and0 < X\ < 1. Itis well known (seel[1]) that
(1.6) Win (f,1) ~ K (f.17) ~ Koa (f.17),

(r ~ y means that there exists> 0 such thatly < x < cy).
To prove the inverse, we need the following notations. Let us denote

Co:={f € C[0,+00), f(0) =0},
I£llg = sup |62 (@) f ()

9

2€(0,400)
A im {1 € G 1], < o0},
£l = sup &t ) 0 ()]
z€(0,400)

C; = {f € CO : f(T_l) € A- Cloca

fH'r <+OO}7
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whered, (z) = ¢(z) + \/Lﬁ ~ max{¢(x), \/%7} , 0< A<, reNand0 <a <.

Now, we state the main results.

If f e Cl0,+40), 7€ N, 0< a<r 0< )< 1,then the following statements are
equivalent

(L.7) B (f.2) = f(@)] =0 (n™35,7(2))°)
(1.8) wi (f, 1) =0(t%),

whered, (z) = ¢(z) + \/iﬁ ~ max {gzﬁ(x), \/Lﬁ}

In this paper, we will consider the operatdrs [1.2) and obtain an equivalent approximation
theorem for these operators.

Throughout this papet’ denotes a constant independent.@ndz. It is not necessarily the
same at each occurrence.

2. BAsic REsSuULTS

In this section, we mention some basis results, which will be used to prove the main results.
If feC[0,+), r € N, then by [3] we know that

n—i—r—1'+oo

BT(LT)(fa "L‘) ‘ pn+r k ;—1.]( (%) .

Lemma 2.1. Let /(" € C [0, +00) and0 < A < 1, then
(2.1) |67 (@) B (f, )| < Cllo™ |

Proof. In [3], Sec.9.7], we have

k e [ e (K
(2.2) AT Lfl =) <Cn" Y9N = 4u || du,
n 0 n
r/n
(2.3) AT f(0) < Cnm3N2 / w2 £ ()| du.
0
Using (2.2),[(2.B) and the Holder inequality, we get
+0o0
) (r) < |HA n + r— 1 ! AT, E
‘(b (l‘)Bn (fax)‘ — ¢ ( ! anJrrk n* f n
< m @) o) A f (0)
= (n . 1), pn+7’70 n—1

+oo
> @mes()ai S (£)
k=1

< C[[¢7 @) /"]
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Lemma2.2.Letf € C'[0,+00),r € Nand0 < X\ < 1, then forn > r, we get
6" (@) BY) (f,2)| < Cn/26, 70D (@) £
Proof. We consider € [0,1/n]. Then we havé, () ~ =, ¢(x) < . Using

and

we have
|7(2)BO(f,0)] < O 28,70V (@) £,

Now we consider the interval € (1/n, +00), theng(x) ~ d,,(x). Using Lemma 4.5 in [6], we
get

(2.4) 6" () B (f,2)] < Cn"| f]| .
Therefore
’¢TA( |_¢r)\ 1) ’¢r B(r f.fll')‘
< G (@2 £,
< 00,7 ]

O

Lemma 2.3.Letr € N0 < g <7r, z+rt/2 € [ and0 < ¢t < 1/8r, then we have the
following inequality:

t/2 t/2 r
(2.5) / / 5.7 (:n + Zuj> duy ... du, < C(B)t"65(x).
—t/2 —t/2 ]
Proof. The result follows from([7, (4.11)]. O

Lemma 2.4.For z,t,u € (0,+00), z <u <t, t,re€Nand\ e |0,1], then

/t }t — u‘rilqﬁ_m(u)du ,

Proof. Whenr = 1, then we have

(2.6) B, (

ZL’) < Cn~"287 (2) 7M@),

(2.7) ‘t — x‘ {x )\/2 1+1)” A2 (1+ x)fA/2th/2}.

From [3, (9.5.3)],

(2.8) B, ((t —x)”, ) < On "¢* ().
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Applying the Holder inequality, we get
29 B, < ' x) < {Bu((t =) a)} [ VB (4 2 0}
(14 2) 2Bt )]
< On Y25, (x) [x‘A/Q{Bn((l + 1) 723, x)}%

+ (1 +—x)_A/2{l3n(t_2A/3,x)}%].

Applying the Holder inequality, we get

(2.10) Byt (ank () ) < Ca

Similarly,
(2.11) Bo((1+1t)72M3 2) < C(1 4 z) V3.
Combining [2.9) to[(2.11), we obtaih (2.6).
Whenr > 1, then we have
o —u* _Jt—af
2 S 2
P*(u) — P?(x)

(Trivial for t < u < z),

otherwise
’t—u|x < |t—m‘u
and
u!t—u| x‘t—x‘ (f b ey < )
or u xZ).
P*(u) —  P*(x)
Thus
2.12 b= < b= 2
(2.12) ST (w) = gr-DA(z)’ r>
because
‘t u‘ ‘t—x| 1 1 .
2.13 T | for ¢
(2.13) P S 3 (1+x 1+t) (Trivial for ¢ < u < )
otherwise
(u—t) < (x —1t)
U - t
and
1 < 1 n 1
1+u " 14+2 1+t
t—u| |t—z|/ 1 N
2.14 < )
(2.14) »P*Mu) = at <1—|—x+1+t>
Because the functiont (0 < X < 1) is subadditive, using (2.12) a 14), we obtain
r—1 r—1 by A
|t — u |t — z| 1 1
2.15 < _— .
215) = () ()
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SinceB, ((1+1t) ™", z)) <C(1+z)™" (reN, z € [0,400)), using the Holder inequality,
we have

(2.16) B,(1+t)2) <C(l+2)* (z€][0,400),X€[0,1]).
Using (2.8),[(2.15)[(2.16) and the Holder inequality, we get
B, < /t ‘t - u‘“%‘”‘(u)du ,a:) < Bi/z(}t - u‘%,w)

.((b’r’\(a:) + 2 ¢~ ()BY? ((1 + )7, a:))
< On~ 28, ()6 @),

Lemma2.5.1f r e Nand0 < o < r then

(2.17) |B..f], <Cn'?||f|l, (f €C),
(2.18) |B.f], <C| 1], (f € C).
Proof. Forz € [0, 1] andd,,(z) ~ f, according to Lemm.2 we get

|577;+a(>\71)($)B7(lr)(f’ 33)’ < CnT/QHfHo'

On the other hand, for € (£, 4+00) andd,(z) ~ ¢(x), according to[[B], we can obtain

(2.19) B (f,z) = ¢~ ZTZV ne”(z ank <ﬁ—x) int (S)

whereV; (n¢?*(z)) is polynomial inng?(x) of degree(r — i)/2 with constant coefficients and
therefore,

) ‘ n (r+14)/ 1
(2.20) |0 Vi(na)n'| < C <¢2(x)) , forany z € (E,—FOO) .
Since
@:21) a5 (5] <l ),

using the Holder inequality, we get

St (£ 0 (2] (22 g

From (2.19) to[(2.22) we can deduge (2.17) easily. Similarly, like Lefnmla 2.1 we can obtain
2.18). O

(2.22)
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3. DIRECT RESULTS

Theorem 3.1.Let f € C'[0,+o0),r € Nand0 < A < 1, then
(3.1) | B (f,2) = f(x)] < Cwin (f,n™" 28,7 ().

Proof. Using (1.5) and([(1]6) and taking, = d,.(z,\) = n~/26}~*(x), we can choosg, =
gn.zx for fixed z and\ satisfying:

(3.3) dy |69 || <Cwin(f, dn),
(3.4) d;/ = gD || <Cwis(f, dn).
Now

‘Bnm(fax)_f(x)‘ é ‘Bn,r(fax)_ n,r gna |+‘f gn )|
S C”f — gnHOO + |Bn,r(gn7x) - gn(‘r)‘

By using Taylor’s formula:

t— 1o r—1 B
( ) g(r 1)(1’) + Rr(gm t, x)v

gn(t) = gu(z) + (t — 2)gp,(2) + -+ + SR

where

Ry{gt) = =5 | (=00 )

Using (i)-(iv) of (1.2) and Lemmpa 2/ 4, we obtain

1 t
‘Bnr gn, X | = <m/ (t— u)rlgsﬂ)(u)du,l’)
t =1
(36) < C el (B( . %d ))

< Co™™Na)n"20, (w) |9l -
Again using (i)-(iv) of [1.2) and (2.12), we get

t
| Bur(gn, ) = gn(@)] < C 07797 H‘ (/ ugx—)dw)‘

(3.7) < C 6290 |n™2| Ba (¢ = @), 2) ‘1/2
S Cnfr/25;<x>nrk/2 ||52)\g7(1r)H )

We will take the following two cases:
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Case-l:Forz € [0,1/n], d,(x) ~ \/% Then by ) _5) an_7), e have
Burlf2) = 1) < C(I5 = anl| + 527

@8) < (15 = gl + 67| + a0
@9) < (15 ~ gl + @ l697) + =067

< Cwin (f,dy).

Case-ll: Forz € (1/n,+00), d,(z) ~ ¢(x). Then by [3.2) -{(3]3) andl (3.5) }- (8.6), we get
(310)  [Bus(fi2) = f(@)] S C(If = gal| + df| 69| < Cwis (£,dn) -

4. INVERSE RESULTS

Theorem4.1.Letf € C'[0,+o0), reN, 0<a<r, 0<A<1.Then

(41) ‘Bn,r(.ﬂ .I) - f(LL’)‘ = O(dz)
implies
(4.2) wia ([ 1) = O(t?),

whered,, = n=/251 ().

Proof. SinceB, (f, z) preserves the constant, hence we may assume€’,. Suppose thalt (4.1)
holds. Now we introduce a new-functional as

K3(5.6) = int {[1£ = all, + gl }
Choosingg € Cf such that
(4.3) 17 = glly + " llgll, < 283 CFn7).
By (4.7)), we can deduce that
| By (f,2) = f(@)]lo < Cn—/2.
Thus, by using Lemma 2.5 ar{d (B.3), we obtain

KS(f,t7) < ||f = Bur(D)ly + 17| Bur ()],
< O (|| Bop(f = )|, + [Bur(9)],)
<c(n 4| f - glly+ 9ll,))
-« t o' -r
< C(n ™+ K5 (fin 7))
which implies that byl[3, 7]

(4.4) ES(f.17) < Cre.
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On the other hand, since+ (j — %)t¢*(z) > 0, therefore
. f A
‘ j 2>t¢ (96)) <z
and
T+ (y — g)ww < 2z,
so that
(4.5) 5, (x + (j - g)w(x)) < 26, ().

Thus, forf € CY, we get

@8 | W%<TO<>%“”(W+Q—gﬁW@O)

< 275 @)| £l

V(a
From Lemma 2.3, foy € C§, 0 < t¢*(x) < 1/8r, x £ rt¢*(z)/2 € [0, +00) , we have
(t/2)* (@) (t/2)* (@) r
/ / o (x—l—Zuj)dul...dur
—(t/2)¢* () —(t/2)¢* () j=1
(t/2)¢* () (t/2)6* () r
@.7) <Ilo]l. / / 570N (53 g ) duy . du,

(t/2)p* (z —(t/2)¢* ()
< Otr —r+a(l- )\ Hg”

Using (4.4),[(4.6) and (4/7), far < t¢*(z) < 1/8r, x £ rt¢*(x)/2 € [0, +00) and choosing
appropriatgy, we get

‘Atqﬂ()f )| < |At¢A (f = 9) ‘+|A:¢* (m)’
< a0 @ |f = gl + 5V @)|g, |

t’f'
a(l=X) «
< Co, (x)KA <f7 5;;(1—)0(%))

[Aipnga)] <

< Ct".
0

Remark 4.2. Very recently Gupta and De0![5] have studied two dimensional modified Lupas
operators. In the same manner we can obtain an equivalent theoremwiff?).
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