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ABSTRACT. Some Hardy type inequalities on the domain in the Heisenberg group are estab-
lished by using the Picone type identity and constructing suitable auxiliary functions.
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1. I NTRODUCTION

The Hardy inequality in the Euclidean space (see [3], [4], [7]) has been established using
many methods. In [1], Allegretto and Huang found a Picone’s identity for thep-Laplacian and
pointed out that one can prove the Hardy inequality via the identity. Niu, Zhang and Wang in
[6] obtained a Picone type identity for thep-sub-Laplacian in the Heisenberg group and then es-
tablished a Hardy type inequality. Whenp = 2, the result of [6] coincides with the inequality in
[2]. As stated in [1], the Picone type identity allows us to avoid postulating regularity conditions
on the boundary of the domain under consideration. Since there is a presence of characteristic
points in the sub-Laplacian Dirichlet problem in the Heisenberg group (see [2]), we understand
that such an identity is especially useful.

We recall that the Heisenberg groupHn of real dimensionN = 2n + 1, n ∈ N , is the
nilpotent Lie group of step two whose underlying manifold isR2n+1. A basis for the Lie
algebra of left invariant vector fields onHn is given by

Xj =
∂

∂xj

+ 2yj
∂

∂t
, Yj =

∂

∂yj

− 2xj
∂

∂t
, j = 1, 2, . . . , n.
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The numberQ = 2n + 2 is the homogeneous dimension ofHn. There exists a Heisenberg
distance

d ((z, t), (z′, t′)) =
{[

(x− x′)2 + (y − y′)2
]2

+ [t− t′ − 2(x · y′ − x′ · y)]
2
} 1

4

between(z, t) and(z′, t′). We denote the Heisenberg gradient by

∇Hn = (X1, . . . , Xn, Y1, . . . , Yn).

In this note we give some Hardy type inequalities on the domain in the Heisenberg group by
considering different auxiliary functions.

2. HARDY I NEQUALITIES

First we state two lemmas given in [6] which will be needed in the sequel.

Lemma 2.1. LetΩ be a domain inHn, v > 0, u ≥ 0 be differentiable inΩ. Then

(2.1) L(u, v) = R(u, v) ≥ 0,

where

L(u, v) = |∇Hnu|p + (p− 1)
up

vp
|∇Hnv|p − p

up−1

vp−2
∇Hn · |∇Hnv|p−2∇Hnv,

R(u, v) = |∇Hnu|p −∇Hn

(
up

vp−1

)
· |∇Hnv|p−2∇Hnv.

Denote thep-sub-Laplacian by∆Hn,pv = ∇Hn · (|∇Hnv|p−2∇Hnv).

Lemma 2.2. Assume that the differentiable functionv > 0 satisfies the condition−∆Hn,pv ≥
λgvp−1, for someλ > 0 and nonnegative functiong. Then for everyu ∈ C∞

0 (Ω), u ≥ 0,

(2.2)
∫

Ω

|∇Hnu|p ≥ λ

∫
Ω

g|u|p.

Let BR = {(z, t) ∈ Hn| d ((z, t), (0, 0)) < R} be the Heisenberg group andδ(z, t) =
dist ((z, t), ∂BR) , (z, t) ∈ BR, in the sense of distance functions on the Heisenberg group.

Theorem 2.3.LetΩ = BR\{(0, 0}, p > 1. Then for everyu ∈ C∞
0 (Ω),

(2.3)
∫

Ω

|∇Hnu|p ≥
(

p− 1

p

)p ∫
Ω

|z|p

dp

|u|p

δp
,

where|z| =
√

x2 + y2, d = d ((z, t), (0, 0)) .

Proof. We first consideru ≥ 0. The following equations are evident:

(2.4)


Xjd = d−3 (|z|2xj + yjt) , Yjd = d−3 (|z|2yj − xjt) ,

X2
j d = −3d−7 (|z|2xj + yjt)

2
+ d−3

(
|z|2 + 2x2

j + 2y2
j

)
,

Y 2
j d = −3d−7 (|z|2yj − xjt)

2
+ d−3

(
|z|2 + 2x2

j + 2y2
j

)
, j = 1, . . . , n

and

(2.5) |∇Hnd| = |z|d−1, ∆Hnd = (Q− 1)d−3|z|2.
Choosev(z, t) = δ(z, t)β = (R− d)β, in whichβ = p−1

p
, one has

Xjv = −βδβ−1Xjd, Yjv = −βδβ−1Yjd, j = 1, . . . , n,

∇Hnv = −βδβ−1∇Hnd, |∇Hnv| = |β|δβ−1|z|d−1,
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and

−∆Hnv = −∇Hn ·
(
|∇Hnv|p−2∇Hnv

)
= −∇Hn ·

(
−β|β|p−2δ(β−1)(p−1)|z|p−2d2−p∇Hnd

)
= β|β|p−2

{
− (β − 1)(p− 1)δ(β−1)(p−1)−1|z|p−2d2−p|∇Hnd|2

+ δ(β−1)(p−1)d2−p∇Hn

(
|z|p−2

)
· ∇Hnd

+ (2− p)δ(β−1)(p−1)|z|p−2d1−p|∇Hnd|2

+ δ(β−1)(p−1)|z|p−2d2−p4Hnd

}
.

From the fact∇Hn (|z|p−2) ·∇Hnd = (p−2)|z|p−4d−3|z|4 = (p−2)|z|pd−3 and (2.5), it follows
that

−∆Hnv = β|β|p−2

{
− (β − 1)(p− 1)δ(β−1)(p−1)−1|z|pd−p

+ (p− 2)δ(β−1)(p−1)|z|pd−1−p

− (p− 2)δ(β−1)(p−1)|z|pd−1−p

+ (Q− 1)δ(β−1)(p−1)|z|pd−1−p

}
= β|β|p−2

{
−(β − 1)(p− 1) + (Q− 1)

δ

d

}
|z|p

dp

vp−1

δp

=

(
p− 1

p

)p−1 {
p− 1

p
+ (Q− 1)

δ

d

}
|z|p

dp

vp−1

δp

≥
(

p− 1

p

)p |z|p

dp

vp−1

δp
.

The desired inequality (2.3) is obtained by Lemma 2.2. For generalu, by lettingu = u+ − u−,
we directly obtain (2.3). �

Theorem 2.4. Let Ω = Hn\{BHn,R}, Q > p > 1. Then for everyu ∈ C∞
0 (Ω), there exists a

constantC > 0, such that

(2.6)
∫

Ω

|∇Hnu|p ≥ C

∫
Ω

|z|p

dp

|u|p

d2p
.

Proof. Suppose thatu ≥ 0. Takev = log
(

d
R

)α
, R < d = d ((z, t), (0, 0)) < +∞, α < 0.

Using (2.4) and (2.5) show that

∇Hnv =

(
R

d

)α

α

(
d

R

)α−1
1

R
∇Hnd =

α

d
∇Hnd,

|∇Hnv| = |α||z|d−2,
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−4Hnv = −∇Hn ·
(
|∇Hnv|p−2∇Hnv

)
= −α|α|p−2∇Hn ·

(
|z|p−2d−2(p−2)−1∇Hnd

)
= −α|α|p−2

{
(p− 2)|z|p−3d2(2−p)−1∇Hn (|z|) · ∇Hnd

+ (2(2− p)− 1) |z|p−2d2(1−p)|∇Hnd|2

+ |z|p−2d2(2−p)−14Hnd

}
.

Since∇Hn (|z|) · ∇Hnd = |z|3d−3, the last equation above becomes

−4Hnv = −α|α|p−2

{
(p− 2)|z|p−3d2(2−p)−1|z|3d−3

+ (3− 2p)|z|p−2d2(1−p)|z|2d−2

+ (Q− 1)|z|p−2d3−2p|z|2d−3

}
= −α|α|p−2|z|pd−2p(p− 2 + 3− 2p + Q− 1)

= −α|α|p−2(Q− p)|z|pd−2p.(2.7)

Noting

lim
d→+∞

vp−1

dp
= 0,

there exists a positive numberM ≥ R, such thatv
p−1

dp < 1, for d > M . Sincevp−1

dp is continuous
on the interval[R,M ], we find a constantC ′ > 0, such thatv

p−1

dp < C ′. Pick outC ′′ =
max{C ′, 1} and one hasvp−1 < C ′′dp in Ω. This leads to the following

−∆Hnv ≥ C
|z|p

d2p

vp−1

dp
,

whereC = −α|α|p−2(Q−p)
C′′ , and to (2.6) by Lemma 2.2. A similar treatment for generalu com-

pletes the proof. �

In particular,α = p−Q (1 < p < Q) satisfies the assumption in the proof above.

Theorem 2.5. Let Ω be as defined in Theorem 2.4 andp ≥ Q. Then there exists a constant
C > 0, such that for everyu ∈ C∞

0 (Ω),

(2.8)
∫

Ω

|∇Hnu|p ≥ C

∫
Ω

|z|p

dp
(
log

(
d
R

))p

|u|p

dp
.

Proof. It is sufficient to show that (2.8) holds foru ≥ 0. Choosev = φα, φ = log d
R

, where
R < d < +∞, 0 < α < 1. We know that from (2.4) and (2.5),

∇Hnφ = d−1∇Hnd, |∇Hnφ| = d−2|z|,
∆Hnφ = d−14Hnd− d−2|∇Hnd|2 = (Q− 2)|z|2d−4.
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This allows us to obtain

−∆Hnv = −∇Hn ·
(
|∇Hnv|p−2∇Hnv

)
= −∇Hn ·

(
|αφα−1∇Hnφ|p−2αφα−1∇Hnφ

)
= −α|α|p−2∇Hn ·

(
φ(α−1)(p−1)|z|p−2d2(2−p)∇Hnφ

)
= −α|α|p−2

{
(α− 1)(p− 1)φ(α−1)(p−1)−1|z|p−2d2(2−p)|∇Hnφ|2

+ (p− 2)φ(α−1)(p−1)|z|p−3d2(2−p)∇Hn (|z|) · ∇Hnφ

+ 2(2− p)φ(α−1)(p−1)|z|p−2d2(2−p)−1∇Hnd · ∇Hnφ

+ φ(α−1)(p−1)|z|p−2d2(2−p)4Hnφ

}
= −α|α|p−2

{
(α− 1)(p− 1)φ(α−1)(p−1)−1|z|p−2d2(2−p)|z|2d−4

+ (p− 2)φ(α−1)(p−1)|z|p−3d2(2−p)|z|3d−4

+ 2(2− p)φ(α−1)(p−1)|z|p−2d2(2−p)−1|z|2d−3

+ φ(α−1)(p−1)|z|p−2d2(2−p)(Q− 2)|z|2d−4

}
= −α|α|p−2vp−1

φp

|z|p

d2p
{(α− 1)(p− 1) + (p− 2)φ + 2(2− p)φ + (Q− 2)φ}

= −α|α|p−2vp−1

φp

|z|p

d2p
{(α− 1)(p− 1) + (Q− p)φ} ,

Taking into account that0 < α < 1 andp ≥ Q, we have

−α|α|p−2(Q− p)φ ≥ 0,

and therefore

−4Hnv ≥ −α|α|p−2(α− 1)(p− 1)
vp−1

φp

|z|p

d2p
= C

vp−1

φp

|z|p

d2p
,

whereC = −α|α|p−2(α − 1)(p − 1). An application of Lemma 2.2 completes the proof of
Theorem 2.5. �
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