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ABSTRACT. In this paper, we introduce the geometric mean of several positive operators de-
fined from a simple and practical recursive algorithm. This approach allows us to construct the
arithmetic-geometric-harmonic mean of three positive operators which has many of the proper-
ties of the standard one.
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1. INTRODUCTION

The geometric mean of two positive linear operators arises naturally in several areas and
can be used as a tool for solving many scientific problems. Researchers have recently tried to
differently define such operator means because of their useful properties and applications. Let
H be a Hilbert space with its inner produgt-) and the associated norin ||. We denote by
L(H) the Banach space of continuous linear operators defined ffamo itself. ForA, B
L(H), we write A < Bif AandB are self-adjoint and3 — A is positive (semi-definite). The
geometric meag:(A, B) of two positive operatorsl and B was introduced as the solution of
the matrix optimization problem, [1]

. A X
(1.2) g2(A, B) := max{X, X" =X, (X B ) > 0}.
This operator mean can be also characterized as the strong limit of the arithmetic-harmonic
sequencg®, (A, B)} defined by,[[2, B]
{ ®o(A,B)=1A+1B

(1.2)
1 1 -1
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As is well known, the explicit form of (A, B) is given by
(1.3) g:(A, B) = AL/2 (A*1/2BA*1/2)1/2 A2
An interesting question arises from the previous approaches defipirig B): what should be
the analogue of the above algorithm from two positive operators to three or more ones?

We first describe an extended algorithm [of [1.2) involving several positive operators. The
key idea of such an extension comes from the fact that the arithmetic, harmonic and geometric

means ofn positive real numbers,;, as, ..., a, can be written recursively as follows
1 & 1 m—1
(1.4) an(ag, ..., ay) = EZai: Ea1+ - am_1(az, ..., an),

m -1 -1
1 1 m—1 _
(15) hm<a1, C.e ,CLm) = <— Z ai1> = (Eall + T (hm_1<a2, C. ,CLm> 1> 5

1 m—1
(16) gm(ala"'7am) = m\/ a1ag - - Ay = a{n (gm71<a2a--'7am)) .
The extensions of (1l.4) and (1.5) when the scalar variables,, . .., a,, are positive opera-
tors can be immediately given, by settidg! = hﬁ)l (A+ e[)_l. By virtue of the induction

relation ), the extension of the geometric mgafia;, as, ..., a,) from the scalar case

to the operator one can be reduced to the following question: what should be the analogue of
al/mp=1/™ when the variables andb are positive operators? As well known, a reasonable
analogue ofi'/™b'~1/™ for operators is the power geometric meamiodind B, namely

(1.7) By (A, B) = BY? (B12AB1/2)™" 12

The appearance of the teff3~'/2AB~1/2) Y™ in ) imposes many difficulties in the compu-
tation context whem and B are two given matrices. To remove this difficulty, in this paper we
introduce a simple and practical algorithm involving two positive operataaad B converging
to

Bl/2 (B—1/2AB—1/2)1/m B1/2’
in the strong operator topology. Numerical examples, throughout this paper, show the interest
of this work. Afterwards, inspired by the above algorithm we define recursively the geomet-
ric mean of several positive operators. Our approach has a convex concept and so allows us
to introduce the arithmetic-geometric-harmonic operator mean which possesses many of the
properties of the scalar one.

2. GEOMETRIC OPERATOR MEAN OF SEVERAL VARIABLES

Letm > 2 be an integer and\,, A,, ..., A,, € L(H) bem positive operators. As already
mentioned, this section is devoted to introducing the geometric medn,of;, ..., A,,. Let
A, B € L(H) be two positive operators. Inspired by the algorithm|(1.2), we define the recursive
sequencdT,} := {T,.(A, B)}
m—1

1
Ty=—A+ 2B,
m m

—1 1 .
Ty = 2270 4 —A(T,'B) ' (n>0).

m
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In what follows, for simplicity we write{7}, } instead of{7},(A, B)} and we set
1

T\ = (T, (A, B™)) .

Clearly, form = 2 the above recursive scheme coincides with the algorithm (1.2). The conver-
gence of the operator sequerd, } is given by the following main result.

Theorem 2.1. With the above, the sequen{€,} := {T,.(A, B)} converges decreasingly in
L(H), with the limit
(2.1) lim 7, := 1/n(A, B) = B (B~2AB-2)"" g2,

Further, the next estimation holds
1\" _
(2.2) Vn >0 0<T, —®1m(A, B) < <1__) (TO_TO( 1)>'
m

Proof. We divide it into three steps:

Step 1:Leta > 0 be a real number and consider the scheme

1 m—1
Top=—a+ —;
m m
(2.3)
m—1 1 a
T, +

Tpy1 = (n >0).

m a1
This is a formal Newton'’s algorithm to calculatga with a chosen initial data, > 0. We wish
to establish its convergence. By induction, it is easy to seerthat 0 for all n» > 0. Using the
concavity of the function — Logt (¢t > 0), we can write

—1 1
m Logxn—i——LogL
m

Logx, 1 > —
n

or again
m—1

1
Logwpi1 > Log x, + — (Loga — (m — 1)Logz,,).
m

It follows that, after reduction
Yn>0 wx,> ¥a,

which, with a simple manipulation, yields
a

Vn >0 < Ya.
m—1
n

Now, writing

x+1_7na:m_1(x_7na/)+l a _ /a
" m " m \ zm1 ’

we can deduce that
, m—1
0<xp1 — Va<

(iL’n - %)7

and by induction

. n+1
0<2p — Va< (m_1> (Io— ma),

m

from which we conclude that the real sequeficg} converges toy/a.
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Step 2:Let A € L(H) be a positive definite operator and define the following iterative process

1 —1
Xo=—A+ ",
m m
(2.4)
1
Xpi1 = —X + AX1 m (n>0).
It is clear thatA commutes WItth for eachn > 0. By Guelfand’s representation, the conver-
gence of the matrix algorithm (2.4) is reduced to the number fasge (2.3) discussed in the previous

step. It follows thaf X,,} converges inC(H) to AY/™. Further, one can easily deduce that

V>0 0<X,— A< (221 (X — AY™) < m=IN (x, - xCDY.
m m 0

Step 3: By virtue of the second step, the next sequeficel
1 m—1

Yo=—BV2AB Y24 — .
m m
(2.5)
—1 1
Ypi1 =~ Y, + —B-12AB 12y 1-m (n > 0),
m m
converges inC(H) to (B‘l/zAB‘l/?)l/m and
m - 1\" _
Wzo 0S¥, (5 < (D) (- y).
m
It is clear that the algorithn’[@ 5) is equivalent to
BY?Y,B'Y/? = —A + —13
m
Bl/QY +1Bl/2 1B1/2Y Bl/2 + AB 1/2yl mBl/2 (n Z 0)
m
Now, writing

B—1/2Ynl—mBl/2 _ (B—l/QYn—lB—l/Q) B (B—I/QYn—lB—1/2) B--. (B_l/2Yn_lB_l/2) B,

and setting
T, = B'*Y,B'?,
we obtain the desired conclusion. O

Let us remark that we havg, ;,,,(A, B) = AY/™B'~1/™ when A and B are two commuting
positive operators and s@; /,,(A, I) = AY™, ®,,,,(I, B) = B'~*/™ for all positive operators
A andB. Let us also note the following remark that will be needed later.

Remark 1. The map(A4, B) — ®,,,,(A, B) satisfies the conjugate symmetry relation, i.e
(2.6) By (A, B) = AV2 (AT BAY2) " A2 — 0, (B, A),
which is not directly obvious. h

Further properties of4, B) — ®4,,,(A, B) are summarized in the following corollary.

Corollary 2.2. With the above conditions, the following assertions are met:

(i) For afixed positive operataB, the mapX — &, ,,(X, B) is operator increasing and
concave.
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(i) For every invertible operatof. € £(H) there holds
Q1 /m(L*AL, L*BL) = L*®, ), (A, B)L.
(i) For a fixed positive operatad, the mapX — &, (A, X) is operator increasing and
concave.

Proof. (i) Follows from the fact that the ma§y — X'/, with m > 1, is operator increasing
and concave, segl[4] for instance.

(ii) Since the sequencgl’,} of Theorenj 2./l depends oh B, we can sef, := T,(A, B). We
verify, by induction o, that

T,.(L*AL,L*BL) = L*T,(A, B)L,

for all n > 0. Lettingn — +oc in this last relation we obtain, by an argument of continuity
and the definition of>, ,,,,(A, B), the desired result.

(i) By (R.6) and similarly to (i), we deduce the desired result. O

Now, we are in a position to state the following central definition.

Definition 2.1. With the above notations, the geometric operator meaf, ofA,, ..., A, is
recursively defined by the relationship
(27) gm(Ah AQ, cee Am) = (I)l/m (Al, gm_l(AQ, cey Am)) .

From this definition, it is easy to verify that, #;, A,, ..., A,, are commuting, then
(A1, Az, .o A) = (A1Ay - Ay) ™.
In particular, for all positive operatot$ € L(H) one has
gm(AA ... ,A)=A and g, (I,1,...,A I ... I)=AY"

It is well known that(A, B) — g»(A, B) is symmetric. Howeverg,, is not symmetric for
m > 3 as shown by Example 2.3 below.
Now, we will study the properties of the operator megr{A;, Aa, ..., Ay).
Proposition 2.3. The operator meag,,, (A4;, A, .. ., A,,) satisfies the following properties:
(i) Self-duality relation, i.e
(8m(A1, Ay, AW)) T = gn(ATH AL LAY,

(i) The arithmetic-geometric-harmonic mean inequality, i.e
h,, (A1, Ag, ..., Ap) < gm(Ar Aoy Ap) < an (A A, A).
(iii) The algebraic equation: find a positive operaférsuch thatX (BX)™~! = A, has one
and only one solution given by = g,,(A, B~',..., B71).
Proof. (i) Follows by a simple induction om > 2 with the duality relation:
(®1/m(A, B)) ™ = @y, (A7, B7Y).

(i) By induction onm > 2: the double inequality is well known for, = 2. Assume that it
holds true form — 1 and show that it holds for.. According to [(2.R) with. = 0, we obtain
1 —1
Oy (A B) < —A+ B,
m m
from which we deduce, using the definitiongf,(A;, Az, ..., A),

m—1
gm—l(A27 A37 s 7Am)7

m

1
gm(A, Agy o Ay < —AL +
m
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which, with the induction hypothesis, gives the arithmetic-geometric mean inequality, i.e
gn(AL, As, . A) < ap(Ar, A, Ap).
This last inequality is valid for all positive operatofs, A, ..., A,,, hence
gn(AT AT AT <a, (AT ALY AT,

m

and by (i) and the fact that the map—— X ! is operator decreasing, we obtain the geometric-
harmonic mean inequality.

(i) Follows by essentially the same arguments used to prove the previous properties. Details
are left to the reader. OJ

Proposition 2.4. Let Ay, As, ..., A,, € L(H) be positive operators. Then the following asser-
tions are met:

(i) For all positive real numbers;, as, ..., «,, one has

gm(om‘h, 062142, .. 7amAm) = gm(Oq, Qg, ..., am>gm<A17 Aza e 7Am)7

where
gm(ala Qo, ... 7am) = m\/ Qg - - - Oy,
is the standard geometric meand®@f, as, . . . , a,,.
(i) The mapX — g,..(X, A, ..., A,,) is operator increasing and concave, i.e.
X < Y — gm(X,AQ,...,Am) < gm<Y,A2,...,Am)
and,

gn(AX 4+ (1= \Y, As, ooy An) > Ag(X, Agy oy An) + (1= N (Y, As, .., A,

for all positive operatorsX,Y € £(H) and all A € [0, 1].
(iii) For every invertible operatof. € £(H) there holds

(2.8) gm(L*A1L, L*AyL, ... L* Ay L) = L* (gm(A1, As, ..., A)) L.
(iv) If H is a finite dimensional Hilbert space then
det g (A1, Ao, ..., Ay) = gm(det Ay, det Ay, ... det Ayy).
Proof. (i) Follows immediately from the definition gf,,,.
(ii) Follows from Corollary 2.2, (i).
(iii) This follows from the definition and Corollafy 2.2, (ii).

(iv) By the properties of the determinant, it is easy to see that, for all positive operatord
B,

det @1/, (A, B) = @1/ (det A, det B).
This, with the definition ok,,,(A;, Ao, ..., A,,) and a simple induction om > 2, implies the
desired result. O

We note that, as for all monotone operator means [5], if the opefai®not invertible then
the transformer equality (2.8) is an inequality. Otherwise, we have the following.

Corollary 2.5. The mapX — g,.(A;1, As,..., X, ..., A,,) is operator increasing and con-
cave.
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Proof. The desired result is well known for = 2. For the mapX —— g,,,(X, Ay, ..., A,,), it
is the statement of Propositipn P.4, (ii). Now, by Renjdrk 1 it is easy to see thati> ¥(X)
is an operator increasing concave map, then sb is— ®,,,(A;, ¥(X)). Setting¥(X) =
gm-1(42, As,..., X, ..., A,) and again by Propositidn 2.4, (i), the desired result follows by
a simple induction om: > 2. This completes the proof. O

Now, we state the following remark that will be needed in the sequel.

Remark 2. Let us taken = 3. Then the equation: find € £(H) such thatX = g3(A, X, (),
has one and only one positive solution givenXy= g»(A, C). In fact, it is easy to see that
g3(A,1,C) = I'ifand only if A = C~*. Further, by Proposition 2.4, (iii), we can write

X =g3(A, X,0) <= X = X'/?g, (X_I/QAX_l/Z’[7X_1/ZCX—1/2) X2,
which implies that
g3 (X_l/QAX_l/Q,I,X_l/QCX_l/Q) _ [’
or again
XV2AX V2 = X201 X2,
The desired result follows by a simple manipulation.

We end this section by noting an interesting relationship given by the following proposition.

Proposition 2.6. Let {A,,} be a sequence of positive operators converging(#/ ) to A. As-
sume thatA is positive definite, then

Proof. Under the hypothesis of the proposition, it is not hard to show that

(2.10) lim a,(An, Ay, A,) = A
and
nl—+oo

Indeed, [(2.10) is well-known for the scalar case (Cesaro’s theorem) and the same method works
for the operator one. We deduge (2.11) by recalling that the map A~ is continuous on
the open cone of positive definite operators. Relatior] (2.9) follows then from the arithmetic-

geometric-harmonic mean inequality (Proposifior] 2.3, (ii)), with (2.10) gnd](2.11). The proof
is complete. O

Now, we wish to illustrate the above theoretical results with three numerical matrix examples.
For a square matri¥, we denote byj - || the Schur’s norm ofl defined by

|A]| = +/Trace(A*A).

Example 2.1. Let us consider the following matrices:

3 01 5 —1 2 9 31
A=10 41|, B=| -1 3 1], C=1|3 8 2
11 2 2 1 5 1 26
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In order to compute some iterations of the sequefite}, we computeg,(B, ) by algo-
rithm (1.2). Using MATLAB, we obtain numerical iteratioffs, T, . . ., T, satisfying the fol-
lowing estimations:

| T3 — Ty ||= 8.894903423045612 x 10~%,
| Ty — Ts ||= 2.762580836245787 x 1077,
| Ts — Ty ||= 2.660171405523615 x 10~
| Ts — T5 ||= 4.974909261937442 x 1076,
and good approximations are obtained from the first iterations.

Example 2.2. In this example, we will solve numerically the algebraic equation: for given
positive matricesA and B, find a positive matrixX such thatX BX BX = A. Consider,

7 3 0 1 3 1 2 1
3 4 -2 1 1 6 -1 2
A=l0o 2 4 2|0 B2 21 5 1
11 -1 3 1 2 1 4
By Propositior] 2.3, (iii), the unique solution of the above equatioX is- g5(A, B~!, B™1).
Numerically, we obtain the iterations, T, . . . , Ty with the following estimations:

| T — T5 ||= 0.01369442620176,

| 75 — Tp ||= 2.933841711132645 x 107,
| Ts — Ty ||= 1.329143009263914 x 107",
| To — T3 ||= 3.063703619940987 x 10~ 3.

Example 2.3. As already demonstrated, this example shows the non-symmegyy fafr m >
3. Take

1.8597 1.0365 1.9048 1.0740 0.2386 1.1999
A= 1.0365 0.7265 0.9889 |, B =1 0.2386 0.0548 0.2826 |,
1.9048 09889 2.0084 1.1999 0.2826 1.4894
0.4407 0.6183 0.1982 1.0076 0.4516 0.5909
C =1 0.6183 0.9995 0.4150 |, D= | 0.4516 0.4177 0.7656
0.1982 0.4150 0.2718 0.5909 0.7656 1.8679

Executing a program in MATLAB, we obtain the following.

0.3259 0.1187 0.2833
gi(A,D,B,C)= | 0.1187 0.0736 0.1282 |,
0.2833 0.1282 0.4220

0.3174 0.0982 0.2832
g4(A,B,C, D)= 0.0.982 0.0584 0.1058 |,
0.2832 0.1058 0.4371

0.2847 0.0948 0.2381
g(A,C,D,B) = | 0.0948 0.0643 0.0967
0.2381 0.0967 0.3733

Therefore
g4<A7DJB7C) # g4(A,B,C,D) 7£ g4(A707D7B)7
and sog,,, is not symmetric forn > 3.
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3. ARITHMETIC -GEOMETRIC -HARMONIC OPERATOR MEAN

As already mentioned, in this section we introduce the arithmetic-geometric-harmonic oper-
ator mean which possesses many of the properties of the standard one. More precisely, given
three positive real numbetsb, ¢, consider the sequences

( 3 1 1 1
ag = a, =—+ -+
Ap41 ap, bn Cn
by = b, bpi1 = Vapb,cy, (n>0);
an + b, + ¢,
o= ¢, Cpp1 = ————.
\ 3

It is well known that the sequencés, }, {b,} and{c,} converge to the same positive limit,
called the arithmetic-geometric-harmonic meamob andc. In what follows, we extend the
above algorithm from positive real numbers to positive operators. We start with some additional
notions that are needed below. An operator sequércg is called quadratic convergent if
there is a self-adjoint operatot € £(H) such thatnginoo (Apz,x) = (Az,x), for all z €

H. Itis known that if{ 4, } is a sequence of positive operators, the quadratic convergence is
equivalent to the strong convergence, ilen A,x = Az if and only if lirjra (Apz, ) =

n—-+0o0o
(Az,x),forallz € H.

The sequencéA,, } is said to be operator-increasing (resp. decreasing) if for &l H the
real sequencé(A, x, z)} is scalar-increasing (resp. decreasing). The sequgnggis upper
bounded (resp. lower bounded) if there is a self-adjoint opefdtar £L(H) such thatd,, < M
(resp.M < A,), for alln > 0. With this, it is not hard to verify the following lemma that will
be needed in the sequel.

Lemma3.1.Let{A,} € L(H) be asequence of positive operators such {bt} is operator-
increasing (resp. decreasing) and upper bounded (resp. lower bounded){ Zh¢ronverges,
in the strong operator topology, to a positive operator.

Now, we will discuss our aim in more detail. Ldt B, C' € L(H) be three positive operators
and define the following sequences:

AO - A, An+1 - h3(An> Bna Cn)a
BO = B> Bn+1 = g3(Ana Bn7 Cn) (n 2 0)7
C() = C, Cn+1 = ag(An, Bn, Cn)

By induction omn € N, it is easy to see that the sequen¢ds}, { B, } and{C,,} have positive
operator arguments.

Theorem 3.2. The sequencegA, }, {B,} and {C,,} converge strongly to the same positive
operatoragh(A, B, C') satisfying the following inequality

(3.2) h;3(A, B,C) < agh(A,B,C) < a3(A, B,C).
Proof. By the arithmetic-geometric-harmonic mean inequality, we obtain
vn >0 An+1 < B, < On-s—la
which, with the monotonicity of; andhg, yields
Ani1 > hs(An, An Ay) = A, and Cpq < ag(Cy, Gy, Cy) = C,.
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In summary, we have established that, foralb 1,
(3.2) h3(A,B,C) =4, <---<A,<B,<(C,<.---<C):=a3(A, B,0).

We conclude thaf A, } (resp{C,,}) is operator-increasing and upper boundechpyA, B, C)
(resp. operator-decreasing and lower boundedifiyl, B, C)). By Lemma] 3.1, we deduce
that the two sequencdsi, } and{C,} both converge strongly and so there exist two positive
operatorsP, ) € L(H) such that

nT14I_I(l>o< nt,x) = (Px,z) an M (Chx,z) = (Qr,x),

for all z € H. If we write the relation

Cn+l = aB(Ana Bn> Cn)
in the equivalent form

Bn = 3Cn+1 - An - Cn>

we can deduce thdtB, } converges strongly t8Q) — P := R. Lettingn — +o0 in relation-
ship (3.2), we obtai® < R < ). Moreover, the recursive relation

By = g3(An, By, Cr),
with an argument of continuity, gives when— +oo,
R=gs3(P R Q),

which, by Remark]2, yields

R=g(P,Q).
Due to relations

R=20Q — P, R =gy(P,Q)

and the arithmetic-geometric mean inequality, we get

1 1
R=2Q—P:g2(RQ)§§P+§Q7

which, after reduction, implies th& < P. SinceP, (Q andR are self-adjoint we conclude, by
summarizing, thaf’ = @) = R. Inequalities|[(3]1) follow from[(3]2) by letting — +o0, and
the proof is complete. O

Definition 3.1. The operatoagh(A, B, C), defined by Theorefn 3.2, will be called the arithmetic-
geometric-harmonic mean df, B andC.

Remark 3. Theorenj 3.2 can be written in the following equivalent form: HetB, C' € L(H)
be three positive operators and define the map

O(A, B,C) = (h3(A, B,(), g3(A,B,C), a3(A, B,C)).

If O := © 0 ©® o --- 0 © denotes thex'" iterate of®, then there exists a positive operator
M := agh(A, B, C) satisfying

lTlm O"(A,B,C) = (M, M, M).

nl-+oo

J. Inequal. Pure and Appl. Math10(4) (2009), Art. 117, 11 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

ARITHMETIC-GEOMETRIG-HARMONIC MEAN 11

REFERENCES
[1] T. ANDO, Topics on Operators InequalitieRyukyu Univ., Lecture Note Series. Nb(1978).

[2] M. ATTEIA AND M. RAISSOULLI, Self dual operators on convex functionals, geometric mean and
square root of convex functionaldurnal of Convex Analysi8 (2001), 223-240.

[3] J.I. FUJIIAND M. FUJII, On geometric and harmonic means of positive operaldash. Japonica
24(2) (1979), 203-207.

[4] F. HANSENAND G.K. PEDERSEN, Jensen’s inequality for operators and Lowner’s theddath,
Ann, 258(1982), 229-241.

[5] F. KUBO AND T. ANDO, Means of positive linear operatotdath. Ann, 246(1980), 205-224.

J. Inequal. Pure and Appl. Math10(4) (2009), Art. 117, 11 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. Geometric Operator Mean of Several Variables
	3. Arithmetic-geometric-harmonic Operator Mean
	References

