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ABSTRACT. In this paper a general theorem on absolute weighted mean summability factors
has been proved under weaker conditions by using an almost increasing andδ-quasi-monotone
sequences.
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1. I NTRODUCTION

A sequence(bn) of positive numbers is said to beδ-quasi-monotone, ifbn > 0 ultimately
and∆bn ≥ −δn, where(δn) is a sequence of positive numbers (see [2]). Let

∑
an be a given

infinite series with(sn) as the sequence of itsn-th partial sums. Byun andtn we denote the
n-th (C, 1) means of the sequence(sn) and(nan), respectively. The series

∑
an is said to be

summable|C, 1|k, k ≥ 1, if (see [5])

∞∑
n=1

nk−1 |un − un−1|k =
∞∑

n=1

1

n
|tn|k < ∞.

Let (pn) be a sequence of positive numbers such that

Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1) .

The sequence-to-sequence transformation

zn =
1

Pn

n∑
v=0

pvsv
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2 H. BOR

defines the sequence(zn) of the
(
N̄ , pn

)
mean of the sequence(sn) generated by the sequence

of coefficients(pn) (see [6]). The series
∑

an is said to be summable
∣∣N̄ , pn

∣∣
k
, k ≥ 1, if (see

[3])
∞∑

n=1

(
Pn

pn

)k−1

|zn − zn−1|k < ∞.

In the special casepn = 1 for all values ofn (resp. k = 1), then
∣∣N̄ , pn

∣∣
k

summability is
the same as|C, 1|k (resp.

∣∣N̄ , pn

∣∣) summability. Also if we takepn = 1
n+1

, then
∣∣N̄ , pn

∣∣
k

summability reduces to
∣∣N̄ , 1

n+1

∣∣
k

summability.
Mazhar [7] has proved the following theorem for summability factors by usingδ-quasi-

monotone sequences.

Theorem 1.1. Let λn → 0 as n → ∞. Suppose that there exists a sequence of numbers
(An) such that it isδ-quasi-monotone with

∑
nδn log n < ∞,

∑
An log n is convergent and

|∆λn| ≤ |An| for all n. If

m∑
n=1

1

n
|tn|k = O (log m) as m →∞,

then the series
∑

anλn is summable|C, 1|k, k ≥ 1.

Later on Bor [4] generalized Theorem 1.1 for a
∣∣N̄ , pn

∣∣
k

summability method in the following
form.

Theorem 1.2.Letλn → 0 asn →∞ and let(pn) be a sequence of positive numbers such that

Pn = O (npn) as n →∞.

Suppose that there exists a sequence of numbers(An) such that it isδ-quasi-monotone with∑
nδnXn < ∞,

∑
AnXn is convergent and|∆λn| ≤ |An| for all n. If

m∑
n=1

pn

Pn

|tn|k = O (Xm) as m →∞,

where(Xn) is a positive increasing sequence, then the series
∑

anλn is summable
∣∣N̄ , pn

∣∣
k
,

k ≥ 1.

It should be noted that if we takeXn = log n andpn = 1 for all values ofn in Theorem 1.2,
then we get Theorem 1.1.

2. THE M AIN RESULT.

Due to the restrictionPn = O (npn) on (pn) , no result forpn = 1
n+1

can be deduced from
Theorem 1.2. Therefore the aim of this paper is to prove Theorem 1.2 under weaker conditions
and in a more general form without this condition. For this we need the concept of almost
increasing sequence. A positive sequence(dn) is said to be almost increasing if there exists a
positive increasing sequence(cn) and two positive constantsA andB such thatAcn ≤ dn ≤
Bcn (see [1]). Obviously, every increasing sequence is almost increasing but the converse need
not be true as can be seen from the exampledn = ne(−1)n

. Since(Xn) is increasing in Theorem
1.2, we are weakening the hypotheses of the theorem by replacing the increasing sequence with
an almost increasing sequence.

Now, we shall prove the following theorem.
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Theorem 2.1.Let(Xn) be an almost increasing sequence andλn → 0 asn →∞. Suppose that
there exists a sequence of numbers(An) such that it isδ-quasi-monotone with

∑
nδnXn < ∞,∑

AnXn is convergent and|∆λn| ≤ |An| for all n. If

m∑
n=1

1

n
|λn| = O (1) ,

m∑
n=1

1

n
|tn|k = O (Xm) as m →∞

and
m∑

n=1

pn

Pn

|tn|k = O (Xm) as m →∞,

then the series
∑

anλn is summable
∣∣N̄ , pn

∣∣
k
, k ≥ 1.

We need the following lemmas for the proof of our theorem.

Lemma 2.2. Under the conditions of the theorem, we have

|λn|Xn = O (1) as n →∞.

Proof. Sinceλn → 0 asn →∞, we have that

|λn|Xn = Xn

∣∣∣∣∣
∞∑

v=n

∆λv

∣∣∣∣∣ ≤ Xn

∞∑
v=n

|∆λv| ≤
∞∑

v=0

Xv |∆λv| ≤
∞∑

v=0

Xv |Av| < ∞.

Hence|λn|Xn = O (1) asn →∞. �

Lemma 2.3. Let (Xn) be an almost increasing sequence. If(An) is δ-quasi-monotone with∑
nδnXn < ∞,

∑
AnXn is convergent, then

nAnXn = O (1) ,
∞∑

n=1

nXn |∆An| < ∞.

The proof of Lemma 2.3 is similar to the proof of Theorem 1 and Theorem 2 of Boas [2, case
γ = 1], and hence is omitted.

3. PROOF OF THE THEOREM

Proof of Theorem 2.1.Let (Tn) denote the
(
N̄ , pn

)
mean of the series

∑
anλn. Then, by defi-

nition and changing the order of summation, we have

Tn =
1

Pn

n∑
v=0

pv

v∑
i=0

aiλi =
1

Pn

n∑
v=0

(Pn − Pv−1) avλv.

Then, forn ≥ 1, we have

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1avλv =
pn

PnPn−1

n∑
v=1

Pv−1λv

v
vav.

J. Inequal. Pure and Appl. Math., 1(2) Art. 18, 2000 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 H. BOR

By Abel’s transformation, we get

Tn − Tn−1 =
n + 1

nPn

pntnλn −
pn

PnPn−1

n−1∑
v=1

pvtvλv
v + 1

v
+

pn

PnPn−1

n−1∑
v=1

Pvtv∆λv
v + 1

v

+
pn

PnPn−1

n−1∑
v=1

Pvtvλv+1
1

v
= Tn,1 + Tn,2 + Tn,3 + Tn,4, say.

Since

|Tn,1 + Tn,2 + Tn,3 + Tn,4|k ≤ 4k
(
|Tn,1|k + |Tn,2|k + |Tn,3|k + |Tn,4|k

)
,

to complete the proof of the theorem, it is enough to show that

∞∑
n=1

(
Pn

pn

)k−1

|Tn,r|k < ∞ for r = 1, 2, 3, 4.

Sinceλn is bounded by the hypothesis, we have that

m∑
n=1

(
Pn

pn

)k−1

|Tn,1|k = O (1)
m∑

n=1

pn

Pn

|tn|k |λn| |λn|k−1

= O (1)
m∑

n=1

pn

Pn

|tn|k |λn|

= O (1)
m−1∑
n=1

|∆λn|
n∑

v=1

pv

Pv

|tv|k + O (1) |λm|
m∑

n=1

pn

Pn

|tn|k

= O (1)
m−1∑
n=1

|∆λn|Xn + O (1) |λm|Xm

= O (1)
m−1∑
n=1

|An|Xn + O (1) |λm|Xm = O (1) as m →∞,

by virtue of the hypotheses of the theorem and Lemma 2.2.
Now, whenk > 1, applying Hölder’s inequality, as inTn,1, we have that

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,2|k = O (1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

pv |tv|k |λv|k ×

{
1

Pn−1

n−1∑
v=1

pv

}k−1

= O (1)
m∑

v=1

pv |tv|k |λv| |λv|k−1
m+1∑

n=v+1

pn

PnPn−1

= O (1)
m∑

v=1

|λv|
pv

Pv

|tv|k = O (1) as m →∞.

J. Inequal. Pure and Appl. Math., 1(2) Art. 18, 2000 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


AN APPLICATION OFALMOST INCREASING AND δ-QUASI-MONOTONESEQUENCES 5

Again we have that,

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,3|k = O (1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

Pv |tv|k |Av| ×

{
1

Pn−1

n−1∑
v=1

Pv |Av|

}k−1

= O (1)
m∑

v=1

Pv |tv|k |Av|
m+1∑

n=v+1

pn

PnPn−1

= O (1)
m∑

v=1

|tv|k |Av|

= O (1)
m∑

v=1

v |Av|
1

v
|tv|k

= O (1)
m−1∑
v=1

∆ (v |Av|)
v∑

i=1

1

i
|ti|k + O (1) m |Am|

m∑
v=1

1

v
|tv|k

= O (1)
m−1∑
v=1

|∆ (v |Av|)|Xv + O (1) m |Am|Xm

= O (1)
m−1∑
v=1

v |∆Av|Xv + O (1)
m−1∑
v=1

|Av+1|Xv+1 + O (1) m |Am|Xm

= O (1) as m →∞,

in view of the hypotheses of Theorem 2.1 and Lemma 2.3.
Finally, we get that

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,4|k ≤
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

Pv |tv|k |λv+1|
1

v
×

{
1

Pn−1

n−1∑
v=1

Pv |λv+1|
1

v

}k−1

= O (1)
m∑

v=1

Pv |tv|k |λv+1|
1

v

m+1∑
n=v+1

pn

PnPn−1

= O (1)
m∑

v=1

|λv+1|
1

v
|tv|k

= O (1)
m−1∑
v=1

∆ |λv+1|
v∑

i=1

1

i
|ti|k + O (1) |λm+1|

m∑
v=1

1

v
|tv|k

= O (1)
m−1∑
v=1

|∆λv+1|Xv+1 + O (1) |λm+1|Xm+1

= O (1)
m−1∑
v=1

|λv+1|Xv+1 + O (1) |λm+1|Xm+1 = O (1) as m →∞,

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.2.
Therefore we get

m∑
n=1

(
Pn

pn

)k−1

|Tn,r|k = O (1) as m →∞, for r = 1, 2, 3, 4.

This completes the proof of the theorem. �
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6 H. BOR

If we takepn = 1 for all values ofn (resp.pn = 1
n+1

), then we get a result concerning the
|C, 1|k (resp.

∣∣N̄ , 1
n+1

∣∣
k
) summability factors.
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