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ABSTRACT. In the present paper, a general theorem on| N̄ , pn |k summability factors of infinite
series has been proved under more weaker conditions. Also we have obtained a new result
concerning the| C, 1 |k summability factors.
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1. I NTRODUCTION

A positive sequence(bn) is said to be almost increasing if there exists a positive increasing
sequence(cn) and two positive constantsA andB such thatAcn ≤ bn ≤ Bcn (see [1]). We
denote byBVO the expressionBV ∩ CO, whereCO andBV are the set of all null sequences and
the set of all sequences with bounded variation, respectively. Let

∑
an be a given infinite series

with partial sums(sn). We denote byuα
n andtαn then-th Cesàro means of orderα, with α > −1,

of the sequences(sn) and(nan), respectively, i.e.,

(1.1) uα
n =

1

Aα
n

n∑
v=0

Aα−1
n−vsv,

(1.2) tαn =
1

Aα
n

n∑
v=1

Aα−1
n−vvav,

where

(1.3) Aα
n = O(nα), α > −1, Aα

0 = 1 and Aα
−n = 0 for n > 0.

The series
∑

an is said to be summable|C, α|k, k ≥ 1, if (see [6, 8])

(1.4)
∞∑

n=1

nk−1
∣∣uα

n − uα
n−1

∣∣k =
∞∑

n=1

|tαn|
k

n
< ∞.
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If we takeα = 1, then we get|C, 1|k summability.
Let (pn) be a sequence of positive numbers such that

(1.5) Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

(1.6) σn =
1

Pn

n∑
v=0

pvsv

defines the sequence(σn) of the Riesz mean or simply the(N̄ , pn) mean of the sequence(sn),
generated by the sequence of coefficients(pn) (see [7]). The series

∑
an is said to be summable∣∣N̄ , pn

∣∣
k
, k ≥ 1, if (see [2, 3])

(1.7)
∞∑

n=1

(Pn/pn)k−1 |∆σn−1|k < ∞,

where

(1.8) ∆σn−1 = − pn

PnPn−1

n∑
v=1

Pv−1av, n ≥ 1.

In the special casepn = 1 for all values of n,
∣∣N̄ , pn

∣∣
k

summability is the same as|C, 1|k
summability.

2. K NOWN RESULTS

Mishra and Srivastava [10] have proved the following theorem concerning the
∣∣N̄ , pn

∣∣ summa-
bility factors.

Theorem A. Let (Xn) be a positive non-decreasing sequence and let there be sequences(βn)
and(λn) such that

(2.1) |∆λn| ≤ βn,

(2.2) βn → 0 as n →∞,

(2.3)
∞∑

n=1

n |∆βn|Xn < ∞,

(2.4) |λn|Xn = O(1).

If

(2.5)
n∑

v=1

|sv|
v

= O(Xn) as n →∞

and(pn) is a sequence such that

(2.6) Pn = O(npn),

(2.7) Pn∆pn = O(pnpn+1),

J. Inequal. Pure and Appl. Math., 8(3) (2007), Art. 82, 7 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


A GENERAL NOTE ON INCREASINGSEQUENCES 3

then the series
∑∞

n=1 an
Pnλn

npn
is summable

∣∣N̄ , pn

∣∣.
Later on Bor [4] generalized Theorem A for

∣∣N̄ , pn

∣∣
k

summability in the following form.

Theorem B. Let (Xn) be a positive non-decreasing sequence and the sequences(βn) and(λn)
are such that conditions (2.1) – (2.7) of Theorem A are satisfied with the condition (2.5) replaced
by:

(2.8)
n∑

v=1

|sv|k

v
= O(Xn) as n →∞.

Then the series
∑∞

n=1 an
Pnλn

npn
is summable

∣∣N̄ , pn

∣∣
k
, k ≥ 1.

It may be noticed that if we takek = 1, then we get Theorem A.
Quite recently Bor [5] has proved Theorem B under weaker conditions by taking an almost

increasing sequence instead of a positive non-decreasing sequence.

Theorem C. Let (Xn) be an almost increasing sequence. If the conditions (2.1) – (2.4) and
(2.6) – (2.8) are satisfied, then the series

∑∞
n=1 an

Pnλn

npn
is summable

∣∣N̄ , pn

∣∣
k
, k ≥ 1.

Remark 2.1. It should be noted that, under the conditions of Theorem B,(λn) is bounded and
∆λn = O(1/n) (see [4]).

3. M AIN RESULT

The aim of this paper is to prove Theorem C under weaker conditions. For this we need the
concept of quasiβ-power increasing sequences. A positive sequence(γn) is said to be a quasi
β-power increasing sequence if there exists a constantK = K(β, γ) ≥ 1 such that

(3.1) Knβγn ≥ mβγm

holds for alln ≥ m ≥ 1. It should be noted that almost every increasing sequence is a quasi
β-power increasing sequence for any nonnegativeβ, but the converse need not be true as can be
seen by taking the example, sayγn = n−β for β > 0.

Now we shall prove the following theorem.

Theorem 3.1. Let (Xn) be a quasiβ-power increasing sequence for some0 < β < 1. If the
conditions (2.1) – (2.4), (2.6) – (2.8) and

(3.2) (λn) ∈ BVO
are satisfied, then the series

∑∞
n=1 an

Pnλn

npn
is summable

∣∣N̄ , pn

∣∣
k
, k ≥ 1.

It should be noted that if we take(Xn) as an almost increasing sequence, then we get Theorem
C. In this case, condition (3.2) is not needed.

We require the following lemma for the proof of Theorem 3.1.

Lemma 3.2([9]). Except for the condition (3.2), under the conditions on(Xn), (βn) and(λn)
as taken in the statement of Theorem 3.1, the following conditions hold, when (2.3) is satisfied:

(3.3) nXnβn = O(1),

(3.4)
∞∑

n=1

βnXn < ∞.
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Proof of Theorem 3.1.Let (Tn) denote the(N̄ , pn) mean of the series
∑∞

n=1
anPnλn

npn
. Then, by

definition, we have

(3.5) Tn =
1

Pn

n∑
v=1

pv

v∑
r=1

arPrλr

rpr

=
1

Pn

n∑
v=1

(Pn − Pv−1)
avPvλv

vpv

,

and thus

(3.6) Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1Pvavλv

vpv

, n ≥ 1.

Using Abel’s transformation, we get

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

sv∆

(
Pv−1Pvλv

vpv

)
+

λnsn

n

=
snλn

n
+

pn

PnPn−1

n−1∑
v=1

sv
Pv+1Pv∆λv

(v + 1)pv+1

+
pn

PnPn−1

n−1∑
v=1

Pvsvλv∆

(
Pv

vpv

)
− pn

PnPn−1

n−1∑
v=1

svPvλv
1

v

= Tn,1 + Tn,2 + Tn,3 + Tn,4, say.

To prove Theorem 3.1, by Minkowski’s inequality, it is sufficient to show that

(3.7)
∞∑

n=1

(
Pn

pn

)k−1

|Tn,r|k < ∞, for r = 1, 2, 3, 4.

Firstly by using Abel’s transformation, we have

m∑
n=1

(
Pn

pn

)k−1

|Tn,1|k =
m∑

n=1

(
Pn

npn

)k−1

|λn|k−1 |λn|
|sn|k

n

= O(1)
m∑

n=1

|λn|
| |sn| |k

n

= O(1)
m−1∑
n=1

∆ |λn|
n∑

v=1

|sv|k

v
+ O(1) |λm|

m∑
n=1

|sn|k

n

= O(1)
m−1∑
n=1

|∆λn|Xn + O(1) |λm|Xm

= O(1)
m−1∑
n=1

βnXn + O(1) |λm|Xm = O(1) as m →∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.
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Now, using the fact thatPv+1 = O((v + 1)pv+1), by (2.6), and then applying Hölder’s in-
equality, we have

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,2|k = O(1)
m+1∑
n=2

pn

PnP k
n−1

∣∣∣∣∣
n−1∑
v=1

Pvsv∆λv

∣∣∣∣∣
k

= O(1)
m+1∑
n=2

pn

PnP k
n−1

{
n−1∑
v=1

Pv

pv

|sv| pv |∆λv|

}k

= O(1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

(
Pv

pv

)k

|sv|k pv |∆λv|k
(

1

Pn−1

n−1∑
v=1

pv

)k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

|sv|k pv |∆λv|k
m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

(
Pv |∆λv|

pv

)k−1

|sv|k |∆λv|

= O(1)
m∑

v=1

|sv|k |∆λv|
(

Pv

vpv

)k−1

= O(1)
m∑

v=1

vβv
|sv|k

v

= O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1

|sr|k

r
+ O(1)mβm

m∑
v=1

|sv|k

v

= O(1)
m−1∑
v=1

|∆(vβv)|Xv + O(1)mβmXm

= O(1)
m−1∑
v=1

v |∆βv|Xv + O(1)
m−1∑
v=1

|βv|Xv + O(1)mβmXm = O(1)

asm →∞, in view of the hypotheses of Theorem 3.1 and Lemma 3.2.
Again, since∆( Pv

vpv
) = O( 1

v
), by (2.6) and (2.7) (see [10]), as inTn,1 we have

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,3|k = O(1)
m+1∑
n=2

pn

PnP k
n−1

{
n−1∑
v=1

Pv |sv| |λv|
1

v

}k

= O(1)
m+1∑
n=2

pn

PnP k
n−1

{
n−1∑
v=1

(
Pv

pv

)
pv |sv| |λv|

1

v

}k

= O(1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

(
Pv

vpv

)k

pv |sv|k |λv|k
{

1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

(
Pv

vpv

)k

|sv|k pv |λv|k
m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

(
Pv

vpv

)k

pv |sv|k |λv|k
1

Pv

.
v

v
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= O(1)
m∑

v=1

(
Pv

vpv

)k−1

|λv|k−1 |λv|
|sv|k

v

= O(1)
m∑

v=1

|λv|
|sv|k

v

= O(1)
m−1∑
v=1

Xvβv + O(1)Xm |λm| = O(1) as m →∞.

Finally, using Hölder’s inequality, as inTn,3 we have

m+1∑
n=2

(
Pn

pn

)k−1

| Tn,4 |k =
m+1∑
n=2

pn

PnP k
n−1

∣∣∣∣∣
n−1∑
v=1

sv
Pv

v
λv

∣∣∣∣∣
k

=
m+1∑
n=2

pn

PnP k
n−1

∣∣∣∣∣
n−1∑
v=1

sv
Pv

vpv

pvλv

∣∣∣∣∣
k

≤
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

|sv|k
(

Pv

vpv

)k

pv |λv|k
(

1

Pn−1

n−1∑
v=1

pv

)k−1

= O(1)
m∑

v=1

(
Pv

vpv

)k

|sv|k pv |λv|k
1

Pv

· v

v

= O(1)
m∑

v=1

|λv|
|sv|k

v

= O(1)
m−1∑
v=1

Xvβv + O(1)Xm |λm| = O(1) as m →∞.

Therefore we get
m∑

n=1

(
Pn

pn

)k−1

|Tn,r|k = O(1) as m →∞, for r = 1, 2, 3, 4.

This completes the proof of Theorem 3.1.
Finally if we takepn = 1 for all values ofn in the theorem, then we obtain a new result
concerning the|C, 1|k summability factors. �
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