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ABSTRACT. The objective of this paper is to study the iterative solutions of a class of generalized
co-complementarity problems jauniformly smooth Banach spaces, with the devotion of sunny
retraction mappingy-strongly accretivep-relaxed accretive and Lipschitzian (or more generally
uniformly continuous) mappings. Our results are new and represents a significant improvement
of previously known results. Some special cases are also discussed.
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1. INTRODUCTION

The theory of complementarity problems initiated by Lemnike [19] and Cottle and Dantzing
[10] in the early sixties and later developed by other mathematicians see for exahple |6, 9, 11,
14,[17)22] plays an important role and is fundamental in the study of a wide class of problems
arising in optimization, game theory, economics and engineering sciences|[3, 6, 8, 11, 15].

On the other hand, the accretive operators are of interest because several physically resolvent
problems can be modeled by nonlinear evolution systems involving operators of the accretive
type. Very closely related to the accretive operators is the class of dissipative operators, where
an operatofl’ is said to be dissipative if and only (f-7") is accretive. The concepts of strictly
strongly andn-(or sometimes hyper-) dissipativity are similarly defined.

These classes of operators have attracted a lot of interest because of their involvement in
evolution systems modeling several real life problems. Consequently several authors have stud-
ied the existence, uniqueness and iterative approximations of solutions of nonlinear equations
involving such operators, se€ [5,/12] 18] and the references cited therein.
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2 M. FIRDOSH KHAN AND SALAHUDDIN

It is our purpose in this article to establish the strong convergence of the iterative algorithm
to a solution of the generalized co-complimentarity problems-aniformly smooth Banach
spaces when the operators are accretive, strictly accretive, strongly accretive, relaxed accretive
and Lipschitzian. Our iteration processes are simple and independent of the geomgtry of
and iteration parameters can be chosen at the start of the iteration process. Consequently, most
important results known in this connection will be special cases of our problem.

2. BACKGROUND OF PROBLEM FORMULATIONS

Throughout this article, we assume tlais a real Banach space whose norm is denoted by
| - ||, E* its topological dual spaceC'B(FE) denotes the family of all nonempty closed and
bounded subsets @&. D(-, -) is the Hausdorff metric o0’ B(E) defined by

max {Sup d(x, B), sup d(A, y)} — D(A, B),

€A yeDB
where
d(z,B) = inf d(z,y) and d(A,y) = in£ d(x,y),
Te

yeB

d is the metric on® induced by the nornjj - ||. As usualy(-, -) is the generalized duality pairing
betweenr and E*. For1 < p < oo, the mapping/, : E — 2F" defined by

Jo(@) ={f* € E* : {x, f*) = |fIl - ll=ll and|| f]| = [|l=["~"} forallz € E,

is called the duality mapping with gauge functiofy) = ¢*~!. In particular forp = 2, the
duality mapping/, with gauge functiom(t) = ¢ is called the normalized duality mapping. Itis
known thatJ,(z) = ||z|[P~2Jx(z) for all x # 0 and.J, is single valued if£* is strictly convex.

If £ = H is a Hilbert space, thest, becomes the identity mapping ¢h

Proposition 2.1([7]). Let E be a real Banach space. Fdr < p < oo, the duality mapping
J, - E — 2F" has the following basic properties:
(1) Jy(z) # O forall x € E andD(J,) (the domain off,) = E
(2) Jp(z) = ||z||P~2Jz(z) forall x € E, (z # 0),
(3) Jy(az) = a?~1J,(z) forall a € [0, 00),
() J,(—z) = —J, @),
(5) J,is bounded i.e., for any bounded subdet FE, J,(A) is a bounded subset ifi*,
(6) Jp can be equivalently defined as the subdifferential of the functipfal = p~* ||z
(Asplund[2]), i.e.,

Jp(x) = 0p(x) ={f € E: o(y) — p(x) = (f,y —x), forally € E}

(7) E is a uniformly smooth Banach space (equivalerfly,s a uniformly convex Banach
space) if and only i/, is single valued and uniformly continuous on any bounded subset
of £ (Xu and Roaclji24]).

Definition 2.1. Let £ be a real Banach space afida nonempty subset df. LetT : K — 2F
be a multivalued mapping

(1) T is said to be accretive if for any,y € K, v € T(xz) andv € T(y) there exists
J2 € Jo(x — y) such that

<u -, ]2> > 0:
or equivalently, there exists € J,(z —y), 1 < p < oo, such that
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(2) T is said to be strongly accretive if for anyy € K, u € T(x) andv € T(y) there
existsj, € Jo(x — y) such that

(u—v, j2) > kllz -y,

or equivalently, there exists € J,(z — y), 1 < p < oo such that
(u—=wv, jp) = kllz = yll",

for some constant > 0.

The concept of a single-valued accretive mapping was introduced independently by Browder
[5] and Kato [18] in 1967. An early fundamental result in the theory of accretive mappings
which is due to Browder states that the following initial value problem,

du(t)
dt

is solvable ifT" is locally Lipschitzian and accretive di.

More precisely, letV : £ x E — E andm,g : E — E be the single-valued mappings and
F,G,T : E — CB(F) the multivalued mappings. Let be a fixed closed convex cone bf
DefineK : E — 2% by

K(z)=m(z)+ X forallz € E, z € T(x).

+Tu(t) =0, u(0) = uy,

We shall study the following generalized co-complementarity probl@@qP):
Findz € E,u € F(x),v € G(x), z € T(x) such thay(z) € K(z) and

(2.1) N(u,v) € (J(K(2) = g(x)))",
where(J(K(z) — g(x)))* is the dual cone of the sé{ K'(z) — g(x)).

2.1. Special Cases.
() If Eis aHilbert spacel’, T are identity mappings anl (u, v) = Bz + Av, whereB, A
are single-valued mappings, then Problém|(2.1) reduces to a problem of findirg,
v € G(x) such thay(x) € K(z) and
(2.2) B(x) + A(v) € (K(z) — g(x))"

considered by Jou and Yao [16].
(i) If G andg are identity mappings, theh (2.2) reduces to finding K () such that

(2.3) B(z)+ A(y) € (K(z) — 2)*
which is called a strongly nonlinear quasi complementarity problem, studied by Noor
[22].
(iii) If m is a zero mapping, thep (2.3) is equivalent to finding E such that
(2.4) Bx+ Ax € E* and (Bx + Az, x) =0,

which is known as the mildly nonlinear complementarity problem, studied by Nobr [21].
(iv) If Ais zero mapping, thef (3.4) is equivalent to a problem of finding £ such that
Bx € E* and

(2.5) (Bx, x) =0,

considered by Habetler [14] and Karamardian [17].
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3. THE CHARACTERIZATION OF PROBLEM AND SOLUTIONS

In this section, we briefly consider some basic concepts and results, which will be used
throughout the paper. The real Banach spédg said to be uniformly smooth if its modulus of
smoothnesg () defined by

2 +yll + [z = yli

pitr) = sup { LI g 1y <

satlsfles”E(T) — 0 as7T — 0. It follows that £ is uniformly smooth if and only ifJ, is
single- -valled and uniformly continuous on any bounded subdétwid there exists a complete
duality between uniform convexity and uniform smoothn&sss uniformly convex (smooth)
if and only if E* is uniformly smooth (convex). Recall that is said to have the modulus of
smoothness of power type > 1 (and E is said to bep-uniformly smooth) if there exists a
constant: > 0 such that

pe(T) <cr? for0 <71 < occ.

Remark 3.1. Itis known that all Hilbert spaces and Banach spatgg,, andiW? (1 < p < o0)
are uniformly smooth and

1
- 7P 1<p<?
p
pe(T) < ) (E =1L, 1l,orWp)
p; 2, p<2

thereforeF is ap-uniformly smooth Banach space with modulus of smoothness of power type
p < 1 andJ, will always represent the single-valued duality mapping.

Definition 3.1 ([4, [13]). Let £ be ap-uniformly smooth Banach space and {&&a nhonempty
closed convex subset &f. A mappingQq : £ — Q is said to be

(i) retraction onQ2 if QF, = Qq;
(i) nonexpansive retraction if it satisfies the inequality

1Qa(r) = QaW)ll < llz —yll, forallz,ye E;
(iif) sunny retraction if for allz € £ and for all—oco < t < o0
Qo(Qa(r) +t(z — Qa(r)) = Qalz).

The following characterization of a sunny nonexpansive retraction mapping can be found in
[4,13].

Lemma 3.2([4},[13]). Qq is sunny nonexpansive retraction if and only if forally € F,
(= Q% J(Qaz—y)) =0.

Lemma 3.3. Let £ be a real Banach space anfj : £ — 27", 1 < p < oo a duality mapping.
Then, for any given,y € E, we have

lz +yll” < lz|I” +p (y, ), forallj, € Jp(z +y).

Proof. From Propositiod 2|1, it follows thaf,,(x) = 9d¢(x) (subdifferential ofy), where
P(x) = p~tz||P. Also, it follows from the definition of the subdifferential gfthat

(@) =@ +y) 2 (z—(z+Y), ),
for all j, € J,(z + y). Substituting(x) by p~!{|z||?, we have
e +yll” < [[=]|” +p (y,jp), forallj, € Jy(z+y).
This completes the proof. OJ
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Theorem 3.4([9]). Let E be a Banach spacé) a nonempty closed convex subsefipfand
m: F — E. Thenforallz,y € E, we have

Qarm(z)(T) = m(z) + Qal(z — m(2)).

We mention the following characterization theorem for the solution of a generalized co-
complementarity problem which can be easily proved by using Lemma 3.2 and the argument of
[1, Theorem 8.1].

Theorem 3.5. Let £ be a realp-uniformly smooth Banach space aida closed convex cone
in £. Let F,G,T : E — CB(FE) be the multivalued mappings;,g : £ — E the two
single-valued mappings andl : £ x £ — E the nonlinear mapping. Lek : £ — 2 and
K(z) =m(z) + X for x € E. Then the following statements are equivalent:

() z € E,u € F(z), v € G(z) andz € T(x) are solutions of the Problem (2.1), i.e.,
g(x) € K(z)and
N(u,v) € (J(K(z) = g(x)))"
(i) z€ E,ue F(z),ve G(z)andz € T(x) andT > 0
g(.fl?) = QK(Z) [g(.ﬁl?) - TN(“?”)]'
Combining Theorerp 3]4 and 3.5, we have the following result.

Theorem 3.6. Let £/ be ap-uniformly smooth Banach space aida closed convex cone is.
Letm, g : E — E be the two single-valued mappinds,G,T : E — C'B(F) the multivalued
mappings andV : £ x E — E a nonlinear mapping. Then the following statements are
equivalent:

() x € E,u € F(z),v € G(z) andz € T(x) are solutions of the Problerh (2.1),
(i) x =2 —g(x) + m(z) + Qx|[g(x) — TN (u,v) — m(z)], for somer > 0.

The following inequality will be used in our main results.

Lemma 3.7. Let E be a real Banach space ang: £ — 25", 1 < p < oo a duality mapping.
Then, for any given, y € E, we have

(o= dle) — syt < 200 (L),

- <qu2 - ||y||2>
Py

Proof. The proof of the above inequalities are the generalized form of the proof of Theorem
[3.4, and hence will be omitted. O

where

4. ITERATIVE ALGORITHMS AND PERTINENT CONCEPTS

We now propose the following iterative algorithm for computing the approximate solution of
(GCCP).

Algorithm 4.1. Letg,m : E — E be the two single-valued mappinds,G, T : E — CB(E)
the multivalued mappings andl : £ x £ — E a nonlinear mapping.
For any givency € E, uyg € F(xg), vg € G(zo) andzy € T'(xy), let

T4 = To — g(xo) + m(Zo) +Qx [9(%) - TN(UO, Uo) - m(Zo)]
wherer > 0 is a constant.
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Sinceuy € F(z9) € CB(E), vy € G(zy) € CB(FE) andzy € T'(z9) € CB(FE), by Nadler’s
Theorem|[[20], there exists, € F(x1), v1 € G(x1) andz; € T'(x1) such that

[uo — wil| < (1+1)D(F(x0), F(z1)),
[vo — vl < (14 1) D(G(xo), G(x1)),
20 — 21]] < (1 +1)D(T' (o), T'(z1)),
)

whereD is a Hausdorff metric o0’ B(E
Let

Ty =1 — g(x1) + m(21) + Qx[g(x1) — TN (ur,v1) — m(z1)].
Sinceu, € F(z,) € CB(E), v, € G(z1) € CB(F) andz, € T(x;) € CB(FE), there exists
us € F(x39), v2 € G(x3) andz, € T'(x2) such that

lur — w2 < (14271 D(F (1), F(x2)),
lvr = vell < (1+27)D(G (1), G(x2)),
l21 = 22l < (1+ 27 D(T(21), T(x2))-
By induction, we can obtaifiz,, }, {u,}, {v,} and{z,} as
(4.1) Tt = Tn — 9(20) + m(z0) + Qx[9(2n) — TN (Un, vn) — m(20)].

tn € F(2); [t = tnia[| < (14 (14+1)7") D(F(20), F(2ni1)),

Un € G(@n); lon = vani|| £ L+ (L+1)7") D(G(2a), Gl@nt1)),

2 € T(x0); |20 = 2oni|l < (L4 (L+1)7") D(T(20), T(wnt1))
n > 0, wherer > 0 is a constant.

Y

These iteration processes have been extensively investigated by various authors for approx-
imating either the fixed point of nonlinear mappings or solutions of nonlinear equations in
Banach spaces or variational inequalities, variational inclusions, or complementarity problems
in Hilbert spaces.

Definition 4.1. A single valued mapping : £ — F is said to be
(i) p-strongly accretive if for all:, y € E there existgj, € J,(x — y) such that

(9(x) — 9(y), jp(x —y)) > &llz -yl

for some real constant € (0,1) andl < p < oo.
(ii) Lipschitz continuous if for any:, y € F, there exists constapt > 0, such that

l9(x) =9Il < Bllz —yl|.

Definition 4.2. A multivalued mapping” : E — C'B(E) is said to beD-Lipschitz continuous
if forany x,y € F,

D(F(z), F(y)) < pllz =yl
for u > 0 andD(-, -) is Hausdorff metric defined o6 B(E).
Definition 4.3. Let F' : F — C'B(FE) be a multivalued mapping. A nonlinear mapping:

E x E — E'is said to be relaxed accretive with respect to the first argument ofAinédphere
exists a constant > 0 such that

<N(un7 ) - N(un—h ')a ]p(xn - xn—1)> Z _O-/Hxn - xn—1||p;
and N is Lipschitz continuous with respect to the first argument if
IN(u,-) = N(y, )| < olle —yll, forz,yek
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whereo > 0 is a constant.

Similarly, we define the Lipschitz continuity o with respect to second argument.

5. MAIN RESULTS

In this section, we show that ¥ is ap-uniformly smooth Banach space, then the iterative
process converges strongly to the given problenj (2.1).

Theorem 5.1. Let E be ap-uniformly smooth real Banach space wigh(7) < cr? for some
c>0,0<7<ocandl < p < co. LetX be a closed convex cone bf Letm,g: F — E
be the two single-valued mappings,G, T : E — CB(F) the multivalued mappings. Let
K : E — 2F suchthatK (z) = m(z) + X forall z € E, z € T(x) and the following conditions
hold.

(i) g andm are Lipschitz continuous;
(ii) g is strongly accretive;
(i) F, G andT are D-Lipschitz continuous;
(iv) N is Lipschitz continuous with respect to the first as well as the second argument;
(v) N is p-relaxed accretive with respect to the first argument with mapging £ —
CB(E),
(Vi)
q + (1 + pat + pe2PtrrPaPyP)P 4 766 < 1
and
(5.1) = 2(1 — pr + 2% pa")YP L 2up.

Then for anyz, € E, uy € F(x0), vo € G(x) andz, € T'(zo) the sequences,, u,, v,
and z, generated by Algorithh 4.1, converge strongly to some E, u € F(x),
v € G(z) andz € T(x), which solve the problerh (2.1).

Proof. By the iterative scheme§ (4.1) and Definitjon| 3.1, we have
[
= (|20 — g(zn) + m(2n) + Qx[g(xn) — TN (un, vn) — m(2,)]
— Tyt + g(wn1) = m(2n-1) — Qx[9(Tn-1) — TN(Up_1,vn-1) — m(2,-1)]|]
< lzn — 2n1 — (9(2a) = g(@n-)) [l + [m(2n) — m(zn-1]]
+ 1@x[g(zn) = 7N (un, vp) — m(zn)]
— Qx[9(xn-1) = TN (Un-1,Vn-1) — m(zn-1)]||
< 2[zn — 2n = (9(2a) — glzn-))ll + 2[lm(zn) — m(zn-1)|l
+ |20 — Tp_1 — T(N (tn, v) — N(tn_1,0n-1))]|
< 2|2 = @1 — (9(zn) = g(@n-1))l + 2[lm(zn) — m(zn-1)||
(5.2) + |z — Xpe1 — T(N (U, vy) — N(Up_1,v,))]|
+ 7N (tn—1,0n) — N(tp_1,0,-1)]-
By Lemma7p-strongly accretive, Lipschitz continuity @fandj, € J,(z + y), we
have
|20 — 21— (9(zn) — g(zn—1))[|
< zn — 2 ||” + p{=(g9(zn) — g(zn-1)), jp>
< lwn = nall” = plg(@n) — g(zn-1), Jp(Tn — Tn1 — (9(20) — g(2n-1)))
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< lwn — 2 l|” = p(g(wn) — 9(Tn-1), Jp(Tn — Tn-1))
—p{9(zn) = 9(Tn-1); Jp(Tn — Ty — (9(zn) — 9(2n-1))) = Jp(Tn — Tn1))

4llg(n) — g(wnl)H)

< @, _"En—lnp_pk“Ll — 2 |[P + 2pdPpE ( d

2pdPedP||g(wy) — g(wn-1)|]?
dp
< |l@, — fn—1||p - pk||xn - xn—lllp + 22p+lcpﬁp”$n - In—1||p

(5.3) < (1—ph+ 2" pB) ||z, — wpoa|”.
By the Lipschitz continuity ofn and D-Lipschitz continuity off’, we have

< |wp — zpa|f — pk“In — TP+

Im(zn) = m(zn-1)ll < pllzn = zn|
< p(l+n7)D(T(xn), T(xp-1))
(5.4) < (L + 0 Yplle, — 2ol
Since F' is n-Lipschitz continuous( is £-Lipschitz continuous andV is Lipschitz contin-
uous with respect to the first and second arguments with positive constamd ¢ respec-
tively. Using a similar argument to that of Xiaolin He [23], we have for everyu,, € F(x,),

N(uy,v) = N(u,,,v). Onthe other hand,_, € F(x,_,), and from the definition of Hausdorff
metric and compactness 61z, ), there is au,, € F(x,)such that

HU;L — Un1|| < D(F(2y), F(7,-1)).

Hence
HN(umvn) - N(un—hvn)n = HN(u;zvvn) - N(un—lv Un)”
< olluy, — tn ||
<o(1+nYD(F(x,), F(z,_1))
(5.5) < o1+ 0 Yl =zl

Similarly, we get
(5.6) IV (-1, 0n) = N(tn-1, vn-)l| < 86(1 + 07" Jwn — @nca -
By using Lemma 3]7, the-relaxed accretive mapping arnd (5.5), we have
|2 = Zn-1 — T(N (tn, vn) — N(up—1,,)) "
< llzn — zn|l®
- PT<N(Um Un) - N(“n—la Un)v jp(xn — Tp—1 — T(N(Un, vn) - N(un—la Un)))>
S Hxn - -Tnlep - pT<N(un7 vn) - N(’“nfl; Un)v jp(xn - xn71)>
- p<T(N(un7 'Un) - N(un—la Un))a
Jp(Tn = Tna = T(N(tn, V) = N(tn-1,0n))) = Jp(¥n = Tn-1))

T4 N (tny vn) — N(tp—1,0,)]]
d
< |@n, — zp-a|]? + pat||z, — Tp1||P + 2p7Pc 4P| N (U, v5) — N (tp—1,vn)]|”

< |z — 2pa||P + prafl, — 2P + 2pdPpE

< ||zn — 2pa||P + patlla, — zna||P + prfe 22p+1(1 + nfl)papﬁpHﬂ?n — Zp |’

(5.7) < (1+par + pe2?™ (1 +n PPy ||z, — 201 ||
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Now from (5.2) —[(5.F7), we get
0 — 2n sl < 21— pk + 2% BP0, — 2+ 2ap(1+ 0 | — 20|

+ (14 par + pe2® (140 P rroln?) VP |a, — x|
T 706(1 + n Y| — ]

< [2(1 — pk + 2P 4 2pp(1 + 1Y)
+ (1 + par + pe2 (1 + n = Y)PrPaPpP) VP 4 76€(1 +nh))

< gn + (1 4 pat + pe2PtH(1 + n=H)PrPaPyP)L/P
T 706(1 + 1) — 2o

(5.8) < Opllzn — 2,
where
On = qn + (1 + pat + pc2* (1 + n_l)prapnp)l/p + 701 +n"h)
and
(5:9) gn = 2(1 = pk + 2 ' pBP) P - 20p (1 +07") .
Letting
(5.10) 0 = q+ (1 + par + pe2? T PaPyP) /P 4 75¢
and

q=2(1 — pk + 2> TpaPY/P 4 2pp.
We know tha®),, — 6 asn — oco. From condition[(5.1), it follows that < 1. Henced,, < 1,
for n sufficiently large. Consequently:,, } is a Cauchy sequence and this converges to some
x € E. By Algorithm[4.] and theD-Lipschitz continuity ofF, G andT’, it follows that

[ty — tp—1|| < (1 +n")D(F(x), F(2n-1))
<(1+ nil) nllzn — znall,

[vn — Vo]l € (1407 D(G(2), G(zp-1))
< (1+ nil) Ellzn — znal],

120 = Znall < (1 + 0" D(T (), T(2n-1))
<(1+ nil) pllen — xnall,

which means thafu, }, {v,} and{z,} are all Cauchy sequencesin Therefore there exist
w € FE,v € Fandz € F such thatu, — u, v, — vandz, — zasn — oo. Since
g,m, F,G,T, N andQx are all continuous, we have

v =x—g(x) +Qxlg(r) — TN(u,v) —m(z)].
Finally, we prove that. € F'(z). In fact, sincew,, € F(z,) and
ueF (x)

d(up, F(z)) < max {d(un,F(az)), sup d(T(x,), u)}

YEF (zn) ueF(z)

= D(F(zn), F(z)),

§max{ sup d(y, F(x)), sup d(F(xn),u)}
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We have

d(u, F(z)) < [lu— unl| + d(un, F(z))
< lu = unl| + D(F (), F(x))
< ||u — un|| + nl|zn, — z|| = 0 asn — oo,
which implies thati(u, F'(z)) = 0. SinceF'(z) € CB(FE), it follows thatu € F(x). Similarly,

we can prove thati(z) € CB(F) i.e.,v € G(z) andT(z) € CB(FE) i.e.,z € T(z). Hence by
Theorenj 3.6, we get the conclusion. O
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