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ABSTRACT. Sharp lower and upper bounds for quasiconvex moments of generalized order sta-
tistics are proven by the use of the rearranged Moriguti’s inequality. Even in the second moment
case, the method yields improvements of known quantile and moment bounds for the expectation
of order and record statistics based on independent identically distributed random variables. The
bounds are attainable providing new characterizations of three-point and two-point distributions.

Key words and phrases:Generalized order statistics, quasiconvex moments, Moriguti inequality, Steffensen inequality.

2000Mathematics Subject Classification.62G30, 62H10.

1. I NTRODUCTION

LetX,X1, X2, . . . be i.i.d. random variables with a common distribution functionF . Define
the quantile functionF−1(t) = inf{s ∈ R;F (s) ≥ t}, t ∈ (0, 1). Let Xr,n denote ther-
th order statistic (OS, for short) from the sampleX1, . . . , Xn, and letY (k)

r stand for thek-th
record statistics (RS’s, for short) from the sequenceX1, X2, . . . , according to the definition of
Dziubdziela and Kopociński [4], i.e.

Y (k)
r = XLk(r),Lk(r)+k−1, r = 1, 2, . . . , k = 1, 2, . . . ,

whereLk(1) = 1, Lk(r + 1) = min{j; XLk(r),Lk(r)+k−1 < Xj,j+k−1} for r = 1, 2, . . . .
The generalized order statistics are defined by Kamps [8] as follows:

Definition 1.1. Let r, n ∈ N, k,m ∈ R be parameters such thatηr = k+(n−r)(m+1) ≥ 1 for
all r ∈ {1, ..., n}. If the random variablesU(r, n,m, k), r = 1, . . . , n, possess a joint density
function of the form

fU(1,n,m,k),...,U(n,n,m,k)(u1, . . . , un) = k

(
n−1∏
j=1

ηj

)(
n−1∏
i=1

(1− ui)
m

)
(1− un)

k−1
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2 L. GAJEK AND A. OKOLEWSKI

on the cone0 ≤ u1 ≤ . . . ≤ un < 1 of Rn, then they are called uniform generalized order
statistics. The random variables

X(r, n,m, k) = F−1(U(r, n,m, k)), r = 1, . . . , n,

are called generalized order statistics (g OS’s, for short) based on the distribution functionF .

In the case ofm = 0 andk = 1 the g OSX(r, n,m, k) reduces to the OSXr,n from the
sampleX1, . . . , Xn, while for a continuousF, m = −1 andk ∈ N we obtain the RSY (k)

r based
on the sequenceX1, X2, . . . .

Let H : R → R be a given measurable function. The generalizedH-moment (H-moment,
for short) ofX(r, n,m, k) is defined in Kamps [8] as follows

EH (X(r, n,m, k)) =

∫ 1

0

H
(
F−1(t)

)
ϕr,n(t)dt,

where the density functionϕr,n of U(r, n,m, k) is given by

(1.1) ϕr,n(t) =
ar−1

(r − 1)!
(1− t)ηr−1gr−1

m (t), t ∈ [0, 1),

with

ar−1 =
r∏
i=1

ηi, r = 1, . . . , n,

gm(t) = hm(t)− hm(0), t ∈ [0, 1),

hm(t) =

{
− 1
m+1

(1− t)m+1, m 6= −1,

−log(1− t), m = −1,
t ∈ [0, 1).

The aim of this paper is to present some new moment and quantile lower and upper bounds
for theH-moment of the generalized order statisticsX(r, n,m, k) in the caseH is quasiconvex.
Recall thatf : R → R is quasiconvex if for everyt ∈ R the set{x ∈ R; f(x) ≤ t} is convex.
The bounds of Proposition 3.1 are derived by the use of the rearranged Moriguti inequality
(Lemma 2.1) i.e. applying a similar method as in Gajek and Okolewski [6] forH ≡ id. In
Gajek and Okolewski [5] some bounds for OS’s and RS’s were obtained forH(t) = tα, α = 2s,
s ∈ N, via the Steffensen inequality. Somewhat surprisingly, the present approach, which is
equivalent to applying the Moriguti inequality first and the Steffensen inequality afterwards,
provides better bounds (see Remarks 3.8 and 3.9). The bounds are attainable, which gives
a new characterization of some three-point and two-point distributions (see Remarks 3.5, 3.6
and 3.7). Similar bounds on expectations of order statistics from possibly dependent identically
distributed random variables were obtained by Rychlik [11] and independently by Caraux and
Gascuel [2].

From Proposition 3.1 we can get sharpH-moment bounds for EH(X(r, n,m, k)) (see Propo-
sition 3.13), which generalize the result of Papadatos [10, Theorem 2.1].

In Proposition 3.16 quantile bounds for EH(X(r, n,m, k)) are given under additional restric-
tions on the underlying distribution function. Some other quantile inequalities for moments of
generalized order statistics from a particular restricted family of distributions were obtained by
Gajek and Okolewski [7], via the Steffensen inequality.

A summary of known bounds for g OS’s is presented in Kamps [8]. The results for OS’s and
RS’s are presented e.g. in David [3] and Arnold and Balakrishnan [1].
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QUASICONVEX MOMENTS OF GENERALIZED ORDER STATISTICS 3

2. AUXILIARY RESULTS

We reformulate Moriguti’s result - [9, Theorem 1] - to the form which we shall use.

Lemma 2.1. Let Φ, Φ and Φ : [a, b] → R be continuous, nondecreasing functions such that
Φ(a) = Φ(a) = Φ(a), Φ(b) = Φ(b) = Φ(b) andΦ(t) ≤ Φ(t) ≤ Φ(t) for everyt ∈ [a, b]. Then
the following inequalities hold

(i)
∫ b
a
x(t)dΦ(t) ≤

∫ b
a
x(t)dΦ(t),

(ii)
∫ b
a
x(t)dΦ(t) ≥

∫ b
a
x(t)dΦ(t)

for any nondecreasing functionx : (a, b) → R for which the corresponding integrals exist.
The equality in (i) holds iff either both sides are equal to+∞ (−∞) or both are finite andx is
constant on each connected interval from the set{t ∈ (a, b); Φ(t) < Φ(t)}. The equality in (ii)
holds iff either both sides are equal to+∞ (−∞) or both are finite andx is constant on each
connected interval from the set{t ∈ (a, b); Φ(t) > Φ(t)}.
Corollary 2.2. If x is nonincreasing then the signs of inequalities (i) and (ii) are opposite.

Remark 2.3. Part (i) of Lemma 2.1 follows from the proof of Moriguti’s result. ReplacingΦ
by Φ andΦ by Φ in Lemma 2.1 (i) gives Lemma 2.1 (ii). Applying Lemma 2.1 to the function
−x instead of tox gives Corollary 2.2.

3. I NEQUALITIES FOR GENERALIZED ORDER STATISTICS

Let us introduce the notation:w = (r, n,m, k),

W = {w ∈ N× N× R× R; 1 ≤ r ≤ n, ∀1≤r≤nηr = k + (n− r)(m+ 1) ≥ 1},
W1 = {w ∈ W ; r = 1 ∧ η1 = 1},
W2 = {w ∈ W ; r = 1 ∧ η1 > 1},

W3 = {w ∈ W ; r ≥ 2 ∧ ηr > 1 ∧ [m ≥ −1 ∨ (m < −1 ∧ η1 > 1)]},
W4 = {w ∈ W ; r ≥ 2 ∧ [(m > −1 ∧ ηr = 1) ∨ (m < −1 ∧ η1 = 1 ∧ ηr > 1)]},

W5 = {w ∈ W ; r ≥ 2 ∧m ≤ −1 ∧ ηr = 1}.
Observe that∀i,j∈{1,...,5} i 6= j ⇒Wi ∩Wj = ∅ andW = W1 ∪ . . . ∪W5.

Let

Φr,n(t) =

∫ t

0

ϕr,n(x)dx, t ∈ [0, 1],

where the functionϕr,n is defined by (1.1). In this notation parametersm andk are suppressed
for brevity.

Moreover, let us putbrn = 0 for w ∈ W1 ∪W2, b
r
n = 1 for w ∈ W4 ∪W5 and

(3.1) brn =

{
1− exp[−(r − 1)/(ηr − 1)], for w ∈ W3 such thatm = −1,

1− [(ηr − 1)/(η1 − 1)]1/(m+1), for w ∈ W3 such thatm 6= −1.

Additionally, let us define
(3.2)

βr,n =

{
1, for w ∈ W1 ∪W2,

ϕr,n(c
r
n−), for w ∈ W3 ∪W4,

γr,n =

{
1, for w ∈ W1 ∪W4 ∪W5,

ϕr,n(d
r
n), for w ∈ W2 ∪W3,

wherecrn = 0 for w ∈ W1 ∪W2, c
r
n = 1 for w ∈ W4 ∪W5, d

r
n = 0 for w ∈ W2, d

r
n = 1 for

w ∈ W1 ∪W4 ∪W5, andcrn anddrn, for w ∈ W3, are the unique zeros in[0, brn] and[brn, 1] of the
functions

(3.3) (1− t)ϕr,n(t) + Φr,n(t)− 1 and tϕr,n(t)− Φr,n(t),
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4 L. GAJEK AND A. OKOLEWSKI

respectively. In the notationbrn, c
r
n, d

r
n, βr,n andγr,n the constantsm andk are suppressed for

brevity. Note thatβr,n is not defined for anyw ∈ W5.
Now let us putA = {s ∈ R; ∀ε>0 H(s− ε) ≥ H(s)},

a =

{
supA, for A 6= ∅,
−∞, for A = ∅,

(3.4)

and

za =


0, for a = −∞,

F (a), for a ∈ R,
1, for a = +∞.

(3.5)

Observe that ifza = 0 or za = 1, then the functionH|IF , whereIF = JF ∪ (inf JF , sup JF )
with JF denoting the image of(0, 1) underF−1, is monotone and corresponding bounds follow
from Proposition 1 of Gajek and Okolewski [6]. Therefore, we shall present the inequalities for
EH (X(r, n,m, k)) whenH is quasiconvex andza ∈ (0, 1).

Let us define

(3.6) µr,n =

{
z−1
a Φr,n(za), for w ∈ W1 ∪W2,

ϕr,n(c̄
r
n), for w ∈ W3 ∪W4 ∪W5,

and

(3.7) νr,n =

{
ϕr,n(d̄

r
n), for w ∈ W1 ∪W2 ∪W3,

(1− za)
−1(1− Φr,n(za)), for w ∈ W4 ∪W5,

whereza ∈ (0, 1), c̄rn = za for w ∈ W4 ∪W5, d̄rn = za for w ∈ W1 ∪W2, andc̄rn andd̄rn, for
w ∈ W3, are the unique zeros of the function

(3.8) Φr,n(za)− Φr,n(t)− ϕr,n(t)(za − t)

in the intervals[0, brn] and[brn, 1], respectively. In the notationµr,n andνr,n the constantsm and
k are suppressed for brevity. It is easily seen thatc̄rn = za and d̄rn = za for thesew ∈ W for
which za ∈ (0, brn] andza ∈ [brn, 1), respectively.

Further, let us define

λ = zaI(0,dr
n](za) + (γr,n)

−1Φr,n(za)I(dr
n,1)(za),(3.9)

κ = (βr,n)
−1(1− Φr,n(za))I(0,crn](za) + (1− za)I(crn,1)(za),(3.10)

χ = (µr,n)
−1Φr,n(za),(3.11)

ψ = (νr,n)
−1(1− Φr,n(za)),(3.12)

with crn anddrn such as in (3.2),βr,n, γr,n, µr,n andνr,n defined by (3.2), (3.6) and (3.7). In the
notationλ, κ, χ andψ the constantsr, n, m, k andza are suppressed for brevity.

Throughout the paper we shall assume that the integrals appearing in the propositions exist
and are finite.

Proposition 3.1. Let za, λ, κ, χ andψ be defined by (3.5), (3.9), (3.10), (3.11) and (3.12),
respectively. LetH : R → R be an arbitrary quasiconvex function such thatza ∈ (0, 1).
(i) If w ∈ W \W5, then

EH (X(r, n,m, k)) ≤ Φr,n(za)

λ

∫ λ

0

H
(
F−1(t)

)
dt+

1− Φr,n(za)

κ

∫ 1

1−κ
H
(
F−1(t)

)
dt.
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(ii) If w ∈ W, then

EH (X(r, n,m, k)) ≥ Φr,n(za)

χ

∫ za

za−χ
H
(
F−1(t)

)
dt+

1− Φr,n(za)

ψ

∫ za+ψ

za

H
(
F−1(t)

)
dt.

Proof. It is easy to check that:w ∈ W1 ⇒ ϕr,n ≡ 1 on [0, 1);
w ∈ W2 ⇒ ϕr,n

′ < 0 on (0, 1), ϕr,n(0) < +∞, ϕr,n(1−) = 0;
w ∈ W3 ⇒ ϕr,n

′ > 0 on (0, brn), ϕr,n
′ < 0 on (brn, 1), ϕr,n(0) = 0, ϕr,n(1−) = 0;

w ∈ W4 ⇒ ϕr,n
′ > 0 on (0, 1), ϕr,n(0) = 0, ϕr,n(1−) < +∞;

w ∈ W5 ⇒ ϕr,n
′ > 0 on (0, 1), ϕr,n(0) = 0, ϕr,n(1−) = +∞.

Forw ∈ W1, (i)-(ii) are obvious identities. So let us consider the other cases. From Kamps
[8] we have

(3.13) EH (X(r, n,m, k)) =

∫ za

0

H
(
F−1(t)

)
dΦr,n(t) +

∫ 1

za

H
(
F−1(t)

)
dΦr,n(t),

whereza is given by (3.5). We shall apply Corollary 2.2 and Lemma 2.1 with the functions
x ≡ H ◦F−1, Φ ≡ Φr,n, Φ ≡ Φ

u

r,n andΦ ≡ Φu
r,n; Φ

u

r,n andΦu
r,n are defined on[0, za] and[za, 1],

respectively, as follows

Φ
u

r,n(t) =

{
z−1
a Φr,n(za)t, if za ∈ (0, drn],

γr,ntI[0,λ](t) + Φr,n(za)I(λ,za](t), if za ∈ (drn, 1),

and

Φu
r,n(t) =

{
Φr,n(za)I[za,1−κ](t) + (βr,n(t− 1) + 1)I(1−κ,1](t), if za ∈ (0, crn],

(1− za)
−1[1− Φr,n(za)](t− 1) + 1, if za ∈ (crn, 1),

whereβr,n andγr,n are given by (3.2). Moreover, let us observe that

(3.14) Φ
u

r,n(t) =

∫ t

0

ϕur,n(s)ds and Φu
r,n(t) = Φu

r,n(za) +

∫ t

za

ϕu
r,n

(s)ds,

where

(3.15) ϕur,n(s) =

{
za
−1Φr,n(za), if za ∈ (0, drn],

γr,nI[0,λ](s), if za ∈ (drn, 1),

and

(3.16) ϕu
r,n

(s) =

{
βr,nI(1−κ,1](s), if za ∈ (0, crn],

[1− Φr,n(za)] (1− za)
−1, if za ∈ (crn, 1).

By Corollary 2.2, Lemma 2.1, (3.14), (3.15) and (3.16) we get

EH (X(r, n,m, k)) ≤
∫ za

0

H
(
F−1(t)

)
dΦ

u

r,n(t) +

∫ 1

za

H
(
F−1(t)

)
dΦu

r,n(t)

=ϕur,n(0)

∫ λ

0

H
(
F−1(t)

)
dt+ ϕu

r,n
(1)

∫ 1

1−κ
H
(
F−1(t)

)
dt,

which leads to (i).
In order to prove (ii) we shall use Corollary 2.2 and Lemma 2.1 with the functionsx ≡

H ◦ F−1, Φ ≡ Φr,n, Φ ≡ Φl
r,n andΦ ≡ Φ

l

r,n; Φl
r,n andΦ

l

r,n are defined on[0, za] and[za, 1],
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respectively, as follows

Φl
r,n(t) =

{
z−1
a Φr,n(za)t, for w ∈ W2,

(ϕr,n(c̄
r
n)(t− za) + Φr,n(za))I(za−χ,za](t), for w ∈ W3 ∪W4 ∪W5,

and

Φ
l

r,n(t) =

{
(1− za)

−1(1− Φr,n(za))(t− 1) + 1, for w ∈ W4 ∪W5,

(ϕr,n(d̄
r
n)(t− za) + Φr,n(za))I[za,za+ψ](t) + I(za+ψ,1](t), for w ∈ W2 ∪W3,

wherec̄rn andd̄rn are such as in (3.6) and (3.7).
Let us note that

(3.17) Φl
r,n(t) =

∫ t

0

ϕl
r,n

(s)ds and Φ
l

r,n(t) = Φ
l

r,n(za) +

∫ t

za

ϕur,n(s)ds,

where

(3.18) ϕl
r,n

(s) =

{
z−1
a Φr,n(za), for w ∈ W2,

ϕr,n(c̄
r
n)I(za−χ,za](s), for w ∈ W3 ∪W4 ∪W5,

and

(3.19) ϕlr,n(s) =

{
(1− za)

−1(1− Φr,n(za)), for w ∈ W4 ∪W5,

ϕr,n(d̄
r
n)I[za,za+ψ](s), for w ∈ W2 ∪W3.

By Corollary 2.2, Lemma 2.1, (3.17), (3.18) and (3.19) we have

EH (X(r, n,m, k)) ≥
∫ za

0

H
(
F−1(t)

)
dΦl

r,n(t) +

∫ 1

za

H
(
F−1(t)

)
dΦ

l

r,n(t)

=ϕl
r,n

(za)

∫ za

za−χ
H
(
F−1(t)

)
dt+ ϕlr,n(za)

∫ za+ψ

za

H
(
F−1(t)

)
dt,

which gives (ii). This completes the proof of Proposition 3.1.

Remark 3.2. Observe that the bounds of Proposition 3.1 work under quite weak assumptions.
In the case of the lower bounds we even do not need EH(X) to be finite – see Example 3.1
below.

Example 3.1.Let

F (t) =


(2 + t2)−1, for t < 0,

(2− t2)−1, for t ∈ [0, 1),

1, else.

It is easy to check that EX2
2,3 = 3.5, EX2 = +∞ and the lower bound for EX2

2,3 in Proposi-
tion 3.1 (i) is meaningful (and equals0.88).

Remark 3.3. If EX2(r, n,m, k) < +∞ andH(t) = (t − EX(r, n,m, k))2, t ∈ R, then
Proposition 3.1 provides lower and upper bounds for variation of g OS’sX(r, n,m, k).

Remark 3.4. Note that right-hand sides of the inequalities (i) and (ii) of Proposition 3.1 depend
on the parent distribution not only through a simple functional of the quantile function as the
bounds of Proposition 1 of Gajek and Okolewski [6], but also through a value of distribution
function at a single point determined byH. The reason of this drawback lays on difficulties
which occur while quasiconvex functionH is not monotone.

Remark 3.5. Equality in Proposition 3.1 (i) holds ifw ∈ W1 or one of the following conditions
is satisfied:
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(a) F has exactly one atom;
(b) for za ∈ (0, crn), F has at most three atoms with the probability masses(za, c

r
n− za, 1−

crn) or (za, 1− za) or (crn, 1− crn), respectively;
(c) for za ∈ [crn, d

r
n], F has exactly two atoms with the probability masses(za, 1 − za),

respectively;
(d) for za ∈ (drn, 1), F has at most three atoms with the probability masses(drn, za−drn, 1−

za) or (za, 1− za) or (drn, 1− drn), respectively.

Remark 3.6. Equality in Proposition 3.1 (ii) holds ifw ∈ W1 or one of the following conditions
is satisfied:

(a’) F has exactly one atom;
(b’) for za ∈ (0, brn), F has at most three atoms with the probability masses(za, d

r

n− za, 1−
d
r

n) or (za, 1− za) or (d
r

n, 1− d
r

n), respectively;
(c’) for za = brn, F has exactly two atoms with the probability masses(za, 1 − za), respec-

tively;
(d’) for za ∈ (brn, 1), F has at most three atoms with the probability masses(crn, za− crn, 1−

za) or (za, 1− za) or (crn, 1− crn), respectively.

Remark 3.7. Under the additional assumptions thatH|IF is left-hand continuous and is not
constant on any nonempty open interval, the conditions given in Remarks 3.5 and 3.6 are also
sufficient. Indeed, denotingS = {t ∈ (0, za); Φ

u

r,n(t) > Φr,n(t)}, S = {t ∈ (za, 1); Φu
r,n(t) <

Φr,n(t)} observe thatS = (0, za) andS = (za, 1) for w ∈ W2 ∪W4 and thesew ∈ W3 for
which za ∈ [crn, d

r
n]; S = (0, za) andS = (za, c

r
n) ∪ (crn, 1) for w ∈ W3 such thatza ∈ (0, crn);

S = (0, drn) ∪ (drn, za) andS = (za, 1) for w ∈ W3 such thatza ∈ (drn, 1). Combining this with
the fact thatH ◦ F−1 is left-hand continuous and that, by Lemma 2.1 and Corollary 2.2, the
equality in the inequality (i) of Proposition 3.1 is attained iffH ◦ F−1 (or equivalentlyF−1) is
constant on each connected interval from the setS∪S, proves Remark 3.5. A similar reasoning
applies to Remark 3.6.

Remark 3.8. The proof of Proposition 3.1 (i) relies on applying Lemma 2.1 and Corollary 2.2 to
the integrals

∫ 1

za
H (F−1(t)) dΦr,n(t) and

∫ za

0
H (F−1(t)) dΦr,n(t). The question arises whether

one can use in Lemma 2.1 (Corollary 2.2) a minorant (a majorant) different thanΦu
r,n (Φ

u

r,n,
respectively) in order to alter the parameter corresponding toκ (λ) and further improve the
resulting bound. In the class of absolutely continuous nondecreasing minorants (majorants) of
Φr,n which have the same values asΦr,n at the both ends of the interval[za, 1] ([0, za]) and
which Radon-Nikodym derivatives are essentially finite, the answer to the question is negative.
Indeed, the form of the bound (i) implies that it is most precise when the minorant and the
majorant provide the Radon-Nikodym derivatives with the least possible essential supremums.
Sinceϕu

r,n
as well asϕur,n satisfy this condition, Proposition 3.1 (i) provides in some sense

optimal bounds. A similar remark refers to the case of the bound (ii) of Proposition 3.1.

Remark 3.9. Obviously,Φr,n is its own minorant (majorant, respectively) on any subinterval
of (0, 1) andϕr,n|(za,1) (ϕr,n|(0,za)) has a greater essential supremum thanϕu

r,n
(ϕr,n) whenever

Φu
r,n (Φ

u

r,n) is not identical withΦr,n|(za,1) (Φr,n|(0,za)). According to Remark 3.8, the bounds of
Proposition 3.1 for order and record statistics from a continuous parent distribution are more
precise than (are the same as) their analogues from Proposition 1 of Gajek and Okolewski [5]
except for (in the case of) the lower bounds ifza 6= brn (if za = brn).
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Now, assuming that some additional conditions are satisfied we shall compare in Corol-
lary 3.12 the upper bounds following from Proposition 3.1 (Corollary 3.11) with their coun-
terparts following from easy to obtain modification of Proposition 1 of Gajek and Okolewski
[6] (Corollary 3.10).
Corollary 3.10. Letw ∈ W \W5, H : R → R be quasiconvex andβr,n, a, za be defined by
(3.2), (3.4), (3.5), respectively. Suppose thatP (X ≥ a) = 1, za ∈ (0, 1), H(a) = 0 andH is
not constant on any nonempty open interval.

Then

EH (X(r, n,m, k)) ≤ βr,n

∫ 1

max{za,1−1/βr,n}
H
(
F−1(t)

)
dt.

Proof. On account of Proposition 3.1 (i) of Gajek and Okolewski [6] it suffices to show that,
under the assumptions of Corollary 3.10,H ◦ F−1 is nondecreasing andH ◦ F−1(t) = 0 for
t ∈ (0, za). To this end observe thatH ◦ F−1(t) = H(a) = 0 for t ∈ (0, za), H ◦ F−1(za) =
H (F−1(F (a))) ≥ H(a) = 0 and that, by definition, the functionH ◦ F−1 is nondecreasing on
(za, 1).

Corollary 3.11. Let the assumptions of Corollary 3.10 be satisfied. Then

EH (X(r, n,m, k)) ≤ κ−1(1− Φr,n(za))

∫ 1

1−κ
H
(
F−1(t)

)
dt,

whereκ is defined by (3.10).

Proof. Combination of Proposition 3.1 and the fact that(H ◦ F−1)(t) = H(a) = 0 for each
t ∈ (0, za) gives the result.

Corollary 3.12. Let crn be such as in (3.2). Suppose that the assumptions of Corollary 3.10 are
satisfied.

(i) If za ∈ (0, 1) \ {crn}, then the bounds of Corollary 3.11 are better than the bounds of
Corollary 3.10,

(ii) If za = crn, then Corollary 3.10 and Corollary 3.11 provide the identical bounds.

Proof. Let us denote byAu andBu the right-hand sides of the inequalities in Corollary 3.11
and Corollary 3.10, respectively.

If za ∈ (0, 1− 1/βr,n], then

Au = βr,n

∫ 1

1−1/βr,n

H
(
F−1(t)

)
dt > βr,n

∫ 1

1−1/βr,n+Φr,n(za)/βr,n

H
(
F−1(t)

)
dt = Bu,

asH (F−1(t)) > H(a) = 0 for t > za.
If za ∈ (1− 1/βr,n, c

r
n], then

Au = βr,n

∫ 1

za

H
(
F−1(t)

)
dt ≥ βr,n

∫ 1

1−(1−Φr,n(za))/βr,n

H
(
F−1(t)

)
dt = Bu.

Indeed, since the functionf : (0, 1) → R defined by(1−Φr,n(t))/(1− t) obtains its maximum
equal toβr,n at the unique pointt = crn, za ≤ 1 − (1 − Φr,n(za))/βr,n for za ∈ (0, 1) and the
equality is attained only forza = crn.

If za ∈ (crn, 1), then

Au = βr,n

∫ 1

za

H
(
F−1(t)

)
dt >

1− Φr,n(za)

1− za

∫ 1

za

H
(
F−1(t)

)
dt = Bu

and the proof is complete.
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Now, we present someH-moment bounds on EH (X(r, n,m, k)) provided thatH is qua-
siconvex and nonnegative. The special casesza = 0 andza = 1 follow from Proposition 3
of Gajek and Okolewski [6], so, we shall formulate the result forH quasiconvex such that
za ∈ (0, 1).

Proposition 3.13. Suppose thatw ∈ W \ W5. Then for an arbitrary quasiconvex function
H : R → R+ ∪ {0} such thatza ∈ (0, 1), it holds that

EH (X(r, n,m, k)) ≤Mr,n(za)EH(X) ≤ max{βr,n, γr,n}EH(X),

whereMr,n(za) = max{λ−1Φr,n(za), κ
−1[1 − Φr,n(za)]} andza, λ,κ are given by (3.5), (3.9),

(3.10), respectively.

Proof. Forw ∈ W1 we have the obvious identity. So, let us consider the other cases. Estimating
the right-hand side of Proposition 3.1 (i) we get

EH (X(r, n,m, k)) ≤ max{λ−1Φr,n(za), κ
−1[1− Φr,n(za)]}{

∫ λ

0

H
(
F−1(t)

)
dt

+

∫ 1

1−κ
H
(
F−1(t)

)
dt}.

Puttingza instead ofλ and1− κ gives the first inequality. The second inequality follows from
the first one as a consequence of the following facts:

(i) if za ∈ (0, crn), then

M1
r,n(za) ≡λ−1Φr,n(za) = z−1

a Φr,n(za) < ϕr,n(za) < ϕr,n(c
r
n) = βr,n,

M2
r,n(za) ≡κ−1[1− Φr,n(za)] = βr,n,

so,Mr,n(za) = max{M1
r,n(za),M

2
r,n(za)} = βr,n;

(ii) if za ∈ (drn, 1), then

M1
r,n(za) =γr,n,

M2
r,n(za) =(1− za)

−1[1− Φr,n(za)] < ϕr,n(za) < ϕr,n(d
r
n) = γr,n,

so,Mr,n(za) = γr,n;
(iii) if za ∈ [crn, d

r
n], then

M1
r,n(za) = z−1

a Φr,n(za) ≤ γr,n,

M2
r,n(za) = (1− za)

−1[1− Φr,n(za)] ≤ βr,n,

so,Mr,n(za) ≤ max{βr,n, γr,n}.
The proof is complete.

Remark 3.14. Equality in the first inequality of Proposition 3.13 holds ifw ∈ W1 or F has
only one atom atH−1(0) (provided that there exists a pointt0 from the image of(0, 1) under
F−1 such thatH(t0) = 0) or za = Φr,n(za) and one of the following conditions is satisfied:

(a) F has exactly one atom;
(b) F has exactly two atoms with the probability masses(za, 1− za), respectively.

Under the additional assumptions thatH is left-hand continuous and it is not constant on any
nonempty open interval, the above conditions are also sufficient. Indeed, forw ∈ W1 we have
the obvious identity. Ifw ∈ W3 andza ∈ (0, crn) ∪ (drn, 1), or w ∈ W2 ∪W4, thenλ < 1 − κ
and the equality is attained iffH ◦ F−1(t) = 0 for t ∈ (0, 1). If w ∈ W3 andza ∈ [crn, d

r
n], then

λ = za, κ = 1 − za, so, the equality is attained iffλ−1Φr,n(za) = κ−1[1 − Φr,n(za)] (i.e. iff
za = Φr,n(za)) and one of the conditions (a) or (c) of Remark 3.5 is satisfied.
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Remark 3.15. Equality in the second inequality of Proposition 3.13 holds iffw ∈ W1 orF has
only one atom atH−1(0) (provided that there exists a pointt0 from the image of(0, 1) under
F−1 such thatH(t0) = 0).

Under some additional restrictions on the functionH ◦F−1 we can formulate another conse-
quence of Proposition 3.1.

Proposition 3.16. Let a, za, λ, κ, χ and ψ be defined by (3.4), (3.5), (3.9), (3.10), (3.11)
and (3.12), respectively. Suppose thatH : R → R is a given quasiconvex function such that
za ∈ (0, 1).

(i) If w ∈ W and the functionH ◦ F−1 is convex on the interval[za − χ, za + ψ], then

EH (X(r, n,m, k)) ≥ Φr,n(za)(H ◦ F−1)(za − χ/2) + (1− Φr,n(za))(H ◦ F−1)(za + ψ/2).

(ii) If w ∈ W \W5 and the functionH ◦F−1 is concave on the intervals[0, λ] and[1−κ, 1],
then

EH (X(r, n,m, k)) ≤ Φr,n(za)(H ◦ F−1)(λ/2) + (1− Φr,n(za))(H ◦ F−1)(1− κ/2).

Proof. Applying Jensen’s inequality to the bound (ii) of Proposition 3.1 we have

EH (X(r, n,m, k)) ≥ χ−1Φr,n(za)

∫ za

za−χ
H
(
F−1(t)

)
dt

+ ψ−1(1− Φr,n(za))

∫ za+ψ

za

H
(
F−1(t)

)
dt

≥ Φr,n(za)
(
H ◦ F−1

)(
χ−1

∫ za

za−χ
tdt

)
+ (1− Φr,n(za))

(
H ◦ F−1

)(
ψ−1

∫ za+ψ

za

tdt

)
= Φr,n(za)(H ◦ F−1)(za − χ/2)

+ (1− Φr,n(za))(H ◦ F−1)(za + ψ/2).

The proof of (i) is complete. The case (ii) can be proven in a similar way.
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