ON THE REFINED HEISENBERG-WEYL TYPE INEQUALITY

JOHN MICHAEL RASSIAS
National and Capodistrian University of Athens
Pedagogical Department EE
Section of Mathematics,4, Agamemnonos Str.
Aghia Paraskevi
Athens 15342, Greece
jrassias@primedu.uoa.gr
URL: http://www.primedu.uoa.gr/~jrassias/

Received 11 January, 2005; accepted 17 March, 2005
Communicated by S. Saitoh

Abstract

The well-known second moment Heisenberg-Weyl inequality (or uncertainty relation) states: Assume that $f: \mathbb{R} \rightarrow \mathbb{C}$ is a complex valued function of a random real variable x such that $f \in L^{2}(\mathbb{R})$, where $\mathbb{R}=(-\infty, \infty)$. Then the product of the second moment of the random real x for $|f|^{2}$ and the second moment of the random real ξ for $|\hat{f}|^{2}$ is at least $E_{\mathbb{R},|f|^{2}} / 4 \pi$, where \widehat{f} is the Fourier transform of $f, \widehat{f}(\xi)=\int_{\mathbb{R}} e^{-2 i \pi \xi x} f(x) d x$ and $f(x)=\int_{\mathbb{R}} e^{2 i \pi \xi x} \hat{f}(\xi) d \xi$, and $E_{\mathbb{R},|f|^{2}}=\int_{\mathbb{R}}|f(x)|^{2} d x$. This uncertainty relation is wellknown in classical quantum mechanics. In 2004, the author generalized the afore-mentioned result to the higher order moments for $L^{2}(\mathbb{R})$ functions f. In this paper, a refined form of the generalized Heisenberg-Weyl type inequality is established.

Key words and phrases: Heisenberg-Weyl Type Inequality, Uncertainty Principle, Gram determinant.
2000 Mathematics Subject Classification. 26, 33, 42, 60, 62.

1. INTRODUCTION

The serious question of certainty in science was high-lighted by Heisenberg, in 1927, via his "uncertainty principle" [2]. He demonstrated, for instance, the impossibility of specifying simultaneously the position and the speed (or the momentum) of an electron within an atom. In 1933, according to Wiener [7] "a pair of transforms cannot both be very small." This uncertainty principle was stated in 1925 by Wiener, according to Wiener's autobiography [8, p. 105-107], in a lecture in Göttingen. The following result of the Heisenberg-Weyl Inequality is credited to Pauli according to Weyl [6, p. 77, p. 393-394]. In 1928, according to Pauli [6] " the less the uncertainty in $|f|^{2}$, the greater the uncertainty in $|\widehat{f}|^{2}$, and conversely." This result does not actually appear in Heisenberg's seminal paper [2] (in 1927).

[^0]In 1998, Burke Hubbard [1] wrote a remarkable book on wavelets. According to her, most people first learn the Heisenberg uncertainty principle in connection with quantum mechanics, but it is also a central statement of information processing. The following second order moment Heisenberg-Weyl inequality provides a precise quantitative formulation of the above-mentioned uncertainty principle.
1.1. Second Moment Heisenberg-Weyl Inequality ([1], [4], [5]). For any $f \in L^{2}(\mathbb{R}), f$: $\mathbb{R} \rightarrow \mathbb{C}$, such that

$$
\|f\|_{2, \mathbb{R}}^{2}=\int_{\mathbb{R}}|f(x)|^{2} d x=E_{\mathbb{R},|f|^{2}},
$$

any fixed but arbitrary constants $x_{m}, \xi_{m} \in \mathbb{R}$, and for the second order moments

$$
\left(\mu_{2}\right)_{\mathbb{R},|f|^{2}}=\sigma_{\mathbb{R},|f|^{2}}^{2}=\int_{\mathbb{R}}\left(x-x_{m}\right)^{2}|f(x)|^{2} d x
$$

and

$$
\left(\mu_{2}\right)_{\mathbb{R},|\hat{f}|^{2}}=\sigma_{\mathbb{R},|\hat{f}|^{2}}^{2}=\int_{\mathbb{R}}\left(\xi-\xi_{m}\right)^{2}|\widehat{f}(\xi)|^{2} d \xi
$$

the second order moment Heisenberg-Weyl inequality

$$
\begin{equation*}
\sigma_{\mathbb{R},|f|^{2}}^{2} \cdot \sigma_{\mathbb{R},|\hat{f}|^{2}}^{2} \geq \frac{\|f\|_{2, \mathbb{R}}^{4}}{16 \pi^{2}} \tag{1}
\end{equation*}
$$

holds. Equality holds in (H_{1}) if and only if the generalized Gaussians

$$
f(x)=c_{o} \exp \left(2 \pi i x \xi_{m}\right) \exp \left(-c\left(x-x_{m}\right)^{2}\right)
$$

hold for some constants $c_{o} \in \mathbb{C}$ and $c>0$.
The Heisenberg-Weyl inequality in spectral analysis says that the product of the effective duration Δx and the effective bandwidth $\Delta \xi$ of a signal cannot be less than the value $1 / 4 \pi$, where $\Delta x^{2}=\sigma_{\mathbb{R},|f|^{2}}^{2} / E_{\mathbb{R},|f|^{2}}$ and $\Delta \xi^{2}=\sigma_{\mathbb{R},|\hat{f}|^{2}}^{2} / E_{\mathbb{R},|f|^{2}}$ with $f: \mathbb{R} \rightarrow \mathbb{C}, \widehat{f}: \mathbb{R} \rightarrow \mathbb{C}$ defined as in $\left(H_{1}\right)$, and
(PPR)

$$
E_{\mathbb{R},|f|^{2}}=\int_{\mathbb{R}}|f(x)|^{2} d x=\int_{\mathbb{R}}|\widehat{f}(\xi)|^{2} d \xi=E_{\mathbb{R},|\hat{f}|^{2}}
$$

according to the Plancherel-Parseval-Rayleigh identity.
1.2. Fourth Moment Heisenberg-Weyl Inequality ([4], pp. 26-27]). For any $f \in L^{2}(\mathbb{R})$, $f: \mathbb{R} \rightarrow \mathbb{C}$, such that

$$
\|f\|_{2, \mathbb{R}}^{2}=\int_{\mathbb{R}}|f(x)|^{2} d x=E_{\mathbb{R},|f|^{2}},
$$

any fixed but arbitrary constants $x_{m}, \xi_{m} \in \mathbb{R}$, and for the fourth order moments

$$
\left(\mu_{4}\right)_{\mathbb{R},|f|^{2}}=\int_{\mathbb{R}}\left(x-x_{m}\right)^{4}|f(x)|^{2} d x
$$

and

$$
\left(\mu_{4}\right)_{\mathbb{R},|\widehat{f}|^{2}}=\int_{\mathbb{R}}\left(\xi-\xi_{m}\right)^{4}|\widehat{f}(\xi)|^{2} d \xi,
$$

the fourth order moment Heisenberg-Weyl inequality
$\left(H_{2}\right)$

$$
\left(\mu_{4}\right)_{\mathbb{R},|f|^{2}} \cdot\left(\mu_{4}\right)_{\mathbb{R},|\hat{f}|^{2}} \geq \frac{1}{64 \pi^{4}} E_{2, \mathbb{R}, f}^{2},
$$

holds, where

$$
E_{2, \mathbb{R}, f}=2 \int_{\mathbb{R}}\left[\left(1-4 \pi^{2} \xi_{m}^{2} x_{\delta}^{2}\right)|f(x)|^{2}-x_{\delta}^{2}\left|f^{\prime}(x)\right|^{2}-4 \pi \xi_{m} x_{\delta}^{2} \operatorname{Im}\left(f(x) \overline{f^{\prime}(x)}\right)\right] d x
$$

with $x_{\delta}=x-x_{m}, \xi_{\delta}=\xi-\xi_{m}, \operatorname{Im}(\cdot)$ is the imaginary part of (\cdot), and $\left|E_{2, \mathbb{R}, f}\right|<\infty$.
The "inequality" $\left(\mathrm{H}_{2}\right.$ holds, unless $f(x)=0$.
We note that if the ordinary differential equation of second order

$$
\begin{equation*}
f_{\alpha}^{\prime \prime}(x)=-2 c_{2} x_{\delta}^{2} f_{\alpha}(x) \tag{ODE}
\end{equation*}
$$

holds, with $\alpha=-2 \pi \xi_{m} i, f_{\alpha}(x)=e^{\alpha x} f(x)$, and a constant $c_{2}=\frac{1}{2} k_{2}^{2}>0, k_{2} \in \mathbb{R}$ and $k_{2} \neq 0$, then "equality" in H_{2}) seems to occur. However, the solution of this differential equation (ODE), given by the function

$$
f(x)=\sqrt{\left|x_{\delta}\right|} e^{2 \pi i x \xi_{m}}\left[c_{20} J_{-1 / 4}\left(\frac{1}{2}\left|k_{2}\right| x_{\delta}^{2}\right)+c_{21} J_{1 / 4}\left(\frac{1}{2}\left|k_{2}\right| x_{\delta}^{2}\right)\right],
$$

in terms of the Bessel functions $J_{ \pm 1 / 4}$ of the first kind of orders $\pm 1 / 4$, leads to a contradiction, because this $f \notin L^{2}(\mathbb{R})$. Furthermore, a limiting argument is required for this problem. For the proof of this inequality see [4]. It is open to investigate cases, where the integrand on the right-hand side of the integral of $E_{2, \mathbb{R}, f}$ will be nonnegative. For instance, for $x_{m}=\xi_{m}=0$, this integrand is: $=|f(x)|^{2}-x^{2}\left|f^{\prime}(x)\right|^{2}(\geq 0)$.

In 2004, we [4] generalized the Heisenberg-Pauli-Weyl inequality in $\mathbb{R}=(-\infty, \infty)$. In this paper, a refined form of this generalized Heisenberg-Weyl type inequality is established in $I=[0, \infty)$. Afterwards, an open problem is proposed on some pertinent extremum principle. However, the above-mentioned Fourier transform is considered in \mathbb{R}, while our results in this paper are restricted to $I=[0, \infty)$. Futhermore, the corresponding inequality is investigated in \mathbb{R}, as well. Our second moment Heisenberg-Weyl type inequality and the fourth moment Heisenberg-Weyl type inequality are of the following forms $\left(R_{i}\right),(i=1,2)$.
1.3. Second Moment Heisenberg-Weyl Type Inequality ([4]). For any $f \in L^{2}(I), I=$ $[0, \infty), f: I \rightarrow \mathbb{C}$, such that $\|f\|_{2, I}^{2}=\int_{I}|f(x)|^{2} d x=E_{I,|f|^{2}}$, any fixed but arbitrary constant $x_{m} \in \mathbb{R}$, and for the second order moment

$$
\left(\mu_{2}\right)_{I,|f|^{2}}=\sigma_{I,|f|^{2}}^{2}=\int_{I}\left(x-x_{m}\right)^{2}|f(x)|^{2} d x
$$

the second order moment Heisenberg-Weyl type inequality

$$
\begin{equation*}
\left(\mu_{2}\right)_{I,|f|^{2}} \cdot\left\|f^{\prime}\right\|_{2, I}^{2} \geq \frac{1}{4} E_{1, I, f}^{2}=\frac{1}{4}\left[-\int_{I}|f(x)|^{2} d x\right]^{2}, \tag{1}
\end{equation*}
$$

holds, where $\left|E_{1, I, f}\right|<\infty$. Equality holds in $\left(\frac{R_{1}}{}\right.$ if and only if the Gaussians $f(x)=$ $c_{o} \exp \left(-c\left(x-x_{m}\right)^{2}\right)$ hold for some constants $c_{o} \in \mathbb{C}$ and $c>0$.

We note that this inequality $\left(\overline{R_{1}}\right)$ still holds if we replace the interval of integration I with \mathbb{R}, without any other change.
1.4. Fourth Moment Heisenberg-Weyl Type Inequality ([4]). For any $f \in L^{2}(I), I=$ $[0, \infty), f: I \rightarrow \mathbb{C}$, such that $\|f\|_{2, I}^{2}=\int_{I}|f(x)|^{2} d x=E_{I,|f|^{2}}$, any fixed but arbitrary constant $x_{m} \in \mathbb{R}$, and for the fourth order moment

$$
\left(\mu_{4}\right)_{I,|f|^{2}}=\int_{I}\left(x-x_{m}\right)^{4}|f(x)|^{2} d x
$$

the fourth order moment Heisenberg - Weyl type inequality
$\left(R_{2}\right)$

$$
\left(\mu_{4}\right)_{I,|f|^{2}} \cdot\left\|f^{\prime \prime}\right\|_{2, I}^{2} \geq \frac{1}{4} E_{2, I, f}^{2}=\left[\int_{I}\left[|f(x)|^{2} d x-x_{\delta}^{2}\left|f^{\prime}(x)\right|^{2}\right] d x\right]^{2}
$$

holds, where $x_{\delta}=x-x_{m}$, and $\left|E_{2, I, f}\right|<\infty$.
The "inequality" $\left(\frac{R_{2}}{}\right.$) holds, unless $f(x)=0$.
We note that this inequality $\left(R_{2}\right)$ still holds if we replace the interval of integration I with \mathbb{R}, without any other change except that one on the following condition (2.1), where $x \rightarrow \infty$ has to be substituted with $|x| \rightarrow \infty$.

We omit the proofs of the inequalities $\left(R_{i}\right)(i=1,2)$ as special cases of the corresponding proof of the following general Theorem 2.1 (with $A=0$) of this paper. Furthermore, we state our following four pertinent propositions. Their proofs are identical or analogous to the proofs of the corresponding propositions of [4].
Proposition 1.1 (Pascal type combinatorial identity, [4]). If $0 \leq\left[\frac{k}{2}\right]$ is the greatest integer $\leq \frac{k}{2}$, then
(C)

$$
\frac{k}{k-i}\binom{k-i}{i}+\frac{k-1}{k-i}\binom{k-i}{i-1}=\frac{k+1}{k-i+1}\binom{k-i+1}{i},
$$

holds for any fixed but arbitrary $k \in \mathbb{N}=\{1,2, \ldots\}$, and $0 \leq i \leq\left[\frac{k}{2}\right]$ for $i \in \mathbb{N}_{0}=$ $\{0,1,2, \ldots\}$ such that $\binom{k}{-1}=0$.
Proposition 1.2 (Generalized differential identity, [4]). If $f: I \rightarrow \mathbb{C}$ is a complex valued
 $\overline{(\cdot)}$ is the conjugate of (\cdot), then

$$
\begin{equation*}
f(x) f^{\overline{(k)}}(x)+f^{(k)}(x) \bar{f}(x)=\sum_{i=0}^{\left[\frac{k}{2}\right]}(-1)^{i} \frac{k}{k-i}\binom{k-i}{i} \frac{d^{k-2 i}}{d x^{k-2 i}}\left|f^{(i)}(x)\right|^{2} \tag{*}
\end{equation*}
$$

holds for any fixed but arbitrary $k \in \mathbb{N}=\{1,2, \ldots\}$, such that $0 \leq i \leq\left[\frac{k}{2}\right]$ for $i \in \mathbb{N}_{0}=$ $\{0,1,2, \ldots\}$.

We note that the proof of $*$ requires the application of the new identity (C). Furthermore, we note that the above differential identity (*) still holds if we replace the interval of integration I with \mathbb{R}, without any other change.
Proposition 1.3 ($P^{\text {th }}$-derivative of product, [4]). If $f_{i}: I \rightarrow \mathbb{C}(i=1,2)$ are two complex valued functions of a real variable x, then the $p^{\text {th }}$-derivative of the product $f_{1} f_{2}$ is given, in terms of the lower derivatives $f_{1}^{(m)}, f_{2}^{(p-m)}$ by

$$
\begin{equation*}
\left(f_{1} f_{2}\right)^{(p)}=\sum_{m=0}^{p}\binom{p}{m} f_{1}^{(m)} f_{2}^{(p-m)} \tag{1.1}
\end{equation*}
$$

for any fixed but arbitrary $p \in \mathbb{N}_{0}$.
Proposition 1.4 (Generalized integral identity, [4]). If $f: I \rightarrow \mathbb{C}$ is a complex valued function of a real variable $x, I=[0, \infty)$, and $h: I \rightarrow \mathbb{R}$ is a real valued function of x, as well as, w, $w_{p}: I \rightarrow \mathbb{R}$ are two real valued functions of x, such that $w_{p}(x)=\left(x-x_{m}\right)^{p} w(x)$ for any fixed but arbitrary constant $x_{m} \in \mathbb{R}$ and $v=p-2 q, 0 \leq q \leq\left[\frac{p}{2}\right]$, then
i)

$$
\begin{equation*}
\int w_{p}(x) h^{(v)}(x) d x=\sum_{r=0}^{v-1}(-1)^{r} w_{p}^{(r)}(x) h^{(v-r-1)}(x)+(-1)^{v} \int w_{p}^{(v)}(x) h(x) d x \tag{1.2}
\end{equation*}
$$

holds for any fixed but arbitrary $p \in \mathbb{N}_{0}$ and $v \in \mathbb{N}$, and all $r: r=0,1,2, \ldots, v-1$, as well as the integral identity
ii)

$$
\int_{I} w_{p}(x) h^{(v)}(x) d x=(-1)^{v} \int_{I} w_{p}^{(v)}(x) h(x) d x
$$

holds if the limiting condition
iii)

$$
\sum_{r=0}^{v-1}(-1)^{r} \lim _{x \rightarrow \infty} w_{p}^{(r)}(x) h^{(v-r-1)}(x)=0
$$

holds, and if all of these integrals exist.
We note that the proof of (1.2) requires the application of the differential identity (1.1). Furthermore, we note that the above integral identity ii) still holds if we replace the interval of integration I with \mathbb{R}, without any other change except that on the above limiting condition iii), where $x \rightarrow \infty$ has to be substituted with $|x| \rightarrow \infty$.

2. Refined Heisenberg-Weyl Type Inequality

We assume that $f: I \rightarrow \mathbb{C}$ is a complex valued function of a real variable x, and $w: I \rightarrow \mathbb{R}$ a real valued weight function of x, as well as x_{m} any fixed but arbitrary real constant. Also we denote

$$
\left(\mu_{2 p}\right)_{w, I,|f|^{2}}=\int_{I} w^{2}(x)\left(x-x_{m}\right)^{2 p}|f(x)|^{2} d x
$$

the $2 p^{\text {th }}$ weighted moment of x for $|f|^{2}$ with weight function $w: I \rightarrow \mathbb{R}$. Besides we denote

$$
C_{q}=(-1)^{q} \frac{p}{p-q}\binom{p-q}{q}
$$

if $0 \leq q \leq\left[\frac{p}{2}\right]$ ($=$ the greatest integer $\leq \frac{p}{2}$),

$$
I_{q l}=(-1)^{p-2 q} \int_{I} w_{p}^{(p-2 q)}(x)\left|f^{(l)}(x)\right|^{2} d x
$$

if $0 \leq l \leq q \leq\left[\frac{p}{2}\right]$, and $w_{p}=\left(x-x_{m}\right)^{p} w$. We assume that all these integrals exist. Finally we denote $D_{q}=\sum_{l=0}^{q} I_{q l}$, if $\left|D_{q}\right|<\infty$ holds for $0 \leq q \leq\left[\frac{p}{2}\right]$, and

$$
E_{p, I, f}=\sum_{q=0}^{[p / 2]} C_{q} D_{q},
$$

if $\left|E_{p, I, f}\right|<\infty$ holds for $p \in \mathbb{N}$. In addition, we assume the condition:

$$
\begin{equation*}
\sum_{r=0}^{p-2 q-1}(-1)^{r} \lim _{x \rightarrow \infty} w_{p}^{(r)}(x)\left(\left|f^{(l)}(x)\right|^{2}\right)^{(p-2 q-r-1)}=0 \tag{2.1}
\end{equation*}
$$

for $0 \leq l \leq q \leq\left[\frac{p}{2}\right]$. Furthermore,

$$
\begin{equation*}
\left|E_{p, I, f}^{*}\right|=\sqrt{E_{p, I, f}^{2}+4 A^{2}}, \tag{2.2}
\end{equation*}
$$

where $A=\|u\| x_{0}-\|v\| y_{0}$, with $L^{2}-$ norm $\|\cdot\|^{2}=\int_{I}|\cdot|^{2}$, inner product $(|u|,|v|)=\int_{I}|u||v|$, and

$$
u=w(x) x_{\delta}^{p} f(x), \quad v=f^{(p)}(x) ; \quad x_{0}=\int_{I}|v(x) h(x)| d x, \quad y_{0}=\int_{I}|u(x) h(x)| d x
$$

as well as

$$
h(x)=\frac{1}{\sqrt{\sigma}} \sqrt[4]{\frac{2}{\pi}} e^{-\frac{1}{4}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

or
$\left(H_{I}\right)$

$$
h(x)=\sqrt{2} \frac{1}{\sqrt[4]{n \pi}} \sqrt{\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}} \cdot \frac{1}{\left(1+\frac{x^{2}}{n}\right)^{\frac{n+1}{4}}},
$$

where μ is the mean, σ the standard deviation, and $n \in \mathbb{N}$, and

$$
\|h(x)\|^{2}=\int_{I}|h(x)|^{2} d x=1
$$

Theorem 2.1. If (2.1) holds and $f \in L^{2}(\mathbb{R})$, then
(R_{p}^{*})

$$
\sqrt[2 p]{\left(\mu_{2 p}\right)_{w, I,|f|^{2}}} \sqrt[p]{\left\|f^{(p)}\right\|_{2, I}} \geq \frac{1}{\sqrt[p]{2}} \sqrt[p]{\left|E_{p, I, f}^{*}\right|}
$$

holds for any fixed but arbitrary $p \in \mathbb{N}$.
Equality holds in \bar{R}_{p}^{*} iff $v(x)=-2 c_{p} u(x)$ holds for constants $c_{p}>0$, and any fixed but arbitrary $p \in \mathbb{N} ; c_{p}=k_{p}^{2} / 2>0, k_{p} \in \mathbb{R}$ and $k_{p} \neq 0, p \in \mathbb{N}$, and $A=0$, or $h(x)=$ $c_{1 p} u(x)+c_{2 p} v(x)$ and $x_{0}=0$, or $y_{0}=0$, where $c_{i p}(i=1,2)$ are constants and $A^{2}>0$.

We note that this inequality $\left(\overline{R_{p}^{*}}\right)$ still holds if we replace the interval of integration I with \mathbb{R}, without any other change except that one on the above condition (2.1), where $x \rightarrow \infty$ has to be substituted with $|x| \rightarrow \infty$, and the choice of h from $\left(\overline{H_{I}}\right\rangle$ must be replaced with

$$
h(x)=\frac{1}{\sqrt[4]{2 \pi} \sqrt{\sigma}} e^{-\frac{1}{4}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

or
$\left(H_{\mathbb{R}}\right)$

$$
h(x)=\frac{1}{\sqrt[4]{n \pi}} \sqrt{\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}} \cdot \frac{1}{\left(1+\frac{x^{2}}{n}\right)^{\frac{n+1}{4}}},
$$

where μ is the mean, σ the standard deviation, and $n \in \mathbb{N}$.
Proof. In fact, one gets

$$
\begin{align*}
M_{p}^{*} & =M_{p}-A^{2} \tag{2.3}\\
& =\left(\mu_{2 p}\right)_{w, I,|f|^{2}} \cdot\left\|f^{(p)}\right\|_{2, I}^{2}-A^{2} \\
& =\left(\int_{I} w^{2}(x)\left(x-x_{m}\right)^{2 p}|f(x)|^{2} d x\right) \cdot\left(\int_{I}\left|f^{(p)}(x)\right|^{2} d x\right)-A^{2} \\
& =\|u\|^{2}\|v\|^{2}-A^{2} \tag{2.4}
\end{align*}
$$

with $u=w(x) x_{\delta}^{p} f_{(}(x), v=f^{(p)}(x)$, where $x_{\delta}=x-x_{m}$.
From (2.3)- (2.4), the Cauchy-Schwarz inequality $(|u|,|v|) \leq\|u\|\|v\|$ and the non-negativeness of the following Gram determinant [3] or

$$
\begin{align*}
0 & \leq\left|\begin{array}{ccc}
\|u\|^{2} & (|u|,|v|) & y_{0} \\
(|v|,|u|) & \|v\|^{2} & x_{0} \\
y_{0} & x_{0} & 1
\end{array}\right| \tag{2.5}\\
& =\|u\|^{2}\|v\|^{2}-(|u|,|v|)^{2}-\left[\|u\|^{2} x_{0}^{2}-2(|u|,|v|) x_{0} y_{0}+\|v\|^{2} y_{0}^{2}\right] \\
0 & \leq\|u\|^{2}\|v\|^{2}-(|u|,|v|)^{2}-A^{2}
\end{align*}
$$

with

$$
\begin{aligned}
A & =\|u\| x_{0}-\|v\| y_{0}, \\
x_{0} & =\int_{I}|v(x) h(x)| d x, \\
y_{0} & =\int_{I}|u(x) h(x)| d x, \\
\|h(x)\|^{2} & =\int_{I}|h(x)|^{2} d x=1,
\end{aligned}
$$

we find

$$
\begin{equation*}
M_{p}^{*} \geq(|u|,|v|)^{2}=\left(\int_{I}|u||v|\right)^{2}=\left(\int_{I}\left|w_{p}(x) f(x) f^{(p)}(x)\right| d x\right)^{2} \tag{2.6}
\end{equation*}
$$

where $w_{p}=\left(x-x_{m}\right)^{p} w$. In general, if $\|h\| \neq 0$, then one gets

$$
(u, v)^{2} \leq\|u\|^{2}\|v\|^{2}-R^{2}
$$

where

$$
R=A /\|h\|=\|u\| x-\|v\| y
$$

such that $x=x_{0} /\|h\|, y=y_{0} /\|h\|$.
In this case, A has to be replaced by R in all the pertinent relations of this paper.
From (2.6) and the complex inequality,

$$
|a b| \geq \frac{1}{2}(a \bar{b}+\bar{a} b)
$$

with $a=w_{p}(x) f(x), b=f^{(p)}(x)$, we get

$$
\begin{equation*}
M_{p}^{*}=\left[\frac{1}{2} \int_{I} w_{p}(x)\left(f(x) \overline{f^{(p)}(x)}+f^{(p)}(x) \overline{f(x)}\right) d x\right]^{2} \tag{2.7}
\end{equation*}
$$

From (2.7) and the generalized differential identity (*), one finds

$$
\begin{equation*}
M_{p}^{*} \geq \frac{1}{2^{2}}\left[\int_{I} w_{p}(x)\left(\sum_{q=0}^{[p / 2]} C_{q} \frac{d^{p-2 q}}{d x^{p-2 q}}\left|f^{(q)}(x)\right|^{2}\right) d x\right]^{2} \tag{2.8}
\end{equation*}
$$

From the generalized integral identity (1.2), the condition (2.1), and that all the integrals exist, one gets

$$
\int_{I} w_{p}(x) \frac{d^{p-2 q}}{d x^{p-2 q}}\left|f^{(l)}(x)\right|^{2} d x=(-1)^{p-2 q} \int_{I} w_{p}^{(p-2 q)}(x)\left|f^{(l)}(x)\right|^{2} d x=I_{q l}
$$

Thus we find

$$
M_{p}^{*} \geq \frac{1}{2^{2}}\left[\sum_{q=0}^{[p / 2]} C_{q}\left(\sum_{l=0}^{q} I_{q l}\right)\right]^{2}=\frac{1}{2^{2}} E_{p, I, f}^{2}
$$

where $E_{p, I, f}=\sum_{q=0}^{[p / 2]} C_{q} D_{q}$, if $\left|E_{p, I, f}\right|<\infty$ holds, or the refined moment uncertainty formula

$$
\sqrt[2 p]{M_{p}} \geq \frac{1}{\sqrt[p]{2}} \sqrt[p]{\left|E_{p, I, f}^{*}\right|} \quad\left(\geq \frac{1}{\sqrt[p]{2}} \sqrt[p]{\left|E_{p, I, f}\right|}\right)
$$

where $M_{p}=M_{p}^{*}+A^{2}$.
We note that the corresponding Gram matrix to the above Gram determinant is positive definite if and only if the above Gram determinant is positive if and only if u, v, h are linearly
independent. In addition, the equality in (2.5) holds if and only if h is a linear combination of linearly independent u and v and $u=0$ or $v=0$, completing the proof of the above theorem.

3. Applied Refined Heisenberg-Weyl Type Inequality

We apply the above Theorem 2.1 to the following simpler cases of the refined HeisenbergWeyl type inequality.
3.1. Refined Second Moment Heisenberg-Weyl Type Inequality. For any $f \in L^{2}(I), I=$ $[0, \infty), f: I \rightarrow \mathbb{C}$, such that $\|f\|_{2, I}^{2}=\int_{I}|f(x)|^{2} d x=E_{I,|f|^{2}}$, any fixed but arbitrary constant $x_{m} \in \mathbb{R}$, and for the second order moment

$$
\left(\mu_{2}\right)_{I,|f|^{2}}=\sigma_{I,|f|^{2}}^{2}=\int_{I}\left(x-x_{m}\right)^{2}|f(x)|^{2} d x
$$

the second order moment Heisenberg-Weyl type inequality

$$
\begin{equation*}
\left(\mu_{2}\right)_{I,|f|^{2}} \cdot\left\|f^{\prime}\right\|_{2, I}^{2} \geq \frac{1}{4}\left(E_{1, I, f}^{*}\right)^{2}=\frac{1}{4}\left[\int_{I}|f(x)|^{2} d x+4 A^{2}\right]^{2} \tag{1}
\end{equation*}
$$

holds, where $\left|E_{1, I, f}^{*}\right|<\infty$.
Equality holds in (R_{1}^{*}) iff $v(x)=-2 c_{1} u(x)$ holds for constants $c_{1}>0$, and any fixed $c_{1}=k_{1}^{2} / 2>0, k_{1} \in \mathbb{R}$ and $k_{1} \neq 0$, and $A=0$, or $h(x)=c_{11} u(x)+c_{21} v(x)$ and $x_{0}=0$, or $y_{0}=0$, where $c_{i 1}(i=1,2)$ are constants and $A^{2}>0$.

We note that this inequality (\bar{R}_{1}^{*} still holds if we replace the interval of integration I with \mathbb{R}, without any other change except that one on the choice of h, where $\left(\overline{H_{I}}\right)$ has to be replaced with ($H_{\mathbb{R}}$).
3.2. Refined Fourth Moment Heisenberg-Weyl Type Inequality. For any $f \in L^{2}(I), I=$ $[0, \infty), f: I \rightarrow \mathbb{C}$, such that $\|f\|_{2, I}^{2}=\int_{I}|f(x)|^{2} d x=E_{I,|f|^{2}}$, any fixed but arbitrary constant $x_{m} \in \mathbb{R}$, and for the fourth order moment

$$
\left(\mu_{4}\right)_{I,|f|^{2}}=\int_{I}\left(x-x_{m}\right)^{4}|f(x)|^{2} d x
$$

the fourth order moment Heisenberg-Weyl type inequality

$$
\begin{equation*}
\left(\mu_{4}\right)_{I,|f|^{2}} \cdot\left\|f^{\prime \prime}\right\|_{2, I}^{2} \geq \frac{1}{4}\left(E_{2, I, f}^{*}\right)^{2}=\frac{1}{4}\left[\int_{I}\left[|f(x)|^{2} d x-x_{\delta}^{2}\left|f^{\prime}(x)\right|^{2}\right] d x+4 A^{2}\right]^{2} \tag{2}
\end{equation*}
$$

holds, where $x_{\delta}=x-x_{m}$, and $\left|E_{2, I, f}^{*}\right|<\infty$.
Equality holds in $\left(R_{2}^{*}\right)$ iff $v(x)=-2 c_{2} u(x)$ holds for constants $c_{2}>0$, and any fixed but arbitrary $c_{2}=\frac{1}{2} k_{2}^{2}>0, k_{2} \in \mathbb{R}$ and $k_{2} \neq 0$, and $A=0$, or $h(x)=c_{12} u(x)+c_{22} v(x)$ and $x_{0}=0$, or $y_{0}=0$, where $c_{i 2}(i=1,2)$ are constants and $A^{2}>0$.

We note that this inequality $\left(\overline{R_{2}^{*}}\right)$ still holds if we replace the interval of integration I with \mathbb{R}, without any other change except that one on the above condition (2.1), where $x \rightarrow \infty$ has to be substituted with $|x| \rightarrow \infty$, and the choice of h, where $\left(\overline{H_{I}}\right)$ has to be replaced with $\left(\overline{H_{\mathbb{R}}}\right)$.

Remark 3.1. Take $w_{p}(x)=x^{p}$, and $w_{p}^{(p)}(x)=p!(p=1,2,3,4, \ldots)$. Thus

$$
\begin{aligned}
& E_{1, I, f}=-\int_{I}|f(x)|^{2} d x=-E_{I,|f|^{2}} \\
& E_{2, I, f}=2 \int_{I}\left[|f(x)|^{2}-x^{2}\left|f^{\prime}(x)\right|^{2}\right] d x \\
& E_{3, I, f}=-3 \int_{I}\left[2|f(x)|^{2}-3 x^{2}\left|f^{\prime}(x)\right|^{2}\right] d x \\
& E_{4, I, f}=2 \int_{I}\left[12|f(x)|^{2}-24 x^{2}\left|f^{\prime}(x)\right|^{2}+x^{4}\left|f^{\prime \prime}(x)\right|^{2}\right] d x
\end{aligned}
$$

respectively, if $\left|E_{p, I, f}\right|<\infty$ holds for $p=1,2,3,4$. Therefore

$$
D_{q}=A_{q q} I_{q q}=I_{q q}=(-1)^{p-2 q} \int_{I} w_{p}^{(p-2 q)}(x)\left|f^{(q)}(x)\right|^{2} d x
$$

if $\left|D_{q}\right|<\infty$, for $0 \leq q \leq\left[\frac{p}{2}\right]$.
Furthermore,

$$
w_{p}^{(p-2 q)}(x)=\left(x^{p}\right)^{(p-2 q)}=p(p-1) \cdots(p-(p-2 q)+1) x^{p-(p-2 q)}
$$

or

$$
w_{p}^{(p-2 q)}(x)=\frac{p!}{(p-(p-2 q))!} x^{2 q}=\frac{p!}{(2 q)!} x^{2 q}, \quad 0 \leq q \leq\left[\frac{p}{2}\right] .
$$

In addition

$$
D_{q}=(-1)^{p-2 q} \frac{p!}{(2 q)!} \int_{I} x^{2 q}\left|f^{(q)}(x)\right|^{2} d x
$$

if $\left|D_{q}\right|<\infty$ holds for $0 \leq q \leq\left[\frac{p}{2}\right]$.
Therefore

$$
E_{p, I, f}=\sum_{q=0}^{[p / 2]} C_{q} D_{q}=\sum_{q=0}^{[p / 2]}\left[(-1)^{q} \frac{p}{p-q}\binom{p-q}{q}\right]\left[(-1)^{p-2 q} \frac{p!}{(2 q)!} \int_{I} x^{2 q}\left|f^{(q)}(x)\right|^{2} d x\right],
$$

or the formula

$$
E_{p, I, f}=\int_{I} \sum_{q=0}^{[p / 2]}(-1)^{p-q} \frac{p}{p-q} \cdot \frac{p!}{(2 q)!}\binom{p-q}{q} x^{2 q}\left|f^{(q)}(x)\right|^{2} d x
$$

if $\left|E_{p, I, f}\right|<\infty$ holds for $0 \leq q \leq\left[\frac{p}{2}\right]$, when $w=1$ and $x_{m}=0$.
Let

$$
\left(m_{2 p}\right)_{I,|f|^{2}}=\int_{I} x^{2 p}|f(x)|^{2} d x
$$

be the $2 p^{\text {th }}$ moment of x for $|f|^{2}$ about the origin $x_{m}=0$.
Denote

$$
\varepsilon_{p, q}=(-1)^{p-q} \frac{p}{p-q} \cdot \frac{p!}{(2 q)!}\binom{p-q}{q}
$$

for $p \in \mathbb{N}$ and $0 \leq q \leq\left[\frac{p}{2}\right]$.
Thus

$$
E_{p, I, f}=\int_{I} \sum_{q=0}^{[p / 2]} \varepsilon_{p, q} x^{2 q}\left|f^{(q)}(x)\right|^{2} d x, \quad \text { if } \quad\left|E_{p, I, f}\right|<\infty
$$

holds for $0 \leq q \leq\left[\frac{p}{2}\right]$.

Corollary 3.2. Assume that $f: I \rightarrow \mathbb{C}$ is a complex valued function of a real variable $x, w=1$, $x_{m}=0$. If $f \in L^{2}(I)$, then the following inequality

$$
\begin{equation*}
\sqrt[2 p]{\left(m_{2 p}\right)_{I,|f|^{2}}} \sqrt[p]{\left\|f^{(p)}\right\|_{2, I}} \geq \frac{1}{\sqrt[p]{2}} \sqrt[p]{\left.\left|\sum_{q=0}^{[p / 2]} \varepsilon_{p, q}\left(m_{2 q}\right)_{I, \mid f^{(q)}}\right|^{2}\right|^{2}+4 A^{2}}, \tag{p}
\end{equation*}
$$

holds for any fixed but arbitrary $p \in \mathbb{N}$ and $0 \leq q \leq\left[\frac{p}{2}\right]$, where

$$
\left.\left(m_{2 q}\right)_{I, \mid f^{(q)}}\right|^{2}=\int_{I} x^{2 q}\left|f^{(q)}(x)\right|^{2} d x
$$

and A is analogous to the one in the above theorem.
Similar conditions are assumed for the "equality" in $\left(\overline{S_{p}}\right)$ with respect to those in the above theorem. We note that this inequality $\left(\overline{S_{p}}\right)$ still holds if we replace the interval of integration I with \mathbb{R}, without any other change except that one on the above condition (2.1), where $x \rightarrow \infty$ has to be substituted with $|x| \rightarrow \infty$, and the choice of h, where $\left\langle\overline{H_{I}}\right\rangle$ has to be replaced with ($\bar{H}_{\mathbb{R}}$.

Problem 1. Concerning our inequality $\left(H_{2}\right)$ further investigation is needed for the case of the "equality". As a matter of fact, our function f is not in $L^{2}(\mathbb{R})$, leading the left-hand side to be infinite in that "equality". A limiting argument is required for this problem. On the other hand, why does not the corresponding "inequality" H_{2} attain an extremal in $L^{2}(\mathbb{R})$?

Here are some of our old results [4] related to the above problem. In particular, if we take into account these results contained in Section 9 on pp. 46-70 [4], where the Gaussian function and the Euler gamma function Γ are employed, then via Corollary 9.1 on pp 50-51 of [4] we conclude that "equality" in $\left(H_{p}\right)$ of [4, p. 22], $p \in \mathbb{N}=\{1,2,3, \ldots\}$, holds only for $p=1$. Furthermore, employing the above Gaussian function, we established the following extremum principle (via (9.33) on p. $51[4]$):

$$
\begin{equation*}
R(p) \geq 1 / 2 \pi, \quad p \in \mathbb{N} \tag{R}
\end{equation*}
$$

for the corresponding "inequality" in $\left(H_{p}\right)$ of [4] p. 22], $p \in \mathbb{N}$, where the constant $1 / 2 \pi$ "on the right-hand side" is the best lower bound for $p \in \mathbb{N}$. Therefore "equality" in $\left(H_{p}\right)$ of [4] p . 22], $p \in \mathbb{N}$ and $p \neq 1$, in Section 8.1 on pp 19-46 [4] cannot occur under the afore-mentioned well-known functions. On the other hand, there is a lower bound "on the right-hand side" of the corresponding "inequality" H_{2} if we employ the above Gaussian function, which bound equals to $\frac{1}{64 \pi^{4}} E_{2, \mathbb{R}, f}^{2}=\frac{1}{512 \pi^{3}} \frac{\left|c_{0}\right|^{4}}{c}$, with c_{0}, c constants and $c_{0} \in \mathbb{C}, c>0$, because $E_{\mathbb{R},|f|^{2}}=\left|c_{0}\right|^{2} \sqrt{\frac{\pi}{2 c}}$ and $E_{2, \mathbb{R}, f}=\frac{1}{2} E_{\mathbb{R},|f|^{2}}$.

Analogous pertinent results are investigated via our Corollaries 9.2-9.6 on pp 53-68 [4].

References

[1] B. BURKE HUBBARD, The World According to Wavelets, the Story of a Mathematical Technique in the Making (A.K. Peters, Natick, Massachusetts, 1998).
[2] W. HEISENBERG, Über den anschaulichen Inhalt der quantentheoretischen Kinematic und Mechanik, Zeit. Physik, 43, 172 (1927); The Physical Principles of the Quantum Theory (Dover, New York, 1949; The Univ. Chicago Press, 1930).
[3] G. MINGZHE, On the Heisenberg's inequality, J. Math. Anal. Appl., 234 (1999), 727-734.
[4] J.M. RASSIAS, On the Heisenberg-Pauli-Weyl inequality, J. Inequ. Pure \& Appl. Math., 5 (2004), Art. 4. [ONLINE: http://jipam.vu.edu.au/article.php?sid=356]
[5] J.M. RASSIAS, On the Heisenberg-Weyl inequality, J. Inequ. Pure \& Appl. Math., 6 (2005), Art. 11. [ONLINE: http://jipam.vu.edu.au/article.php?sid=480]
[6] H. WEYL, Gruppentheorie und Quantenmechanik, (S. Hirzel, Leipzig, 1928; and Dover edition, New York, 1950)
[7] N. WIENER, The Fourier Integral and Certain of its Applications, (Cambridge, 1933).
[8] N. WIENER, I am a Mathematician, (MIT Press, Cambridge, 1956).

[^0]: ISSN (electronic): 1443-5756
 (c) 2005 Victoria University. All rights reserved.

 013-05

