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Abstract
We prove some inequalities such as
Fla;™, e ™) S P, 2,

where F is a linear function or a linear function in logarithms and ¢ is a permu-
tation, which is a product of disjoint translation cycles. Stronger inequalities are
proved for second-order recurrence sequences, generalizing those of Diaz.
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Define the second-order recurrent sequence by
(1.1) Tpi1 = Ty + bxy_ 1,20 > 0,21 > 1,

with a,b > 1. If a = b = 1andzy = 0,y = 1 (0rzg = 2,2, = 1),
thenz, is the Fibonacci sequence,, (or Pell sequencef’,). Inequalities on
Fibonacci numbers were used recently by Bar-Mdbwl [1], to study a9/8—
approximation for a variant of the problem that models the Broadcast Disks ap- '“eq“agggsc?&;gff;‘;vi::‘sctions
plication (model for efficient caching of web pages). % P.L. Diaz proposed

the following two inequalities:

Pantelimon Stanica

Py n X P Fp
(a) Ffnrr + B2 + By < EFn 4 0T + F 052, Title Page
(b) EFvniplrs2pln, < pEpinaplnge, Contents
In this note we show that the inequalities proposed by Diaz are not specific to 4 dd
the Fibonacci sequence, holding for any strictly increasing sequence. Moreover, < >

we prove that stronger inequalities hold for any second-order recurrent sequence

as in (L.1). Furthermore, we pose a problem for future research. Go Back
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We wondered if the inequalities:), (b) were dependent on the Fibonacci se-

guence or if they can be extended to binary recurrent sequences. From here on,
we assume that all sequences have positive terms. Without too great a difficulty,

we prove, for a binary sequence, that

Theorem 2.1. For any positive integen,

(2.1) T g i, < abh a4 anl,
n Tn n n T Tn
(22) xz +1$n++121'i+2 < x;cl xn-ﬂlxn-:;-
Proof. We shall prove
(2.3) 2V + Y 4 (az 4 by)T < 2 + ¥ + (ax + by)* T,

if 0 < z < y, which will imply our theorem. For easy writing, we denote
z = ax + by. Then @.3) is equivalent to

(2.4) g (V1) 4y (Y- 1) <2¥ (Y - z_(y_x)) :
Now, z% + y¥ < z¥ + y¥ < (x + y)¥ < z¥, sincea, b > 1. Moreover,

(=14 (V=1 =2V " +y" V-2
<V 4ytV -1
<(x+y)v-1
< 27V — ),
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TakingA =2, B=yY,C =2¥"* — 1, D = y* ¥ — 1 and using the inequality
for positive numbersiC' + BD < (A + B)(C' + D), we obtain 2.4).
The inequality 2.2) is implied by

(2.5) 2yt < atylt = VYV < 25T

But z5=% = 2+ > (1 4 y)* V(2 + y)¥™?) > ¢* V¥~ The theorem
is proved. ]

Remark 2.1. We preferred to give this proof since it can be seen that the two
inequalities are far from being tight. We remark that inequal®y?( can be
also shown by using Theoreit.

With a little effort, while not attempting to have the best bound, we can
improve it, and also prove that the gaps are approaching infinity.

Theorem 2.2.We have

Tpn+1 Tn+2 T Tn Tn+1 Tn42 Tp4+1—Tn
" + Tpi1 + Lo <z, + Lyl + Tpio Tnt2 ™
Tn+1 Tnt2 Tn Tn 2 Int+1 _Tnt2 _ Tn Tnt+l _Tn

Ty xn—i—l xn+2 < Ly :Cn—i-l xn—s—Z 3xn :Cn—i-l an+2.

In particular,

lim [(zf + 2t 4 2 h) — (@it 4 a8+ apn,)] = oo
lim [y @y’ — i ) = oo.
In fact, the inequalities 1), (2.2) are not dependent on binary sequences,
at all. A much more general statement is true. Taka permutation, which
is a product of disjointyclic (translations by a fixed numbet(i) = i + t)

permutations.
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Theorem 2.3.Letn > 2andl < x; < 23 < ... < z, a strictly increasing
sequence. Then

(2.6) zn: 2,70 < Xn: i,
=1

=1
and
n n
?U(i) < Zi
(2'7) H Ly - H Lits Inequalities on Linear Functions
=1 =1 and Circular Powers
with strict inequality ifo is not the identity. Pantelimon Stanica

Proof. If ¢ is the identity permutation, the equality is obvious. Now, assume
thato (i) = i + t. We take the case of= 1 (the others are similar). We prove Title Page
(2.6) by induction omn. If n = 2, we need

Contents
x4+ xst < ol 4 152, <44« >»
which is equivalent to < 4
xclm (xfzfl“*l o 1) < x§1 (xﬂészlifl _ 1) ) Go Back
. o . . . " Do 2o Close
The last inequality is certainly valid, sineg' < z3' andz>™" —1 < 25> "' —
1. Quit
Assuming the statement holds true fgrwe prove it forn + 1. We need Page 6 of 12

n+1 n+1

Ti+1 x;
(28) E x; it < E T; g , J. Ineg. Pure and Appl. Math. 3(3) Art. 43, 2002
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wherez,,,, := x1. We re-write £.8) as

x 1
(23 4 252 4 2l b2 ety gl <o b bl

and using induction, it suffices to prove that

Tn41 xr1 %1 Tn+1
xn + xn—i—l xn < xn+1 .

The previous inequality is equivalent to

71 (xl'n+1_-1’1

n n - 1) < xi:—l (miiﬁl_xl - 1) )

which is obviously true, since,, < x,.1.

The inequality 2.7) (wheno (i) = i +t) can be proved by induction, as well.
If n =2, then

To T
L7 Ty

<zt = o <ayr
which is true since:;; < x5. Assuming the inequality holds true far we prove
it for n + 1. We need

T2 T+l Tl T2 | 2®n %1 Tntl 21 Tl 1, pPntl
Ty Ty Ty, = I Lp—1Ty Ty $n+1 < Ty anrl .

Using the induction step, it suffices to prove
xin+1—x1xil+1 <1‘in c xinJrl—m <xi1+11—9617

which is valid sincer,, < x,, .
Now, take the general permutatienidentity, which is a product of disjoint
cyclic permutations. Thusy can be written as a product of disjoint cycles as
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o= C; x(Cy x---x (C,. Recall thatr was taken such that all of its cycles
C}, are translations by a fixed number, say TakeC}, a cycle of lengthe;, and
choose an index i, sayi,. Sinceo is not the identity, then there is an index

k such thak, # 1. We write the inequalities2(6) and @.7) as

m ep—1 m ep—1

Z Z a]+1(zk) Z Z aa(w
cﬂ (ix) < aﬂ (ix) ?

k=1 j= k=1 5=0

m ep— m erp—1

T TT woi™ < TTTT =iy
CTJ (i) 0"7 (ix)

k=1 j=0 k=1 j=0

Therefore, it suffices to prove that, for ahywith ¢, # 1, we have

er—1 er—1

§ U]+1(2k) § Lol (ig)
cﬂ (ix) < UJ(Zk )

Jj=0

€L — 1 €L — 1
U]Jrl(lk) Tod (iy,)

H Loi(iy) < H Loi(iy)

Jj=0

that is,

€ — 1 €L— 1
a](zk)+tk o-J(zk)

D T < Z Ty5ti)

Jj=0

€L — 1 €L — 1

07(1k)+tk o'](zk)
[L s < 1L s

=0
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For £ fixed, the above inequalities are just applications of the previous step (of
o(i) = i+t), by taking a sequenaggto bex,;, in increasing order (we could
take from the beginning, to be the minimum index in each cydlg,). O

We can slightly extend the previous result (for a similar permutatipm
the following (we omit the proof).

Theorem 2.4. For any increasing sequenée< z; < --- < x,, we have

n

n
Ty(i )
g a;r; " < g a;x;', and
i=1

(2.9) =1

n n

Ty(i .
| |a,~xi”(” < | |aixix1,
i=1 i=1

wherea; > 0.

A parallel result involving logarithms is also true {s a permutation as be-
fore).

Theorem 2.5. For any finite increasing sequende,< z; < zy < -+ < Xy,
and any positive real numbets, we have

n

Z a;iTo() log(x;) < Z a;x;log(x;), and

i=1 i=1
H ;T o) log(x;) = H a;x;log(x;).
i=1 i=1
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The second identity is easily true since everyr; andlog x; occurs in both
sides. We omit the proof of the first inequality, since it can be deduced easily
(as the referee observed) from the known fact (Sep.[261])

Theorem 2.6. Given two increasing sequences < u; < --- < wu, and
wy <wp < -+ < wy, then

n n n
E UiWpy1—i < E Uz (i) W (i) < E uw;,
i=1 i=1 i=1

for any permutations, 7.
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We believe that other inequalities of the type occurring in our theorems can also
be constructed. Let' : R" — R be a function, with the properties

(3.1) Ifx; <wy,i=1,....,n, then F(zy,...,2,) < F(y1,...,Yn),
with strict inequality if there is an indeixsuch thatr; < y;.

and
Inequalities on Linear Functions
and Circular Powers
Foro< oz <xy <--- < ux,, then,

(3.2) F(ax?, 233, x0t) < F(al' x5, ... a0m). penteimon Snea
As examples, we have the linear polynomi&lz, ..., z,) = > ., a;x;, the Title Page
!lnear forminlogarithms(zy, ..., z,) = >, a;log(z;), and the correspond- F——
ing products.

We ask for more examples of functions satisfyidl] and @.2), which can- 4« 44
not be derived trivially from the previous examples (by raising each variable to < >
the same power, for instance). Is it true that any symmetric polynomial satisfies
(3.2) and @.2)? In addition to more examples, it might be worth investigating Go Back
the general form of polynomial functions that satisfy these properties. Close

This looks like a mathematical version of the philosophy saying: Quit
Going one step at the time it is far better than jumping too fast and then at the
end falling to the bottom. Page 11 of 12
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