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Abstract

If (Kf)(x) =
∫ x
0 k(x, y)f(y) dy, x > 0, is a Hardy-type operator defined on

the cone of monotone functions, then weight characterizations for which the
modular inequality

Q−1

(∫ ∞

0
Q[θ(Kf)]w

)
≤ P−1

(∫ ∞

0
P [Cf ]v

)
holds, are given for a large class of modular functions P,Q. Specifically, these
functions need not both be N -functions, and the class includes the case where
Q ◦ P−1 is concave. Our results generalize those in [7, 24], where the case
Q ◦ P−1 convex, with P,Q, N -function was studied. Applications involving the
Hardy averaging operator, its dual, the Hardy-Littlewood maximal function, and
the Hilbert transform are also given.
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Key words: Hardy-type operators, modular inequalities, weights, N -functions, char-

acterizations, Orlicz-Lorentz spaces.
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1. Introduction
An integral operatorK defined by

(Kf)(x) =

∫ x

0

k(x, y)f(y) dy, x > 0, f ≥ 0

is called aHardy type operator, if the kernelk satisfies

(i) k(x, y) > 0, x > y > 0, k is increasing inx and decreasing iny.(1.1)

(ii) k(x, y) ≤ D[k(x, z) + k(z, y)], 0 < y < z < x,

for some constantD > 0.

k(x, y) = 1; k(x, y) = φ(x − y), φ increasing,φ(a + b) ≤ D[φ(a) + φ(b)]
0 < a, b < ∞; andk(x, y) = ψ(y/x), ψ decreasing,ψ(ab) ≤ D[ψ(a) + ψ(b)]
0 < a, b < 1; are examples of kernels satisfying (1.1) and hence define Hardy-
type operators.

If k(x, y) has no monotonicity properties, satisfies (ii) and its reverse, thenk
is said to satisfy the Oinarov condition ([22]) and we writek(x, y) ≈ k(x, z) +
k(z, y), 0 < y < z < x.

In this paper we study Hardy-type operators (and its duals) defined on the
cone of monotone functions. Specifically, weight functionsθ, w, v are charac-
terized for which the modular inequality
(1.2)

Q−1

(∫ ∞

0

Q[θ(x)(Kf)(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
is satisfied for a large class of modular functionsP,Q, andf ≥ 0, monotone.
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For example, ifK = I, the identity operator and0 ≤ f↓, then the weights are
characterized for which (1.2) holds withP ,Q increasing andP weakly convex
(cf. Theorem3.1). For generalK, defined on0 ≤ f↓, weight characterizations
are given for which (1.2) holds withP an N -function, P , P̃ ∈ ∆2 andQ
weakly convex (cf. Theorem3.4). Specifically,Q◦P−1 may be concave. These
results together with the corresponding results whereK is defined on the cone
of increasing functions are new. The case0 < q < 1 < p for the generalK,
defined on0 ≤ f↑, was unknown until this paper.

If P (x) = xp, Q(x) = xq, 0 < p, q < ∞, θ(x) = 1, then our results reduce
to weighted Lebesgue space inequalities and in particular ifk(x, y) = 1, to the
weight characterizations of Ariño-Muckenhoupt [1] (p = q > 1w = v), Sawyer
[21] (1 < p, q < ∞) and Stepanov [23] (0 < q < p, p > 1). The general case
whereP andQ areN -functions, such thatP and its complementary functioñP
satisfy∆2 with Q ◦ P−1 convex (more preciselyP � Q) was studied by Sun
[24] with k(x, y) the convolution kernel.

To explain the scope of our results we require some definitions and known
facts.

A non-negative functionP onR+ is called anN -function if it has the form

(1.3) P (x) =

∫ x

0

p(t) dt, x > 0,

wherep is non-decreasing, right continuous on(0,∞), p(0+) = 0, p(∞) = ∞
andp(t) > 0 if t > 0. Clearly

lim
x→0+

P (x)

x
= lim

x→∞

x

P (x)
= 0.
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Given anN -functionP , then its complementary functioñP is defined byP̃ (y) =
supx>0{xy − P (x)} and

(1.4) t ≤ P−1(t)P̃−1(t) ≤ 2t, p(t/2)/2 ≤ P (t)/t ≤ p(t), t > 0

holds. It is easily seen that ifP is anN -function so isP̃ , and the complement
relation is symmetric.

If (X,µ) is aσ-finite measure space, then aµ-measurable functionf belongs
to theOrlicz-spaceLP (µ) if the Luxemburg norm

‖f‖P (µ) = inf

{
λ > 0 :

∫
X

P

(
|f(x)|
λ

)
dµ(x) ≤ 1

}
is finite. TheOrlicz normin LP (µ) is defined by

‖f‖′P (µ) = sup

{∣∣∣∣∫
X

fg dµ

∣∣∣∣ :

∫
X

P̃ (g)dµ ≤ 1

}
.

We note that the Luxemburg and Orlicz norm are equivalent and

(1.5) ‖f‖P (µ) ≤ 1 if and only if
∫

X

P (f)dµ ≤ 1.

Given anN -functionP , we always use the Luxemburg norm inLP (µ) and
define thatassociate spaceLP̃ (µ) of LP (µ) consists of thoseµ-measurableg, for
which the Orlicz norm

‖g‖P̃ (µ) = sup

{∣∣∣∣∫
X

fg dµ

∣∣∣∣ : ‖f‖P (µ) ≤ 1

}
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is finite.
A weight functionu (u 6≡ 0, u 6≡ ∞) is a non-negative measurable and

locally integrable function onR+, and if dµ(x) = u(x)dx, then we write
P (µ) = P (u). The standard duality principle in Orlicz spaces may be writ-
ten as

sup
0≤f

∫∞
0
fg

‖f‖P (u)

=
∥∥∥g
u

∥∥∥
P̃ (u)

, g ≥ 0.

For these and other facts see [13, 14, 20].

Definition 1.1.

a) An increasing functionP : R+ → R+ is said to satisfy∆2, (P ∈ ∆2), if
there is a constantC > 1, such thatP (2t) ≤ CP (t), t ≥ 0.

b) A strictly increasing functionQ : R+ → R+ is weakly convex,(Q ∈ ∆2),
if Q(0) = 0, Q(∞) = ∞ and2Q(t) ≤ Q(Mt), t ≥ 0, for some constant
M > 1.

c) ([16]) If P andQ are increasing, then we writeP � Q, if there is a
constantA > 0, such that

∑
j

Q ◦ P−1(aj) ≤ Q ◦ P−1

(
A
∑

j

aj

)

is satisfied for all non-negative sequences{aj}j∈Z.

A convex functionQ satisfyingQ(0) = 0, Q(∞) = ∞ is weakly convex
(with M = 2). However, the weakly convex functionQ(t) = tα, t ≥ 0,
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0 < α < 1, is not convex, andQ(t) = ln(1 + t), t ≥ 0 is not weakly convex.
Observe also that ifQ ◦ P−1 is convex, thenP � Q.

The main result of this paper (Theorem3.4) characterizes the weightsθ, w, v
for which (1.2) is satisfied for decreasingf ≥ 0 with P anN -function, P ,
P̃ ∈ ∆2 andQ weakly convex. This characterization is expressed in terms of
estimates involving covering sequences.

Definition 1.2. A strictly increasing positive sequence{xj}j∈Z is called a cov-
ering sequence if the sequence is of the form{xj}∞j=−∞ or of the form{xj}M

j=N ,
whereM and/orN is finite. In the latter case we definexN−1 = 0 and/or
xM+1 = ∞.

In some instances covering sequences satisfy
∫ xj

0
v = 2k, k ∈ Z, wherev is a

weight function. If2N <
∫∞

0
v < 2N+1 then in the case2N <

∫∞
0
v < 3 · 2N−1

we setxN = ∞ and the covering sequence is{xj}N−1
j=−∞. In the remaining

case we setxN+1 = ∞ and the covering sequence is{xj}N
j=−∞. Under these

conventions2k−1 ≤
∫ xj+1

xj
v ≤ 3 · 2k−1 for 0 < xj <∞.

The manuscript is divided into four sections. The next section contains the
weight characterization of a modular Hardy-type inequality for Young’s and
weakly convex functions by Qinsheng Lai [19]. As a consequence a corre-
sponding result for the dual operator follows. In addition, modular Hardy and
conjugate Hardy inequalities (Lemma2.3) are given. Section3, the main re-
sults, contain the weighted modular inequalities for the identity operator (The-
orem3.1) and Hardy-type operator (Theorem3.4) defined on decreasing func-
tions. Some special cases given there are needed in Section4 and seem to
be new even in the Lebesgue space case. In the last section results for the
Hardy operator on increasing functions are given. Moreover, the bounded-
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ness of the Hardy-Littlewood maximal function and the Hilbert transform in
weighted Orlicz-Lorentz spaces are characterized.

The notation is standard,R+ andR denote the non-negative real and real
numbers respectively, whileZ denotes the set of integers. The symbolχE

stands for the characteristic function of a setE. All functions are assumed
measurable andu, v, w, θ denote weight functions. Ifu is a weight function
u(E) =

∫
E
u(x) dx, U(x) =

∫ x

0
u andU∗(x) =

∫∞
x
u, (x > 0). Instead of non-

increasing, non-decreasing we shall say decreasing and increasing respectively,
otherwise we shall prefix it by “strictly”. Iff ≥ 0 is increasing (decreasing) we
shall write0 ≤ f ↑ (0 ≤ f ↓) and similarly for sequences. Expressions of the
form A ≈ B are interpreted to mean thatA/B are bounded above and below
by positive constants. Constants are (with the exception of those of Definition
1.1) denoted byB andC and they may have different values at different places.
Inequalities, such as (1.2), are interpreted to mean that if the right side is finite,
so is the left side and the inequality holds.

Other notations and concepts are introduced when needed.
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2. Preliminary Results
In order to prove weighted modular inequalities for Hardy type operators de-
fined on the cone of monotone functions, a number of results are required. The
first result (Theorem2.1) by Q. Lai [19] is a weight characterization of the
Hardy-type operator for which a weighted modular inequality is satisfied. This
theorem extends corresponding work of [3, 4, 18, 22, 24] to Young’s functions
P and weakly convex functionsQwithout the assumption thatQ◦P−1 (or more
preciselyP � Q) is convex.

Theorem 2.1.([19, Thm. 1]) SupposeK is a Hardy-type operator,P a Young’s
function andQ weakly convex. Letθ, w, ρ andv be weight functions, then the
modular inequality

Q−1

(∫ ∞

0

Q[θ(x)Kf(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cρ(x)f(x)]v(x) dx

)
is satisfied for allf ≥ 0, if and only if there are constantsB > 0, such that,

Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

B

∥∥∥∥k(xj, ·)χ(xj−1,xj)

εjvρ

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1/εj

)

and

Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)k(x, xj)

B

∥∥∥∥χ(xj−1,xj)

εjvρ

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1/εj

)

hold for all positive sequences{εj}j∈Z and all covering sequences{xj}j∈Z.
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A corresponding result for the conjugate Hardy-type operator

(K∗h)(x) =

∫ ∞

x

k(y, x)h(y) dy, x > 0, h ≥ 0,

wherek satisfies (1.1), also holds. In fact, writing̃k(x, y) = k( 1
y
, 1

x
) and¯̄h(y) =

h(1/y)/y2, then a change of variables shows that

(K∗h)(1/x) =

∫ x

0

k̃(x, y)¯̄h(y) dy ≡ (K ¯̄h)(x)

is a Hardy-type operator sincẽk(x, y) satisfies the same conditions ask(x, y).
Writing ḡ(x) = g(1/x) and¯̄g(x) = g(1/x)/x2 it follows that

Q−1

(∫ ∞

0

Q[θ(x)K∗h(x)]w(x) dx

)
= Q−1

(∫ ∞

0

Q[θ̄(x)K ¯̄h(x)] ¯̄w(x) dx

)
and

P−1

(∫ ∞

0

P [Cx2ρ̄(x)¯̄h(x)]¯̄v(x) dx

)
= P−1

(∫ ∞

0

P [Cρ(x)h(x)]v(x) dx

)
.

Also ∥∥∥∥∥ k̃(xj, ·)χ(xj−1,xj)

εj ρ̄v̄

∥∥∥∥∥
P̃ (εj

¯̄v)

=

∥∥∥∥∥∥∥∥
k(·, 1

xj

)χ(1/xj ,1/xj−1)

εjρv

∥∥∥∥∥∥∥∥
P̃ (εjv)
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and ∥∥∥∥χ(xj−1,xj)

εj ρ̄v̄

∥∥∥∥
P̃ (εj

¯̄v)

=

∥∥∥∥χ(1/xj ,1/xj−1)

εjρv

∥∥∥∥
P̃ (εjv)

.

Therefore, if1/xj = y−k, k ∈ Z, then{yj}j∈Z is also a covering sequence,
whenever{xj}j∈Z is. Thus, the following characterization follows from Theo-
rem2.1.

Proposition 2.2. If K∗ is the conjugate Hardy-type operator,P a Young’s func-
tion andQ weakly convex, then

Q−1

(∫ ∞

0

Q[θ(x)(K∗h)(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cρ(x)h(x)]v(x) dx

)
is satisfied for allh ≥ 0, if and only if there is a constantB > 0, such that

Q−1

(∑
j

∫ yj

yj−1

Q

[
θ(x)

B

∥∥∥∥k(·, yj)χ(yj ,yj+1
)

εjρv

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1/εj

)

and

Q−1

(∑
j

∫ yj

yj−1

Q

[
θ(x)k(yj, x)

B

∥∥∥∥χ(yj ,yj+1
)

εjρv

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1/εj

)

holds for all positive sequences{εj}j∈Z and all covering sequences{yj}j∈Z.

Note that ifQ is anN -function, thenQ is convex and in particular, weakly
convex. Hence Theorem2.1and Proposition2.2hold in this case.

The following result is required in the next section.
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Lemma 2.3. SupposeP and P̃ areN -functions,V (x) =
∫ x

0
v, V ∗(x) =

∫∞
x
v

andv is a weight function.

(i) If V (∞) = ∞, then there exists a constantC > 0, such that

(2.1)
∫ ∞

0

P

[
1

V (x)

∫ x

0

fv

]
v(x) dx ≤

∫ ∞

0

P [Cf(x)]v(x) dx,

is satisfied for allf ≥ 0 if and only ifP̃ ∈ ∆2, and

(2.2)
∫ ∞

0

P

[∫ ∞

x

fv

V

]
v(x) dx ≤

∫ ∞

0

P [Cf(x)]v(x) dx,

is satisfied for allf ≥ 0 if and only ifP ∈ ∆2.

(ii) If V ∗(0) = ∞, then

(2.3)
∫ ∞

0

P

[
1

V ∗(x)

∫ ∞

x

fv

]
v(x) dx ≤

∫ ∞

0

P [Cf(x)]v(x) dx,

is satisfied for allf ≥ 0 if and only ifP̃ ∈ ∆2, and

(2.4)
∫ ∞

0

P

[∫ x

0

fv

V ∗

]
v(x) dx ≤

∫ ∞

0

P [Cf(x)]v(x) dx,

is satisfied for allf ≥ 0 if and only ifP ∈ ∆2.

The conditionsV (∞) = ∞ andV ∗(0) = ∞ are only required in the neces-
sity part of the proof.
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Proof. First observe that if̄f(x) = f(1/x), ¯̄v(x) = v(1/x)/x2 then via obvi-
ous changes of variables, (2.3) reduces to (2.1) with f replaced byf̄ andv by
¯̄v. A similar change of variable shows that (2.4) reduces to (2.2). Note that
V ∗(1/t) =

∫ t

0
¯̄v. Therefore it suffices to prove only part (i) of Lemma2.3.

Next we observe that (2.1) is equivalent to

(2.5)
∫ ∞

0

P̃

[∫ ∞

x

fv

V

]
v(x) dx ≤

∫ ∞

0

P̃ [Cf(x)]v(x) dx.

To see this, recall that by [4, Prop. 2.5] (see also [11]) that (2.1) holds if and
only if for everyε > 0,

‖Tf‖P (εv) ≤ C‖f‖P (εv) where Tf(x) =
1

V (x)

∫ x

0

fv.

But by the standard duality principle in Orlicz spaces this is equivalent to∥∥∥∥T ∗gεv
∥∥∥∥

P̃ (εv)

≤ C
∥∥∥ g
εv

∥∥∥
P̃ (εv)

, where T ∗g(x) = v(x)

∫ ∞

x

g(t)

V (t)
dt

is the conjugate operator ofT . By homogeneity of the norm and again applying
[4, Prop. 2.5] it follows that this inequality is equivalent to∫ ∞

0

P̃

[
1

v(x)
(T ∗g)(x)

]
v(x) dx ≤

∫ ∞

0

P̃

[
Cg(x)

v(x)

]
v(x) dx,

which is (2.5) with g = fv. Hence we only need to show that (2.1) is satisfied,
if and only if P̃ ∈ ∆2.
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Let P̃ ∈ ∆2 and definef+(x) = f(x) if x ≥ 0 and zero otherwise,
v(|x|)dx = dµ(x), then

1

V (x)

∫ x

0

fv ≤ (Mµf
+)(x) := sup

x∈I

1

µ(I)

∫
I

f+dµ, I ∈ R.

ClearlyMµ is sublinear and of type(∞,∞), and weak type(1, 1), with respect
to dµ. Now the argument of [5, p. 149-150] shows that̃P ∈ ∆2 is sufficient for∫ ∞

0

P
(
Mµf

+(x)
)
dµ(x) ≤

∫ ∞

0

P (Cf(x)) dµ(x),

from which (2.1) follows.
To prove that (2.1) implies P̃ ∈ ∆2, it suffices (see [5, Prop. 3]) to prove

that there exists aδ > 0, such thatp(δx) ≤ 1/2 p(x), wherep(x) = P ′(x) with
p(0) = 0.

By Theorem2.1, with Q = P , k(x, y) = 1, θ = 1/V , ρ = 1/v, f replaced
by fv, xj = r > 0, xj−1 = 0 andxj+1 = ∞, (2.1) implies∫ ∞

r

P

[
1

B V (t)

∥∥∥χ(0,r)

ε

∥∥∥
P̃ (εv)

]
v(t) dt ≤ 1/ε

for all ε > 0 andr > 0. But by the definition of the Luxemburg norm and (1.4)
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with t = 1/(ε V (r))∥∥∥χ(0,r)

ε

∥∥∥
P̃ (εv)

=
1

ε
inf

{
λ > 0 :

∫ r

0

P̃

(
1

λ

)
εv(t) dt ≤ 1

}
=

1

εP̃−1
(

1
εV (r)

)
≥ V (r)

2
P−1

(
1

εV (r)

)
.

Hence (2.1) implies∫ ∞

r

P

[
V (r)

2BV (t)
P−1

(
1

εV (r)

)]
v(t) dt ≤ 1/ε.

If x = V (r)
2BV (t)

P−1
(

1
εV (r)

)
, this inequality is

∫ P−1( 1
εV (r)

)/(2B)

0

P (x)

x2
dx ≤ 2B

εV (r)P−1
(

1
εV (r)

) .
Writing

y = P−1

(
1

εV (r)

)
one obtains

(2.6)
∫ y/(2B)

0

P (x)

x2
dx ≤ 2B P (y)/y, y > 0.
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Then it follows from (1.4) that
∫ y/(4B)

0
p(x)

x
dx ≤ 4Bp(y). Now let0 < η < 1,

then on integrating by parts

4Bp(y) ≥
∫ y/(4B)

0

p(x)

x
dx

≥
∫ y/(4B)

0

log
( y

4Bt

)
dp(t)

≥
∫ ηy/(4B)

0

log
( y

4Bt

)
dp(t)

≥ log(1/η)p(ηy/(4B)).

Chooseη so thatlog(1/η) ≥ 8B andδ = η/(4B), thenp(δy) ≤ 1
2
p(y). This,

as was noted, implies by [5, Prop. 3] thatP̃ ∈ ∆2.
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3. Main Results
Our first result concerns the identity operator defined on monotone functions.

Theorem 3.1.SupposeP andQ are increasing andP is weakly convex. Then

(3.1) Q−1

(∫ ∞

0

Q[θ(x)f(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
holds for all0 ≤ f↓, if and only if there is a constantB > 0, such that,
(3.2)

Q−1

(∑
j

∫ xj+1

xj

Q
[εj

B
θ(x)

]
w(x) dx

)
≤ P−1

(∑
j

P (εj)

∫ xj+1

xj

v(x) dx

)

is satisfied for all non-negative decreasing sequences{εj}j∈Z and the covering
sequence
{xj}j∈Z such that

∫ xj

0
v = 2k, k ∈ Z.

Similarly, (3.1) holds for all0 ≤ f ↑, if and only if (3.2) is satisfied for all
non-negative increasing sequences{εj}j∈Z and the covering sequence{xj}j∈Z
satisfying

∫∞
xj

= 2−k.

Proof. We only prove the first part of the theorem since the argument for the
second part is similar.

Let {εj}j∈Z be any decreasing sequence, thenf(x) =
∑

j εjχ(xj ,xj+1)(x) is
decreasing and substitutingf into (3.1), (3.2) follows withB = C.
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Conversely if (3.2) holds then, since
∫ xj

0
v = 2k and 2P (x) ≤ P (Mx),

M > 1

Q−1

(∫ ∞

0

Q[θ(x)f(x)]w(x) dx

)
≤ Q−1

(∑
j

∫ xj+1

xj

Q[θ(x)f(xj)]w(x) dx

)

≤ P−1

(∑
j

P (Bf(xj))

∫ xj+1

xj

v

)

= P−1

(∑
j

2P (Bf(xj))

∫ xj

xj−1

v

)

≤ P−1

(∑
j

∫ xj

xj−1

P (MBf(x))v(x) dx

)

= P−1

(∫ ∞

0

P [MBf(x)]v(x) dx

)
.

This proves Theorem3.1.

If Q ◦ P−1 is convex, Theorem3.1has the following form:

Corollary 3.2. SupposeP andQ are increasing,P is weakly convex andP �
Q. Then (3.1) holds for all0 ≤ f↓, if and only if for allε > 0 andr > 0, there
is a constantB > 0, such that,

(3.3) Q−1

(∫ r

0

Q

[
θ(x)

B
P−1

(
ε∫ r

0
v

)]
w(x) dx

)
≤ P−1(ε).
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Similarly, (3.1) is satisfied for all0 ≤ f↑, if and only if

(3.4) Q−1

(∫ ∞

r

Q

[
θ(x)

B
P−1

(
ε∫∞

r
v

)]
w(x) dx

)
≤ P−1(ε)

is satisfied.

Proof. By Theorem3.1 is suffices to show that (3.2) with increasing (decreas-
ing) sequence{εj}j∈Z is equivalent to (3.3) (respectively (3.4)).

First fix j = k0 ∈ Z and letxj0 = r > 0. Then for fixedε > 0 defineεm =
P−1(ε/

∫ r

0
v), if m < k0 and zero otherwise. Clearly{εm}m∈Z is decreasing

and by (3.2)

Q−1

(∫ r

0

Q

[
θ(x)

B
P−1

(
ε∫ r

0
v

)]
w(x) dx

)
= Q−1

(∑
j<k0

∫ xj+1

xj

Q

[
θ(x)

B
P−1

(
ε∫ r

0
v

)]
w(x) dx

)

= Q−1

(∑
j<k0

∫ xj+1

xj

Q

[
θ(x)εj

B

]
w(x) dx

)

≤ P−1

(∑
j<k0

P

(
P−1

(
ε∫ r

0
v

))∫ xj+1

xj

v(x) dx

)
= P−1(ε).

To prove the converse, recall that sinceP is weakly convex, there is anM ≥ 1,
such that2P (x) ≤ P (Mx). Hence withy = P (Mx)

(3.5) P−1(y) ≤MP−1(y/2), y > 0.
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If {xj}j∈Z is a covering sequence satisfying
∫ xj

0
v = 2k and ηj > 0, to be

determined later, then by (3.5) and (3.3) with ε = ηj andr = xj+1,∫ xj+1

xj

Q

[
θ(x)

BM
P−1

(
ηj∫ xj+1

xj
v

)]
w(x) dx

≤
∫ xj+1

0

Q

[
θ(x)

B
P−1

(
ηj∫ xj+1

0
v

)]
w(x) dx ≤ Q ◦ P−1(ηj).

SinceP � Q, summing overk ∈ Z yields

∑
j

∫ xj+1

xj

Q

[
θ(x)

BM
P−1

(
ηj∫ xj+1

xj
v

)]
w(x) dx

≤
∑

j

Q ◦ P−1(ηj) ≤ Q ◦ P−1

(∑
j

Aηj

)
,

whereA is the constant arising from conditionP � Q (cf. Defn.1.1c) ). Now
chooseηj so that{ηj/2

k} is decreasing, henceεj = P−1(Aηj/
∫ xj+1

xj
v) defines

a decreasing sequence. Therefore

Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

MB
P−1

(
P (εj)

A

)]
w(x) dx

)
≤ P−1

(∑
j

P (εj)

∫ xj+1

xj

v

)
,

and applying (3.5) α-times so that2α/A ≥ 1, then

P−1

(
2P (εj)

2A

)
≥ 1

M
P−1

(
2

A
P (εj)

)
≥ · · · ≥ 1

Mα
εj
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and the result follows.
If 0 ≤ f↑, fix k0 ∈ Z such thatxj0 = r > 0 and define

εm = P−1(ε/

∫ ∞

r

v) if m ≥ k0 and zero otherwise.

Then{εm}m∈Z is increasing and the previous argument shows that (3.4) follows
from (3.2). Also if {xj}j∈Z is a covering sequence such that

∫∞
xj
v = 2−k and

ηj > 0, then by (3.5) and (3.4), since2
∫ xj+1

xj
v = 2−k,

∫ xj+1

xj

Q

[
θ(x)

MB
P−1

(
ηj∫ xj+1

xj
v

)]
w(x) dx

≤
∫ ∞

xj

Q

[
θ(x)

B
P−1

(
ηj∫∞
xj
v

)]
w(x) dx ≤ Q ◦ P−1(ηj).

Summing overk, and choosingηj so that{ ηj

2−k } is an increasing sequence, then
with

εj = P−1

(
Aηj∫ xj+1

xj
v

)
, k ∈ Z,

defines an increasing sequence, whereA is the constant arising from the condi-
tion P � Q. The inequality (3.2) now follows as before.

Corollary3.2was proved by J. Q. Sun [24, Lemma 3.1] in the case whenP
andQ areN -functions (hence convex). IfP (x) = xp,Q(x) = xq, 0 < p ≤ q <
∞, one obtains (withθ(x) = 1) the well known weight conditions ([21, 23])
which characterize (3.1). If 0 < q < p <∞ we have:
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Corollary 3.3. Let 0 < q < p < ∞ and1/r = 1/q − 1/p, then the following
are equivalent:

(3.6)

(∫ ∞

0

f qw

)1/q

≤ C

(∫ ∞

0

fpv

)1/p

is satisfied for all0 ≤ f↓.

(3.7)
∫ ∞

0

[W 1/pV −1/p]rw ≡ Br
0 <∞,

(3.8)
∑

j

[
w(Ej)

1/q(Ej)
−1/p

]r ≡ Br
1 <∞,

wherew(Ej) =
∫ xj+1

xj
w, v(Ej) =

∫ xj+1

xj
v and the covering sequence{xj}

satisfiesV (xj) = 2k.

(3.9)

[∑
j

εq
jw(Ej)

]1/q

≤ B

[∑
j

εp
jv(Ej)

]1/p

holds for all decreasing sequences{εj}j∈Z and covering sequences{xj} with
V (xj) = 2k. (Recall:W (t) =

∫ t

0
w, V (t) =

∫ t

0
v.)

If 0 ≤ f ↑ the above statement holds withW andV replaced byW ∗ and
V ∗, respectively, the covering sequence{xj} satisfiesV ∗(xj) = 2−k and{εj}
is taken to be increasing.
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Proof. We only prove the corollary in the case0 ≤ f↓ since the case0 ≤ f↑ is
proved, with obvious modifications, in the same way.

The equivalence of (3.6) and (3.9) follows at once from Theorem3.1 with
Q(x) = xq, P (x) = xp, θ(x) = 1. Since the equivalence of (3.6) and (3.7) was
proved in [21, 23], it remains to prove (3.7) ⇒ (3.8) ⇒ (3.9).

Sincer/q = r/p+ 1 andw(Ej) =
∫ xj+1

xj
w, it follows that

w(Ej)
r/q =

r

q

∫ xj+1

xj

(∫ t

xj

w

)
w(t) dt

≤ r

q

∫ xj+1

xj

W (t)r/pw(t) dt

on integrating. Sincev(Ej) = 2k = V (xj) it follows therefore that∑
j

[w(Ej)
1/qv(Ej)

−1/p]r ≤ r

q

∑
j

∫ xj+1

xj

2−rk/pW (t)r/pv(t) dt

≤ r2r/p

q

∑
j

∫ xj+1

xj

V (t)−r/pW (t)r/pw(t) dt

=
r2r/p

q
Br

0.

Hence (3.7) ⇒ (3.8).
Since the dual of the sequence space`p/q is `r/q, it follows that
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∑
j[w(Ej)v(Ej)

−q/p]r/q = Br
1 <∞ implies

∑
j

ηjw(Ej)v(Ej)
−q/p ≤ Bq

1

(∑
j

η
p/q
j

)q/p

for any positive sequence{ηj} in `p/q. Now choose{ηj} so thatη1/q
j = εjv(Ej)

1/p =

εj2
k/p with {εj}j∈Z decreasing. Thus (3.8)⇒ (3.9), which completes the proof.

Note that if0 < q < p = 1, then withq = α
α+1

, α > 0, r = α and one shows
that

B1

2(1 + α)1/α
≤ B0 ≤ 2(1 + α)1/αB1.

Here of course

B0 =

(∫ ∞

0

WαV −αw

)1/α

and B1 =

(∑
j

w(Ej)
α+1v(Ej)

−α

)1/α

.

We now give the main result of this section.

Theorem 3.4. SupposeP is anN -function,P and P̃ satisfy the∆2 condition
andQ weakly convex. IfK is a Hardy-type operator defined on the cone of
decreasing functions, then

(3.10) Q−1

(∫ ∞

0

Q[θ(x)Kf(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
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is satisfied, if and only if there is a constantB > 0, such that for all positive
sequences{εj}j∈Z and all covering sequences{xj}j∈Z with i(x) = x
(3.11)

Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

B

∥∥∥∥k(xj, ·)χ(xj−1,xj)i

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)

(3.12)

Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)k(x, xj)

B

∥∥∥∥χ(xj−1,xj)i

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)

(3.13)

Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

B

∥∥∥∥(K1)χ(xj−1,xj)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)

are satisfied, and for all positive decreasing sequences{εj}j∈Z and the covering
sequence{xj}j∈Z satisfying

∫ xj

0
v = 2k

(3.14)

Q−1

(∑
j

∫ xj+1

xj

Q

[
εjθ(x)(K1)(x)

B

]
w(x) dx

)
≤ P−1

(∑
j

P (εj)

∫ xj+1

xj

v

)

is satisfied.

Proof. (Sufficiency.) The idea comes from [23]. We may assume thatf has
the formf(x) =

∫∞
x
h, h > 0, for once the result has been proved for such
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f , a limiting argument (see e.g. [24]) gives the general case. Clearly since
(K1)(x) =

∫ x

0
k(x, y) dy

(Kf)(x) =

∫ x

0

k(x, y)

∫ ∞

y

h(t) dtdy

= (K1)(x)f(x) +

∫ x

0

h(t)

(∫ t

0

k(x, y) dy

)
dt.

But since

1

V (t)
− 1

V (x)
=

∫ x

t

V (y)−2v(y) dy and
∫ x

0

h(s)V (s) ds ≤
∫ x

0

f(t)v(t) dt,

it follows again on interchanging the order of integration that∫ x

0

h(t)

∫ t

0

k(x, y) dydt

=

∫ x

0

∫ t

0

k(x, y)h(t)V (t)

[
1

V (x)
+

∫ x

t

V (s)−2v(s) ds

]
dydt

=
1

V (x)

∫ x

0

k(x, y)

∫ x

y

h(t)V (t) dtdy

+

∫ x

0

V (s)−2v(s)

∫ s

0

h(t)V (t)

(∫ t

0

k(x, y) dy

)
dtds

≤ 1

V (x)

∫ x

0

k(x, y)

∫ x

0

f(t)v(t) dtdy

+

∫ x

0

V (s)−2v(s)

(∫ s

0

k(x, y) dy

)∫ s

0

f(t)v(t) dtds
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≤ (K1)(x)
1

V (x)

∫ x

0

f(t)v(t) dt+ I(x)

(by definition ofI(x)) respectively.

Now sincek(x, y) ≤ D[k(x, s) + k(s, y)], y < s < x,

I(x) ≤ D

[∫ x

0

k(x, s)V (s)−2v(s)s

∫ s

0

f(t)v(t) dtds

+

∫ x

0

V (s)−2v(s)

(∫ s

0

f(t)v(t) dt

)
(K1)(s) ds

]
and writing

F (s) = V (s)−2v(s)s

∫ s

0

fv,

one obtains

(Kf)(x) ≤ (K1)(x)f(x) + (K1)(x)
1

V (x)

∫ x

0

f(t)v(t) dt

+D

∫ x

0

k(x, s)F (s) ds+D

∫ x

0

(K1)(s)

s
F (s) ds

≡ (I1 + I2 + I3 + I4)(x),

respectively. Now

θ(x)(Kf)(x) ≤ θ(x)
4∑

i=1

Ii(x) ≤ 4θ(x) max
s=1,2,3,4

Is(x) = 4θ(x)Is(x)(x),
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wheres(x) ∈ {1, 2, 3, 4}, and sinceQ is increasing and satisfies2Q(x) ≤
Q(Mx),M > 1, we have

Q[θ(x)(Kf)(x)] ≤ Q[4θ(x)Is(x)(x)]

≤
4∑

s=1

Q[4θ(x)Is(x)]

≤
4∑

i=1

1

4
Q[4M2θ(x)Is(x)].

Integration yields∫ ∞

0

Q[θ(x)(Kf)(x)]w(x) dx ≤
4∑

s=1

1

4

∫ ∞

0

Q[4M2θ(x)Is(x)]w(x) dx

and therefore it suffices to prove that

(3.15)
∫ ∞

0

Q[4M2θ(x)Is(x)]w(x) dx ≤ Q ◦ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
s = 1, 2, 3, 4 is satisfied.

SinceI1(x) = (K1)(x)f(x), then by Theorem3.1with θ replaced byθ(x)(K1)(x),
(3.15) holds if and only if (3.14) is satisfied.

Next, since0 ≤ f↓ so is 1
V (x)

∫ x

0
fv, and sinceI2(x) = (K1)(x) 1

V (x)

∫ x

0
fv,

Theorem3.1shows (withθ replaced byθ(x)(K1)(x)) that (3.14) is equivalent
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to∫ ∞

0

Q[4M2θ(x)I2(x)]w(x) dx ≤ Q ◦ P−1

(∫ ∞

0

P

[
C

1

V (x)

∫ x

0

fv

]
v(x) dx

)
≤ Q ◦ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
.

Here the last inequality follows from (2.1) of Lemma2.3.
Next,I3(x) = D(KF )(x), so that by Theorem2.1with ρ(x) = V (x)/(xv(x))∫ ∞

0

Q[4M2θ(x)I3(x)]w(x) ≤ Q ◦ P−1

(∫ ∞

0

P

[
C

1

V (x)

∫ x

0

fv

]
v(x) dx

)
≤ Q ◦ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
.

Here the first inequality holds if (3.11) and (3.12) are satisfied and the second
follows from (2.1) of Lemma2.3.

SinceI4(x) = D
∫ x

0
(K1)(s) F (s)

s
ds we apply Theorem2.1with k(x, y) = 1

andρ(x) = V (x)/(v(x)(K1)(x)), so that∫ ∞

0

Q[4M2θ(x)I4(x)]w(x) dx ≤ Q ◦ P−1

(∫ ∞

0

P

[
C

1

V (x)

∫ x

0

fv

]
v(x) dx

)
≤ Q ◦ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
is satisfied if and only if (3.13) holds. The last inequality follows of course
again from (2.1) of Lemma2.3.
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(Necessity.) Since0 ≤ f↓, (Kf)(x) ≥ (K1)(x)f(x) so that (3.10) implies
(3.1) with θ replaced byθ(x)(K1)(x). Now Theorem3.1 applies ifP is an
N -function andQ weakly convex and so (3.14) follows.

To prove that (3.10) implies (3.11) observe first that for fixedk,

(3.16)

∥∥∥∥ik(xj, ·)χ(xj−1,xj)

εjV

∥∥∥∥
P̃ (εjv)

is bounded. If this is not the case, then there is a sequence{fn} of non-negative
functions satisfying‖Cfn‖P (εjv) ≤ 1, with C the constant of (3.10), and a
sequence{αn} with αn →∞, n→∞, such that (by definition of Orlicz norm)
for eachn

αn < C

∫ xj

xj−1

xk(xj, x)fn(x)v(x)

V (x)
dx

≤ C

∫ xj

0

k(xj, x)fn(x)v(x)

V (x)

(∫ x

0

dy

)
dx

= C

∫ xj

0

∫ xj

y

k(xj, x)fn(x)v(x)

V (x)
dxdy

≤ C

∫ xj

0

k(xj, y)Fn(y) dy,

sincek(xj, ·) is decreasing. HereFn(y) =
∫∞

y
fn(x)v(x)

V (x)
dx. But since∫ ∞

0

P [Cfn(x)]εjv(x) dx ≤ 1,
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(2.2) of Lemma2.3and (3.10) show that

P−1

(
1

εj

)
≥ P−1

(∫ ∞

0

P [Cfn(x)]v(x) dx

)
≥ P−1

(∫ ∞

0

P

[
C

C1

Fn(x)

]
v(x) dx

)
≥ Q−1

(∫ ∞

0

Q

[
θ(x)

C1

(KFn)(x)

]
w(x) dx

)
≥ Q−1

(∫ xj+1

xj

Q

[
θ(x)

C1

∫ xj

0

k(xj, y)Fn(y) dy

]
w(x) dx

)

> Q−1

(∫ xj+1

xj

Q

[
θ(x)αn

C C1

]
w(x) dx

)
,

whereC1 is the constant of (2.2). But this is a contradiction sinceαn → ∞.
Hence (3.16) is bounded.

Now suppose (3.11) fails to be satisfied. Then for anyB > 0 there exists a
covering sequence{xj}j∈Z and a positive sequence{εj}j∈Z such that

P−1

(∑
j

1

εj

)
< Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

2BC1

∥∥∥∥k(xj, ·)χ(xj−1,xj)i

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
whereC1 is taken to be the constant of (2.2). Now for k ∈ Z, choosefj ≥ 0,
such that suppfj ⊂ (xj−1, xj) with

(3.17)
∫ ∞

0

P [BC1fj(x)]εjv(x) dx ≤ 1
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and

1

2BC1

∥∥∥∥k(xj, ·)χ(xj−1,xj)i

εjV

∥∥∥∥
P̃ (εjv)

≤
∫ xj

xj−1

xk(xj, x)fj(x)v(x)

V (x)
dx

≤
∫ xj

0

k(xj, y)Fj(y) dy,

where

Fj(y) =

∫ ∞

y

fj(x)v(x)

V (x)
dx.

Let f(x) =
∑

j fj(x) andF (x) =
∫∞

x
f(t)v(t)

V (t)
dt, then by (2.2) of Lemma

2.3, (3.17) and our assumption

P−1

(∫ ∞

0

P [BF (x)]v(x) dx

)
≤ P−1

(∫ ∞

0

P [BC1f(x)]v(x) dx

)
= P−1

(∑
j

∫ xj

xj−1

P [BC1fj(x)]v(x) dx

)

≤ P−1

(∑
j

1

εj

)

< Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

2BC1

∥∥∥∥k(xj, ·)χ(xj−1,xj)i

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
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≤ Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

∫ xj

0

k(xj, y)Fj(y) dy

]
w(x) dx

)

≤ Q−1

(∫ ∞

0

Q [θ(x)(KF )(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [CF (x)]v(x) dx

)
,

where the last inequality is (3.10). But this is impossible forB > C and hence
(3.11) must be satisfied.

To show that (3.12) and (3.13) are satisfied one proceeds as before. First one
shows that both∥∥∥∥χ(xj−1,xj)i

εjV

∥∥∥∥
P̃ (εjv)

and

∥∥∥∥(K1)χ(xj−1,xj)

εjV

∥∥∥∥
P̃ (εjv)

are bounded for fixedk. Then withf(x) andF (x) defined as above one has∫ xj

xj−1

x fj(x)v(x)

V (x)
dx ≤

∫ xj

0

∫ ∞

y

fj(x)v(x)

V (x)
dxdy

and for (3.13)∫ xj

xj−1

(K1)(x)fj(x)v(x)

V (x)
dx ≤

∫ xj

0

(∫ x

0

k(x, y) dy

)
fj(x)v(x)

V (x)
dx

≤
∫ xj

0

k(xj, y)

∫ ∞

y

fj(x)v(x)

V (x)
dxdy.

http://jipam.vu.edu.au/
mailto:heinig@mcmail.cis.mcmaster.ca
mailto:jlai@comnetix.com
http://jipam.vu.edu.au/


Weighted modular inequalities
for Hardy-type operators on

monotone functions

Hans P. Heinig and Qinsheng Lai

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 34 of 51

J. Ineq. Pure and Appl. Math. 1(1) Art. 10, 2000

http://jipam.vu.edu.au

Inequality (3.12) is then obtained as (3.11) was shown to hold. To prove (3.13)
assume to the contrary that (3.13) fails. Then for anyB > 0, we have

P−1

(∫ ∞

0

P [BF (x)]v(x) dx

)
≤ P−1

(∫ ∞

0

P [BC1f(x)]v(x) dx

)
≤ P−1

(∑
j

1

εj

)

< Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

2BC1

∥∥∥∥(K1)χ(xj−1,xj)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)

≤ Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

∫ xj

0

k(x, y)

∫ ∞

y

fj(t)v(t)

V (t)
dtdy

]
w(x) dx

)

≤ Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

∫ xj

0

k(x, y)F (y) dy

]
w(x) dx

)

≤ Q−1

(∫ ∞

0

Q [θ(x)(KF )(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [CF (x)]v(x) dx

)
from which the contradiction follows forB > C. This proves Theorem3.4.

If k(x, y) = 1, θ(x) = xa, −1 ≤ a < ∞, the conditions (3.11), (3.12),
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(3.13) coincide and since(K1)(x) = x we get the following corollary.

Corollary 3.5. LetP andQ be as in Theorem3.4anda ≥ −1. Then

Q−1

(∫ ∞

0

Q

[
xa

∫ x

0

f

]
w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
is satisfied for all0 ≤ f ↓, if and only if for all decreasing sequences{εj}j∈Z
and the covering sequence{xj} satisfying

∫ xj

0
v = 2k,

(3.18) Q−1

(∑
j

∫ xj+1

xj

Q
[εj

B
xa+1

]
w(x) dx

)
≤ P−1

(∑
j

P (εj)

∫ xj+1

xj

v

)

holds, and
(3.19)

Q−1

(∑
j

∫ xj+1

xj

Q

[
xa

B

∥∥∥∥iχ(xj−1,xj)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)

is satisfied for all positive sequences{εj} and all covering sequences{xj}.

If Q is also anN -function, then a result corresponding to Corollary3.5holds
also for the dual operator.

Corollary 3.6. LetP andQ beN -functions andP , P̃ ∈ ∆2. If a ≥ −1 then
(3.20)

Q−1

(∫ ∞

0

Q

[∫ ∞

x

taf(t) dt

]
w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
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is satisfied for all0 ≤ f↓, if and only if
(3.21)

Q−1

(∑
j

∫ yj

yj−1

Q

[
1

B

∥∥∥∥k(·, yj)χ(yj ,yj+1)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)
and
(3.22)

Q−1

(∑
j

∫ yj

yj−1

Q

[
k(yj, x)

B

∥∥∥∥χ(yj ,yj+1)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)

holds for all positive sequences{εj}j∈Z and all covering sequences{yj}j∈Z.
Here

k(y, x) =

{
ln(y/x) if a = −1,
ya+1 − xa+1 if a > −1.

Proof. By [7, Thm. 2.2], (3.20) is equivalent to

Q−1

(∫ ∞

0

Q

[∫ ∞

x

ta
∫ ∞

t

h(s) dsdt

]
w(x) dx

)
≤ P−1

(∫ ∞

0

P

[
C
V (x)h(x)

v(x)

]
v(x) dx

)
,

h ≥ 0. However, since∫ ∞

x

ta
∫ ∞

t

h(s) dsdt =

∫ ∞

x

k(y, x)h(y) dy,

the result follows from Proposition2.2with θ(x) = 1, ρ(x) = V (x)/v(x).
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Remark3.1.

(i) Let P (x) = xp, Q(x) = xq, 0 < q < p < ∞, p > 1 anda = −1 then
(3.18) is (∑

j

εq
jw(Ej)

)1/q

≤ C

(∑
j

εp
jv(Ej)

)1/p

,

wherew(Ej) =
∫ xj+1

xj
w andv(Ej) =

∫ xj+1

xj
v. But by Corollary3.3this is

equivalent to ∫ ∞

0

[W 1/pV −1/p]rw <∞,
1

r
=

1

q
− 1

p
.

Also, if ηj = ε
−q/p
j then (3.19) takes the form

∑
j

ηj

(∫ xj+1

xj

x−qw(x) dx

)(∫ xj

xj−1

tp
′
V (t)−p′v(t) dt

)q/p′

≤ C

(∑
j

η
p/q
j

)q/p

.

But the dual space of̀p/q is `r/q, where1
r

= 1
q
− 1

p
and hence (3.19) is in

this case∑
j

(∫ xj+1

xj

x−qw(x) dx

)r/q(∫ xj

xj−1

tp
′
V (t)−p′v(t) dt

)r/p′


1/r

≤ C.

(Cf. [21, Thm. 2], where this was proved in case1 < q < p <∞ and [23]
in the remaining case.)
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(ii) Considering Corollary3.6 in the caseP (x) = xp, Q(x) = xq, 1 < q <
p <∞, a = −1 we see that (3.21) takes the form

∑
j

ηj

(∫ yj

yj−1

w

)(∫ yj+1

yj

lnp′(t/yj)V (t)−p′v(t) dt

)q/p′

≤ C

(∑
j

η
p/q
j

)q/p

,

where againηj = ε
−q/p
j . But again sincèr/q is the dual of̀ p/q it follows

that in this case (3.21) is equivalent to∑
j

(∫ yj

yj−1

w

)r/q(∫ yj+1

yj

lnp′(t/yj)V (t)−p′v(t) dt

)r/p′


1/r

≤ C,

where1
r

= 1
q
− 1

p
. Similarly, (3.22) takes the form∑

j

(∫ yj

yj−1

lnq(yj/x)w(x) dx

)r/q(∫ yj+1

yj

V (t)−p′v(t) dt

)r/p′


1/r

≤ C,

1
r

= 1
q
− 1

p
, for all covering sequences{yj}j∈Z.

Hence these two conditions are necessary and sufficient for the inequality(∫ ∞

0

w(x)

(∫ ∞

x

f(t)

t
dt

)q

dx

)1/q

≤ C

(∫ ∞

0

f(x)pv(x) dx

)1/p

to be satisfied for all0 ≤ f↓.

http://jipam.vu.edu.au/
mailto:heinig@mcmail.cis.mcmaster.ca
mailto:jlai@comnetix.com
http://jipam.vu.edu.au/


Weighted modular inequalities
for Hardy-type operators on

monotone functions

Hans P. Heinig and Qinsheng Lai

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 39 of 51

J. Ineq. Pure and Appl. Math. 1(1) Art. 10, 2000

http://jipam.vu.edu.au

4. Hardy-type operators on increasing functions
In order to obtain weight characterizations for which modular inequalities for
the Hardy-type operator

(Kf)(x) =

∫ x

0

k(x, y)f(y) dy, 0 ≤ f↑

are satisfied, we require also that the kernelk̄ defined by

(4.1) k̄(x, y) =

∫ x

y

k(x, t) dt

satisfies also conditions (i) and (ii) of (1.1). That is,

(4.2) k̄(x, y) ≤ D[k̄(x, z) + k̄(z, y)], 0 < y < z < x.

Note that ifk(x, t) = (x − t)α, α ≥ 0 then k̄ satisfies (4.2). On the other
hand ifk(x, t) = ln(x/t) thenk̄ does not satisfy (4.2) for anyD ≥ 1.

The principal result for Hardy-type operators defined on the cone of increas-
ing functions is the following:

Theorem 4.1. SupposeK is a Hardy-type operator and̄k defined by (4.1) sat-
isfies (4.2). Let P be anN -function withP , P̃ ∈ ∆2 andQ weakly convex.
Then the modular inequality
(4.3)

Q−1

(∫ ∞

0

Q[θ(x)(Kf)(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
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is satisfied for all0 ≤ f↑, if and only if there is a constantB > 0, such that,
(4.4)

Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

B

∥∥∥∥ k̄(xj, ·)χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)

and
(4.5)

Q−1

(∑
j

∫ xj+1

xj

Q

[
k̄(x, xj)θ(x)

B

∥∥∥∥χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)

holds for all positive sequences{εj}j∈Z and all covering sequences{xj}j∈Z.
Here againV ∗(x) =

∫∞
x
v with V ∗(0) = ∞.

Proof. Without loss of generality we may assume thatf has the formf(x) =∫ x

0
h, h ≥ 0 (cf. [24, Lemma 3.2]). SinceV ∗(x)−1 =

∫ x

0
V ∗(t)−2v(t) dt, chang-

ing the order of integration we show that

(Kf)(x) =

∫ x

0

k(x, y)

∫ y

0

h(s) dsdy

=

∫ x

0

h(s)k̄(x, s)
V ∗(s)

V ∗(s)
ds

=

∫ x

0

h(s)k̄(x, s)V ∗(s)

∫ s

0

V ∗(t)−2v(t) dtds

≤
∫ x

0

V ∗(t)−2v(t)k̄(x, t)

∫ x

t

h(s)V ∗(s) dsdt
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≤
∫ x

0

V ∗(t)−2v(t)k̄(x, t)

∫ ∞

t

v(y)f(y) dydt.

Hence ifF (t) = V ∗(t)−2v(t)
∫∞

t
fv, thenKf(x) ≤

∫ x

0
k̄(x, t)F (t) dt and by

Theorem2.1with ρ(x) = V ∗(x)/v(x)∫ ∞

0

Q[θ(x)(Kf)(x)]w(x) dx ≤
∫ ∞

0

Q

[
θ(x)

∫ x

0

k̄(x, t)F (t) dt

]
w(x) dx

≤ Q ◦ P−1

(∫ ∞

0

P

[
C

V ∗(x)

∫ ∞

x

vf

]
v(x) dx

)
if and only if (4.4) and (4.5) are satisfied. Now (4.3) follows from (2.3) of
Lemma2.3.

To prove necessity one proves first that for fixedk∥∥∥∥ k̄(xj, ·)χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

is bounded. But this is proved (via contradiction) in the same way as the bound-
edness of (3.16) in the proof of Theorem3.4, only nowk andV are replaced by
k̄ andV ∗, respectively. To prove that (4.4) is satisfied assume to the contrary
that for everyB > 0 there exist{xj} and{εj} such that

Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

2BC1

∥∥∥∥ k̄(xj, ·)χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
> P−1

(∑
j

1

εj

)
.
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By duality of Orlicz spaces there existsfj ≥ 0 such that suppfj ⊂ (xj−1, xj),∫∞
0
P [BC1fj]εjv ≤ 1 and

1

2BC1

∥∥∥∥ k̄(xj, ·)χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

<

∫ xj

xj−1

k̄(xj, x)fj(x)v(x)

V ∗(x)
dx.

Now letf =
∑
fj andF (x) =

∫ x

0
fv
V ∗ , soF↑. Also∫ xj

xj−1

k̄(xj, x)fj(x)v(x)

V ∗(x)
dx ≤

∫ xj

0

fj(x)v(x)

V ∗(x)

∫ xj

x

k(xj, s) dsdx

=

∫ xj

0

k(xj, s)

∫ s

0

fj(x)v(x)

V ∗(x)
dxds

≤
∫ xj

0

k(xj, s)F (s) ds

and therefore by (2.4) of Lemma2.3

P−1

(∫ ∞

0

P [BF (x)]v(x) dx

)
≤ P−1

(∫ ∞

0

P [BCf(x)]v(x) dx

)
≤ P−1

(∑
j

1

εj

)

< Q−1

(∑
j

∫ xj+1

xj

Q

[
θ(x)

2BC1

∥∥∥∥ k̄(xj, ·)χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
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≤ Q−1

(∑
j

∫ xj+1

xj

Q[θ(x)

∫ xj

0

k(xj, s)F (s) ds]w(x) dx

)

≤ Q−1

(∫ ∞

0

Q[θ(x)(KF )(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [CF (x)]v(x) dx

)
.

Here the last inequality is (4.3). But this is a contradiction forB > C. Hence
(4.4) is satisfied.

The proof of (4.5) is similar, only nowfj is chosen so that

1

2C1

∥∥∥∥χ(xj−1,xj)

εjV ∗

∥∥∥∥
P̃ (εjv)

<

∫ xj

xj−1

fj(y)v(y)

V ∗(y)
dy

and

k̄(x, xj)

∫ xj

0

fj(y)v(y)

V ∗(y)
dy ≤

∫ xj

0

k̄(x, y)
fj(y)v(y)

V ∗(y)
dy

≤
∫ x

0

k̄(x, y)
fj(y)v(y)

V ∗(y)
dy

=

∫ x

0

k(x, s)

∫ s

0

fj(y)v(y)

V ∗(y)
dyds,

x ∈ (xj, xj+1). We omit the details. This proves the theorem.
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Remark4.1. (i) If V ∗(0) < ∞, Theorem4.1 still holds, provided that in ad-
dition to (4.4) and (4.5) the weight condition
(4.6)

Q−1

(∫ ∞

0

Q

[
1

B
P−1

(
1

εV ∗(0)

)
θ(x)k̄(x, 0)

]
w(x) dx

)
≤ P−1

(
1

ε

)
is also satisfied for allε > 0.

(ii) If Q is anN -function and hence convex, the result may also be proved via
the duality principle given in [7, Thm. 2.2].

A consequence of Theorem4.1 is the following:

Corollary 4.2.

(i) ([10, Thm. 2.1]) If1 < p ≤ q <∞, then

(4.7)

(∫ ∞

0

(
1

x

∫ x

0

f

)q

w(x) dx

)1/q

≤ C

(∫ ∞

0

fpv

)1/p

is satisfied for all0 ≤ f↑, if and only if, for allt > 0(∫ ∞

t

(x− t)qx−qw(x) dx

)1/q

V ∗(t)−1/p

and (∫ ∞

t

x−qw(x) dx

)1/q (∫ t

0

(t− x)p′V ∗(x)−p′v(x) dx

)1/p′

are bounded.
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(ii) If 0 < q < p < ∞, p > 1 then (4.7) is satisfied for all0 ≤ f↑ if and only
if for all covering sequences{xj}
(4.8)∑

j

(∫ xj+1

xj

x−qw(x) dx

)r/q(∫ xj

xj−1

(xj − x)p′V ∗(x)−p′v(x) dx

)r/p′
1/r

≤ C

and∑
j

(∫ xj+1

xj

(x− xj)
qx−qw(x) dx

)r/q(∫ xj

xj−1

V ∗(x)−p′v(x) dx

)r/p′
1/r

≤ C

1
r

= 1
q
− 1

p
, are satisfied.

(If V ∗(0) <∞ the condition (4.6) must also be taken into account.)

Proof. Let Q(x) = xq, P (x) = xp, 1 < p ≤ q < ∞, θ(x) = 1
x
, k(x, y) = 1

in Theorem4.1. SinceP � Q we may take in Theorem4.1 xj = t > 0,
xj−1 = 0, xj+1 = ∞ and the result (i) follows. If0 < q < p <∞, p > 1, then
Q is weakly convex and by Theorem4.1, (4.7) is satisfied for all0 ≤ f↑, if and
only if for all covering sequences{xj}∑

j

ηj

(∫ xj+1

xj

x−qw(x) dx

)(∫ xj

xj−1

(xj − x)p′V ∗(x)−p′v(x) dx

)q/p′


≤ C1

(∑
j

η
p/q
j

)q/p
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and∑
j

ηj

(∫ xj+1

xj

(x− xj)
qxqw(x) dx

)(∫ xj

xj−1

V ∗(x)−p′v(x) dx

)q/p′


≤ C2

(∑
j

η
p/q
j

)q/p

where we have takenηj = ε
−q/p
j in (4.4) and (4.5). But since the dual of̀p/q

is `r/q, 1
r

= 1
q
− 1

p
, the previous two estimates are equivalent to (4.8) and (4.9)

respectively.

The result of Corollary4.2 (ii) in the case1 < q < p < ∞ was also proved
in [10, Thm. 2.2], but the case0 < q < 1 < p seems to be new.

In the remaining portion of this section we apply the results of the previous
section to show that the Hardy-Littlewood maximal function and the Hilbert
transform are bounded in weighted Orlicz-Lorentz spaces. This, in particular,
extends the Lorentz space results of Ariño-Muckenhoupt [1] and Sawyer [21]
to this general setting.

If P is an increasing function ofR+ with P (0) = 0, then the Orlicz-Lorentz
spaces

∧
P (v), with weightv consist of all Lebesgue measurablef on Rn such

that P−1
(∫∞

0
P (f ∗(x))v(x) dx

)
< ∞. Here f ∗(t) = inf{s > 0 : |{x :

|f(x)| > s}| ≤ t} denotes the equimeasurable decreasing rearrangement of
|f |.

Recall that if(Mf)(x) = supx∈Q
1
|Q|

∫
Q
|f(y)| dy is the Hardy-Littlewood

maximal function, then it is well known (cf. [2]) that (Mf)∗(x) ≈ 1
x

∫ x

0
f ∗. It
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follows therefore from Corollary3.5with a = −1 that the following proposition
holds:

Proposition 4.3. SupposeP is anN -function,P , P̃ ∈ ∆2 andQ weakly con-
vex. ThenM :

∧
P (v) →

∧
Q(w) is bounded, that isQ−1

(∫∞
0
Q((Mf)∗)w

)
≤

CP−1
(∫∞

0
P (Cf ∗)v

)
, if and if there are constantsB > 0, such that

(4.9) Q−1

(∑
j

Q
(εj

B

)∫ xj+1

xj

w

)
≤ P−1

(∑
j

P (εj)

∫ xj+1

xj

v

)

is satisfied for all decreasing sequences{εj} and the covering sequence{xj}
satisfying

∫ xj

0
v = 2k, and

(4.10)

Q−1

(∑
j

∫ xj+1

xj

Q

[
1

xB

∥∥∥∥i χ(xj−1,xj)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)

is satisfied for all positive sequences{εj}j∈Z and all covering sequences{xj}.

Here againV (x) =
∫ x

0
v andi(x) = x.

Another illustration involves the Hilbert transform defined by the principle
value integral

(Hf)(x) = P.V.
1

π

∫ ∞

−∞

f(t)

x− t
dt.

Then (see [21, (1.15)]) the rearrangement inequality

(Hf)∗(x) ≤ C1

[
1

x

∫ x

0

f ∗(t) dt+

∫ ∞

x

f ∗(t)

t
dt

]
≤ C2(Hf

∗)∗(x)
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is satisfied. But this implies that the Hilbert transform is bounded from
∧

P (v)
to
∧

Q(w) if and only if

Q−1

(∫ ∞

0

Q[Tf(x)]w(x) dx

)
≤ P−1

(∫ ∞

0

P [Cf(x)]v(x) dx

)
is satisfied, where

(4.11) Tf(x) = x−1

∫ x

0

f(t) dt+

∫ ∞

x

f(t)

t
dt, 0 ≤ f↓ .

However, (4.11) will be satisfied if and only if it is satisfied for the averaging
operator and its conjugate defined on decreasing functions. Hence Corollaries
3.5and3.6apply witha = −1 and we have:

Proposition 4.4. SupposeP andQ areN -functions andP , P̃ ∈ ∆2. ThenH :∧
P (v) →

∧
Q(w) is bounded if and only if (4.9) (with {εj}↓, {xj} satisfying∫ xj

0
v = 2k), (4.10) and (see (3.18), (3.19))

Q−1

(∑
j

∫ yj

yj−1

Q

[
1

B

∥∥∥∥ ln(·/yj)χ(yj ,yj+1)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)
,

Q−1

(∑
j

∫ yj

yj−1

Q

[
ln(yj/x)

B

∥∥∥∥χ(yj ,yj+1)

εjV

∥∥∥∥
P̃ (εjv)

]
w(x) dx

)
≤ P−1

(∑
j

1

εj

)
,

are satisfied for all positive sequences{εj}j∈Z and all covering sequences{xj}.
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