Journal of Inequalities in Pure and

 Applied Mathematicshttp://jipam.vu.edu.au/
Volume 5, Issue 3, Article 62, 2004

ASYMPTOTIC FORMULAE
RAFAEL JAKIMCZUK
División Matemática
Universidad Nacional de Luján
Luján, Buenos Aires Argentina.
jakimczu@mail.unlu.edu.ar

Received 09 January, 2004; accepted 08 June, 2004
Communicated by S.S. Dragomir

Abstract

Let $t_{s, n}$ be the n-th positive integer number which can be written as a power p^{t}, $t \geq s$, of a prime p ($s \geq 1$ is fixed). Let $\pi_{s}(x)$ denote the number of prime powers $p^{t}, t \geq s$, not exceeding x. We study the asymptotic behaviour of the sequence $t_{s, n}$ and of the function $\pi_{s}(x)$. We prove that the sequence $t_{s, n}$ has an asymptotic expansion comparable to that of p_{n} (the Cipolla's expansion).

Key words and phrases: Primes, Powers of primes, Cipolla's expansion.
2000 Mathematics Subject Classification. 11N05, 11N37.

1. Introduction

Let p_{n} be the n-th prime. M. Cipolla [1] proved the following theorem:
There exists a unique sequence $P_{j}(X)(j \geq 1)$ of polynomials with rational coefficients such that, for every nonnegative integer m,

$$
\begin{equation*}
p_{n}=n \log n+n \log \log n-n+\sum_{j=1}^{m} \frac{(-1)^{j-1} n P_{j}(\log \log n)}{\log ^{j} n}+o\left(\frac{n}{\log ^{m} n}\right) \tag{1.1}
\end{equation*}
$$

The polynomials $P_{j}(X)$ have degree j and leading coefficient $\frac{1}{j}$.

$$
P_{1}(X)=X-2, \quad P_{2}(X)=\frac{X^{2}-6 X+11}{2},
$$

If $m=0$ equation (1.1) is:

$$
\begin{equation*}
p_{n}=n \log n+n \log \log n-n+o(n) . \tag{1.2}
\end{equation*}
$$

[^0]Let $\pi(x)$ denote the number of prime numbers not exceeding x, then

$$
\begin{equation*}
\pi(x)=\left(\sum_{i=1}^{m} \frac{(i-1)!x}{\log ^{i} x}\right)+\varepsilon(x) \frac{(m-1)!x}{\log ^{m} x} \quad(m \geq 1) \tag{1.3}
\end{equation*}
$$

where $\lim _{x \rightarrow \infty} \varepsilon(x)=0$.
Lemma 1.1. There exists a positive number M such that in the interval $[2, \infty),|\varepsilon(x)| \leq M$.
Proof. Let us consider the closed interval [2, a]. In this interval, $\pi(x) \leq x$, so $\pi(x)$ is bounded. The functions $\frac{(i-1)!x}{\log ^{2} x}, i=1, \ldots, m$ and $\frac{\log ^{m} x}{(m-1)!x}$ are continuous on the compact $[2, a]$, so they are also bounded.

As

$$
\varepsilon(x)=\left[\pi(x)-\left(\sum_{i=1}^{m} \frac{(i-1)!x}{\log ^{i} x}\right)\right] \frac{\log ^{m} x}{(m-1)!x},
$$

$\varepsilon(x)$ is in its turn bounded on $[2, a]$.
Since a is arbitrary and $\lim _{x \rightarrow \infty} \varepsilon(x)=0$, the lemma is proved.
Let us consider the sequence of positive integer numbers which can be written as a power p^{t} of a prime $p\left(t \geq 1\right.$ is fixed). The number of prime powers p^{t} not exceeding x will be (in view of (1.3))

$$
\begin{align*}
\pi\left(x^{\frac{1}{t}}\right) & =\left(\sum_{i=1}^{m} \frac{(i-1)!x^{\frac{1}{t}}}{\log ^{i} x^{\frac{1}{t}}}\right)+\varepsilon\left(x^{\frac{1}{t}}\right) \frac{(m-1)!x^{\frac{1}{t}}}{\log ^{m} x^{\frac{1}{t}}} \tag{1.4}\\
& =\left(\sum_{i=1}^{m} \frac{t^{i}(i-1)!x^{\frac{1}{t}}}{\log ^{i} x}\right)++\varepsilon\left(x^{\frac{1}{t}}\right) \frac{t^{m}(m-1)!x^{\frac{1}{t}}}{\log ^{m} x} \\
& =\left(\sum_{i=1}^{m} \frac{t^{i}(i-1)!x^{\frac{1}{t}}}{\log ^{i} x}\right)+o\left(\frac{x^{\frac{1}{t}}}{\log ^{m} x}\right)
\end{align*}
$$

2. The Function $\pi_{s}(x)$

Let $t_{s, n}$ be the n-th positive integer number (in increasing order) which can be written as a power $p^{t}, t \geq s$, of a prime p ($s \geq 1$ is fixed). Let $\pi_{s}(x)$ denote the number of prime powers p^{t}, $t \geq s$, not exceeding x.

Theorem 2.1.

$$
\begin{equation*}
\pi_{s}(x)=\left(\sum_{i=1}^{m} \frac{s^{i}(i-1)!x^{\frac{1}{s}}}{\log ^{i} x}\right)+o\left(\frac{x^{\frac{1}{s}}}{\log ^{m} x}\right) \tag{2.1}
\end{equation*}
$$

Proof. If $x \in\left[2^{s+k}, 2^{s+k+1}\right)(k \geq 1)$, then

$$
\pi_{s}(x)=\pi\left(x^{\frac{1}{s}}\right)+\sum_{i=1}^{k} \pi\left(x^{\frac{1}{s+i}}\right) .
$$

Using (1.4), we obtain
(2.2) $\pi_{s}(x)=\left(\sum_{i=1}^{m} \frac{s^{i}(i-1)!x^{\frac{1}{s}}}{\log ^{i} x}\right)+\varepsilon\left(x^{\frac{1}{s}}\right) \frac{s^{m}(m-1)!x^{\frac{1}{s}}}{\log ^{m} x}$
$+\sum_{j=1}^{k}\left(\left(\sum_{i=1}^{m} \frac{(s+j)^{i}(i-1)!x^{\frac{1}{s+j}}}{\log ^{i} x}\right)+\varepsilon\left(x^{\frac{1}{s+j}}\right) \frac{(s+j)^{m}(m-1)!x^{\frac{1}{s+j}}}{\log ^{m} x}\right)$
$=\left(\sum_{i=1}^{m} \frac{s^{i}(i-1)!x^{\frac{1}{s}}}{\log ^{i} x}\right)+\varepsilon\left(x^{\frac{1}{s}}\right) \frac{s^{m}(m-1)!x^{\frac{1}{s}}}{\log ^{m} x}$
$+\sum_{i=1}^{m}\left(\sum_{j=1}^{k} \frac{(s+j)^{i}(i-1)!x^{\frac{1}{s+j}}}{\log ^{i} x}\right)+\sum_{j=1}^{k} \varepsilon\left(x^{\frac{1}{s+j}}\right) \frac{(s+j)^{m}(m-1)!x^{\frac{1}{s+j}}}{\log ^{m} x}$.
In the given conditions, the following inequalities hold for x :

$$
\begin{aligned}
\frac{\sum_{j=1}^{k} \frac{(s+j)^{i}(i-1)!x^{\frac{1}{s+j}}}{\log ^{2} x}}{\frac{s^{m}(m-1)!x^{\frac{1}{s}}}{\log ^{m} x}} & =\frac{\sum_{j=1}^{k} \frac{(s+j)^{i}}{s^{m}} \cdot \frac{(i-1)!}{(m-1)!} x^{\frac{1}{s+j}} \log ^{m-i} x}{x^{\frac{1}{s}}} \\
& \leq \sum_{j=1}^{k} \frac{\frac{(s+j)^{i}}{s^{m}} \cdot \frac{(i-1)!}{(m-1)!} \log ^{m-i}\left(2^{s+k+1}\right)}{2^{\frac{(s+k) j-s}{s(s+j)}}} \\
& \leq \sum_{j=1}^{k} \frac{(s+k)^{i}(s+k+1)^{m-i}}{\left(2^{\left.\frac{1}{s(s+1)}\right)^{k}}\right.} \\
& =\frac{k(s+k)^{i}(s+k+1)^{m-i}}{\left(2^{\frac{1}{s(s+1)}}\right)^{k}} \quad(i=1, \ldots, m) .
\end{aligned}
$$

Now, since

$$
\lim _{k \rightarrow \infty} \frac{k(s+k)^{i}(s+k+1)^{m-i}}{\left(2^{\frac{1}{s(s+1)}}\right)^{k}}=0 \quad(i=1, \ldots, m)
$$

we find that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\sum_{j=1}^{k} \frac{(s+j)^{i}(i-1)!x^{\frac{1}{s+j}}}{\log ^{2} x}}{\frac{s^{m}(m-1)!x^{\frac{1}{s}}}{\log ^{m} x}}=0 \quad(i=1, \ldots, m) . \tag{2.3}
\end{equation*}
$$

On the other hand, from the lemma we have the following inequality

$$
\left|\sum_{j=1}^{k} \varepsilon\left(x^{\frac{1}{s+j}}\right) \frac{(s+j)^{m}(m-1)!x^{\frac{1}{s+j}}}{\log ^{m} x}\right| \leq M \sum_{j=1}^{k} \frac{(s+j)^{m}(m-1)!x^{\frac{1}{s+j}}}{\log ^{m} x} .
$$

This inequality and (2.3) with $i=m$ give

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\sum_{j=1}^{k} \varepsilon\left(x^{\frac{1}{s+j}}\right) \frac{(s+j)^{m}(m-1)!x^{\frac{1}{s+j}}}{\log ^{m} x}}{\frac{s^{m}(m-1)!x^{\frac{1}{s}}}{\log ^{m} x}}=0 . \tag{2.4}
\end{equation*}
$$

Finally, from (2.2), (2.3) and (2.4) we find that

$$
\pi_{s}(x)=\left(\sum_{i=1}^{m} \frac{s^{i}(i-1)!x^{\frac{1}{s}}}{\log ^{i} x}\right)+\varepsilon^{\prime}(x) \frac{s^{m}(m-1)!x^{\frac{1}{s}}}{\log ^{m} x}
$$

where $\lim _{x \rightarrow \infty} \varepsilon^{\prime}(x)=0$. The theorem is proved.
From (1.4) and (2.1) we obtain the following corollary
Corollary 2.2. The functions $\pi_{s}(x)$ and $\pi\left(x^{\frac{1}{s}}\right)$ have the same asymptotic behaviour $(s \geq 1)$.

3. The SEQUENCES $\left(t_{s}, n\right)^{\frac{1}{s}}$ AND p_{n}

Theorem 3.1.

$$
\begin{equation*}
\left(t_{s, n}\right)^{\frac{1}{s}}=p_{n}+o\left(\frac{n}{\log ^{r} n}\right) \quad(r \geq 0) \tag{3.1}
\end{equation*}
$$

Proof. We proceed by mathematical induction on r.
Equation (2.1) gives $(m=1)$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\pi_{s}(x)}{\frac{s x^{\frac{1}{s}}}{\log x}}=1 \tag{3.2}
\end{equation*}
$$

If we put $x=t_{s, n}$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left(t_{s, n}\right)^{\frac{1}{s}}}{n \log \left(t_{s, n}\right)^{\frac{1}{s}}}=1 \tag{3.3}
\end{equation*}
$$

From (3.3) we find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\log s+\log \left(t_{s, n}\right)^{\frac{1}{s}}-\log n-\log \log t_{s, n}\right)=0 \tag{3.4}
\end{equation*}
$$

Now, since

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log \left(t_{s, n}\right)^{\frac{1}{s}}}{\log n}=1 \tag{3.5}
\end{equation*}
$$

we obtain

$$
\lim _{n \rightarrow \infty} \frac{\left(t_{s, n}\right)^{\frac{1}{s}}}{n \log \left(t_{s, n}\right)^{\frac{1}{s}}}=1
$$

if and only if

$$
\lim _{n \rightarrow \infty} \frac{\left(t_{s, n}\right)^{\frac{1}{s}}}{n \log n}=1
$$

We also derive

$$
\lim _{n \rightarrow \infty} \frac{t_{s, n}}{n^{s} \log ^{s} n}=1
$$

From (3.5) we find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(-\log s+\log \log t_{s, n}-\log \log n\right)=0 \tag{3.6}
\end{equation*}
$$

(3.4) and (3.6) give

$$
\begin{equation*}
\log \left(t_{s, n}\right)^{\frac{1}{s}}=\log n+\log \log n+o(1) \tag{3.7}
\end{equation*}
$$

Equation 2.1 gives $(m=2)$

$$
\pi_{s}(x)=\frac{x^{\frac{1}{s}}}{\log x^{\frac{1}{s}}}+\frac{x^{\frac{1}{s}}}{\log ^{2}\left(x^{\frac{1}{s}}\right)}+o\left(\frac{x^{\frac{1}{s}}}{\log ^{2}\left(x^{\frac{1}{s}}\right)}\right)
$$

SO

$$
x^{\frac{1}{s}}=\pi_{s}(x) \log x^{\frac{1}{s}}-\frac{x^{\frac{1}{s}}}{\log x^{\frac{1}{s}}}+o\left(\frac{x^{\frac{1}{s}}}{\log x^{\frac{1}{s}}}\right) .
$$

If we put $x=t_{s, n}$, we get

$$
\begin{equation*}
\left(t_{s, n}\right)^{\frac{1}{s}}=n \log \left(t_{s, n}\right)^{\frac{1}{s}}-\frac{\left(t_{s, n}\right)^{\frac{1}{s}}}{\log \left(t_{s, n}\right)^{\frac{1}{s}}}+o\left(\frac{\left(t_{s, n}\right)^{\frac{1}{s}}}{\log \left(t_{s, n}\right)^{\frac{1}{s}}}\right) \tag{3.8}
\end{equation*}
$$

Finally, from (3.8), (3.3) and (3.7) we find that

$$
\begin{equation*}
\left(t_{s, n}\right)^{\frac{1}{s}}=n \log n+n \log \log n-n+o(n) \tag{3.9}
\end{equation*}
$$

Therefore, for $r=0$ the theorem is true because of (1.2) and (3.9).
Let $r \geq 0$ be given, and assume that the theorem holds for r, we will prove it is also true for $r+1$.

From the inductive hypothesis we have (in view of (1.1))

$$
\begin{equation*}
p_{n}=n \log n+n \log \log n-n+\sum_{j=1}^{r} \frac{(-1)^{j-1} n P_{j}(\log \log n)}{\log ^{j} n}+o\left(\frac{n}{\log ^{r} n}\right) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(t_{s}, n\right)^{\frac{1}{s}}=n \log n+n \log \log n-n+\sum_{j=1}^{r} \frac{(-1)^{j-1} n P_{j}(\log \log n)}{\log ^{j} n}+o\left(\frac{n}{\log ^{r} n}\right) \tag{3.11}
\end{equation*}
$$

From (3.10) we find that
(3.12) $\log p_{n}=\log n+\log \log n$

$$
+\log \left[1+\frac{\log \log n-1}{\log n}+\sum_{j=1}^{r} \frac{(-1)^{j-1} P_{j}(\log \log n)}{\log ^{j+1} n}+o\left(\frac{1}{\log ^{r+1} n}\right)\right]
$$

Let us write 1.3 in the form

$$
\begin{equation*}
\pi(x)=\left(\sum_{i=1}^{r+3} \frac{(i-1)!x}{\log ^{i} x}\right)+o\left(\frac{x}{\log ^{r+3} x}\right) \tag{3.13}
\end{equation*}
$$

If we put $x=p_{n}$ and use the prime number theorem, we get

$$
\begin{equation*}
\frac{n}{p_{n}}=\left(\sum_{i=1}^{r+3} \frac{(i-1)!}{\log ^{i} p_{n}}\right)+o\left(\frac{1}{\log ^{r+3} n}\right) \tag{3.14}
\end{equation*}
$$

Similarly, from (3.11) we find that

$$
\begin{align*}
\log \left(t_{s, n}\right)^{\frac{1}{s}} & =\log n+\log \log n \tag{3.15}\\
& +\log \left[1+\frac{\log \log n-1}{\log n}+\sum_{j=1}^{r} \frac{(-1)^{j-1} P_{j}(\log \log n)}{\log ^{j+1} n}+o\left(\frac{1}{\log ^{r+1} n}\right)\right]
\end{align*}
$$

Let us write (2.1) in the form

$$
\begin{equation*}
\pi_{s}(x)=\left(\sum_{i=1}^{r+3} \frac{(i-1)!x^{\frac{1}{s}}}{\log ^{i}\left(x^{\frac{1}{s}}\right)}\right)+o\left(\frac{x^{\frac{1}{s}}}{\log ^{r+3}\left(x^{\frac{1}{s}}\right)}\right) \tag{3.16}
\end{equation*}
$$

If we put $x=t_{s, n}$ and use (3.5), we get

$$
\begin{equation*}
\frac{n}{\left(t_{s, n}\right)^{\frac{1}{s}}}=\left(\sum_{i=1}^{r+3} \frac{(i-1)!}{\log ^{i}\left(\left(t_{s, n}\right)^{\frac{1}{s}}\right)}\right)+o\left(\frac{1}{\log ^{r+3} n}\right) \tag{3.17}
\end{equation*}
$$

If $x \geq 1$ and $y \geq 1$, Lagrange's theorem gives us the inequality

$$
|\log y-\log x| \leq|y-x|
$$

with (3.12) and (3.15), it leads to

$$
\begin{equation*}
\log \left(t_{s, n}\right)^{\frac{1}{s}}-\log p_{n}=o\left(\frac{1}{\log ^{r+1} n}\right) \tag{3.18}
\end{equation*}
$$

From (3.18) we find that

$$
\begin{equation*}
\frac{1}{\log ^{k} p_{n}}-\frac{1}{\log ^{k}\left(t_{s, n}\right)^{\frac{1}{s}}}=o\left(\frac{1}{\log ^{r+k+2} n}\right)=o\left(\frac{1}{\log ^{r+3} n}\right) \quad(k=1, \ldots, r+3) . \tag{3.19}
\end{equation*}
$$

(3.14), (3.17) and (3.19) give

$$
\frac{n}{p_{n}}-\frac{n}{\left(t_{s, n}\right)^{\frac{1}{s}}}=o\left(\frac{1}{\log ^{r+3} n}\right)
$$

that is

$$
\begin{equation*}
\left(t_{s, n}\right)^{\frac{1}{s}}-p_{n}=\left(t_{s}, n\right)^{\frac{1}{s}} \frac{1}{\log ^{r+2} n} o(1) \tag{3.20}
\end{equation*}
$$

If we write

$$
\begin{equation*}
\left(t_{s}, n\right)^{\frac{1}{s}}=p_{n}+f(n) \tag{3.21}
\end{equation*}
$$

substituting (3.21) into (3.20) we find that

$$
f(n)=\frac{p_{n}}{\log ^{r+2} n+o(1)} o(1),
$$

so

$$
\begin{equation*}
f(n)=o\left(\frac{n}{\log ^{r+1} n}\right) \tag{3.22}
\end{equation*}
$$

(3.21) and (3.22) give

$$
\left(t_{s, n}\right)^{\frac{1}{s}}=p_{n}+o\left(\frac{n}{\log ^{r+1} n}\right)
$$

The theorem is thus proved.

4. The Asymptotic Behaviour of $t_{s, n}$

Theorem 4.1. There exists a unique sequence $P_{s, j}(X)(j \geq 1)$ of polynomials with rational coefficients such that, for every nonnegative integer m

$$
\begin{equation*}
t_{s, n}=\sum c_{i} f_{i}(n)+\sum_{j=1}^{m} \frac{(-1)^{j-1} n^{s} P_{s, j}(\log \log n)}{\log ^{j} n}+o\left(\frac{n^{s}}{\log ^{m} n}\right) . \tag{4.1}
\end{equation*}
$$

The polynomials $P_{s, j}(X)$ have degree $j+s-1$ and leading coefficient $\frac{1}{\binom{j+s-1}{s}}$.
The $f_{i}(n)$ are sequences of the form $n^{s} \log ^{r} n(\log \log n)^{u}$ and the c_{i} are constants. $f_{1}(n)=$ $n^{s} \log ^{s} n$ and $c_{1}=1$, if $i \neq 1$ then $f_{i}(n)=o\left(f_{1}(n)\right)$.

If $m=0$ equation (4.1) is

$$
\begin{equation*}
t_{s, n}=\sum c_{i} f_{i}(n)+o\left(n^{s}\right) \tag{4.2}
\end{equation*}
$$

Proof. From (1.1) and (3.1) we obtain (4.1)

$$
\begin{aligned}
t_{s, n} & =\left[n \log n+n \log \log n-n+\sum_{j=1}^{m+s-1} \frac{(-1)^{j-1} n P_{j}(\log \log n)}{\log ^{j} n}+o\left(\frac{n}{\log ^{m+s-1} n}\right)\right]^{s} \\
& =\sum c_{i} f_{i}(n)+\sum_{j=1}^{m} \frac{(-1)^{j-1} n^{s} P_{s, j}(\log \log n)}{\log ^{j} n}+o\left(\frac{n^{s}}{\log ^{m} n}\right)
\end{aligned}
$$

if we write

$$
\begin{equation*}
P_{s, j}(X)=\sum_{(r, k)} \sum_{j_{1}+\ldots . .+j_{t}=j+r}(-1)^{r-t+1}\binom{s}{r}\binom{s-r}{k}(X-1)^{k} P_{j_{1}}(X) \cdots P_{j_{t}}(X) \tag{4.3}
\end{equation*}
$$

where $r+k+t=s$.
The first sum runs through the vectors $(r, k)(r \geq 0, k \geq 0, r+k \in\{0,1, \ldots, s-1\})$, such that the set of vectors $\left(j_{1}, j_{2}, \ldots, j_{t}\right)$ whose coordinates are positive integers which satisfy $j_{1}+j_{2}+\cdots+j_{t}=j+r$ is nonempty. The second sum runs through the former nonempty set of vectors $\left(j_{1}, j_{2}, \ldots, j_{t}\right)$ (this set depends on the vector (r, k)).

If $m=0$ we obtain (4.2).
Let us consider a vector (r, k). The degree of each polynomial

$$
(-1)^{r-t+1}\binom{s}{r}\binom{s-r}{k}(X-1)^{k} P_{j_{1}}(X) \cdot P_{j_{2}}(X) \cdots P_{j_{t}}(X)
$$

is $j+r+k$. Hence the degree of the polynomial

$$
\begin{equation*}
\sum_{j_{1}+j_{2}+\cdots+j_{t}=j+r}(-1)^{r-t+1}\binom{s}{r}\binom{s-r}{k}(X-1)^{k} P_{j_{1}}(X) \cdot P_{j_{2}}(X) \cdots P_{j_{t}}(X) \tag{4.4}
\end{equation*}
$$

does not exceed $j+r+k$. Since $r+k \in\{0,1, \ldots, s-1\}$, the greatest degree of the polynomials (4.4) does not exceed $j+s-1$. On the other hand, in (4.3) there are s polynomials (4.4) of degree $j+s-1$. Since in this case $t=1$, these s polynomials are

$$
(-1)^{r}\binom{s}{r}\binom{s-r}{k}(X-1)^{k} P_{j+r}(X) \quad(r+k=s-1)
$$

and their sum is

$$
\begin{align*}
& \sum_{r=0}^{s-1}(-1)^{r}\binom{s}{r}\binom{s-r}{s-r-1}(X-1)^{s-r-1} P_{j+r}(X) \tag{4.5}\\
&=\sum_{r=0}^{s-1}(-1)^{r}\binom{s}{r}(s-r)(X-1)^{s-r-1} P_{j+r}(X)
\end{align*}
$$

Since the leading coefficient of the polynomial $P_{j+r}(X)$ is $\frac{1}{j+r}$, the leading coefficient of the polynomial (4.5) will be

$$
\sum_{r=0}^{s-1}(-1)^{r}\binom{s}{r} \frac{s-r}{j+r}=\frac{1}{\binom{j+s-1}{s}}
$$

Hence the degree of the polynomial 443 is $j+s-1$ and its leading coefficient is $\frac{1}{\binom{j+s-1}{s}}$. The theorem is thus proved.

Examples.

$$
\begin{gathered}
t_{1, n}=n \log n+n \log \log n-n+\sum_{j=1}^{m} \frac{(-1)^{j-1} n P_{j}(\log \log n)}{\log ^{j} n}+o\left(\frac{n}{\log ^{m} n}\right), \\
t_{2, n}=n^{2} \log ^{2} n+2 n^{2} \log n \log \log n-2 n^{2} \log n+n^{2}(\log \log n)^{2} \\
-3 n^{2}+\sum_{j=1}^{m} \frac{(-1)^{j-1} n^{2} P_{2, j}(\log \log n)}{\log ^{j} n}+o\left(\frac{n^{2}}{\log ^{m} n}\right) .
\end{gathered}
$$

Corollary 4.2. The sequences $t_{s, n}$ and $p_{n}^{s}(s \geq 1)$ have the same asymptotic expansion, namely (4.1).

Note. G. Mincu [2] proved Theorem 3.1] and Theorem 4.1] when $s=2$.

References

[1] M. CIPOLLA, La determinazione assintotica dell' $n^{\text {imo }}$ numero primo, Rend. Acad. Sci. Fis. Mat. Napoli, 8(3) (1902), 132-166.
[2] G. MINCU, An asymptotic expansion, J. Inequal. Pure and Appl. Math., 4(2) (2003), Art. 30. [ONLINE http://jipam.vu.edu.au/article.php?sid=268]

[^0]: ISSN (electronic): 1443-5756
 (C) 2004 Victoria University. All rights reserved.

 009-04

