

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 4, Issue 1, Article 17, 2003

COEFFICIENT INEQUALITIES FOR CERTAIN CLASSES OF MEROMORPHICALLY STARLIKE AND MEROMORPHICALLY CONVEX FUNCTIONS

SHIGEYOSHI OWA AND NICOLAE N. PASCU

DEPARTMENT OF MATHEMATICS KINKI UNIVERSITY HIGASHI-OSAKA, OSAKA 577-8502 JAPAN. owa@math.kindai.ac.jp

DEPARTMENT OF MATHEMATICS TRANSILVANIA UNIVERSITY OF BRASOV R-2200 BRASOV ROMANIA. pascu@info.unitbv.ro

Received 27 November, 2002; accepted 17 January, 2003 Communicated by H.M. Srivastava

ABSTRACT. Let Σ_r be the class of meromorphic functions f(z) in \mathbb{D}_r with a simple pole at the origin. Two subclasses $T_r^*(\alpha)$ and $\mathcal{C}_r(\alpha)$ of Σ_r are considered. Some coefficient properties of functions f(z) to be in the classes $T_r^*(\alpha)$ and $\mathcal{C}_r(\alpha)$ of Σ_r are discussed. Also, the starlikeness and the convexity of functions f(z) in Σ_r are discussed.

Key words and phrases: Meromorphic functions, Univalent functions, Starlike functions, Convex functions.

2000 Mathematics Subject Classification. Primary 30C45.

1. INTRODUCTION

Let Σ_r denote the class of functions f(z) of the form:

(1.1)
$$f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$$

which are analytic in the punctured disk $\mathbb{D}_r = \{z \in \mathbb{C} : 0 < |z| < r \leq 1\}$. A function $f(z) \in \Sigma_r$ is said to be starlike of order α if it satisfies the inequality:

(1.2)
$$\operatorname{Re}\left(-\frac{zf'(z)}{f(z)}\right) > \alpha \qquad (z \in \mathbb{D}_r)$$

ISSN (electronic): 1443-5756

^{© 2003} Victoria University. All rights reserved.

⁰⁰⁷⁻⁰³

for some α ($0 \leq \alpha < 1$). We say that f(z) is in the class $\mathcal{T}_r^*(\alpha)$ for such functions. A function $f(z) \in \Sigma_r$ is said to be convex of order α if it satisfies the inequality:

(1.3)
$$\operatorname{Re}\left\{-\left(1+\frac{zf''(z)}{f'(z)}\right)\right\} > \alpha \qquad (z \in \mathbb{D}_r)$$

for some α ($0 \leq \alpha < 1$). We say that f(z) is in the class $C_r(\alpha)$ if it is convex of order α in \mathbb{D}_r . We note that $f(z) \in C_r(\alpha)$ if and only if $-zf'(z) \in \mathcal{T}_r^*(\alpha)$. There are many papers discussing various properties of classes consisting of univalent, starlike, convex, multivalent, and meromorphic functions in the book by Srivastava and Owa [3].

Ozaki [2] has shown that the necessary and sufficient condition that $f(z) \in \Sigma_r$ with $a_n \ge 0$ $(n = 1, 2, 3, \dots)$ is meromorphic and univalent in \mathbb{D}_r is that there should exist the relation:

$$\sum_{n=1}^{\infty} n a_n r^{n+1} \leq 1$$

between its coefficients.

Our results in the present paper are an improvement and extension of the above theorem by Ozaki [2].

2. COEFFICIENT INEQUALITIES FOR FUNCTIONS

Our first result for the functions $f(z) \in \Sigma_r$ is contained in **Theorem 2.1.** If $f(z) \in \Sigma_r$ satisfies

(2.1)
$$\sum_{n=0}^{\infty} (n+k+|2\alpha+n-k|)|a_n|r^{n+1} \leq 2(1-\alpha)$$

for some α $(0 \leq \alpha < 1)$ and k $(\alpha < k \leq 1)$, then $f(z) \in \mathcal{T}_r^*(\alpha)$.

Proof. For $f(z) \in \Sigma_r$, we know that

$$|zf'(z) + kf(z)| - |zf'(z) + (2\alpha - k)f(z)|$$

= $\left| (k-1)\frac{1}{z} + \sum_{n=0}^{\infty} (n+k)a_n z^n \right| - \left| (2\alpha - k - 1)\frac{1}{z} + \sum_{n=0}^{\infty} (2\alpha + n - k)a_n z^n \right|.$

Therefore, applying the condition of the theorem, we have

$$r |zf'(z) + kf(z)| - r |zf'(z) + (2\alpha - k)f(z)|$$

$$\leq (k - 1) + \sum_{n=0}^{\infty} (n + k)|a_n|r^{n+1} - (k + 1 - 2\alpha) + \sum_{n=0}^{\infty} |2\alpha + n - k||a_n|r^{n+1}$$

$$= 2(\alpha - 1) + \sum_{n=0}^{\infty} (n + k + |2\alpha + n - k|)|a_n|r^{n+1}$$

$$\leq 0,$$

which shows that

$$\sum_{n=0}^{\infty} (n+k+|2\alpha+n-k|)|a_n|r^{n+1} \le 2(1-\alpha).$$

It follows from the above that

$$\left|\frac{zf'(z) + kf(z)}{zf'(z) + (2\alpha - k)f(z)}\right| \le 1,$$

so that

$$\operatorname{Re}\left(-\frac{zf'(z)}{f(z)}\right) > \alpha \quad (z \in \mathbb{D}_r).$$

Letting k = 0 in Theorem 2.1, we have Corollary 2.2. If $f(z) \in \Sigma_r$ satisfies

(2.2)
$$\sum_{n=0}^{\infty} (n+\alpha) |a_n| r^{n+1} \leq 1 - \alpha$$

for some α $(\frac{1}{2} \leq \alpha < 1)$, then $f(z) \in \mathcal{T}_r^*(\alpha)$.

Theorem 2.1 gives us the following results.

Corollary 2.3. Let the function $f(z) \in \Sigma_r$ be given by (1.1) with $a_n = |a_n|e^{-\frac{n+1}{2\pi}i}$, then $f(z) \in \mathcal{T}_r^*(\alpha)$ if and only if

(2.3)
$$\sum_{n=0}^{\infty} (n+\alpha) |a_n| r^{n+1} \leq 1 - \alpha$$

for some $\alpha (\frac{1}{2} \leq \alpha < 1)$.

Proof. In view of Theorem 2.1, we see that if the coefficient inequality (2.3) holds true for some α $(\frac{1}{2} \leq \alpha < 1)$, then $f(z) \in \mathcal{T}_r^*(\alpha)$.

Conversely, let f(z) be in the class $\mathcal{T}^*_r(\alpha)$, then

$$\operatorname{Re}\left(-\frac{zf'(z)}{f(z)}\right) = \operatorname{Re}\left(\frac{1-\sum_{n=0}^{\infty}na_nz^{n+1}}{1+\sum_{n=0}^{\infty}a_nz^{n+1}}\right) > \alpha$$

for all $z \in \mathbb{D}_r$. Letting $z = re^{\frac{1}{2\pi}i}$, we have that $a_n z^{n+1} = |a_n|r^{n+1}$. This implies that

$$1 - \sum_{n=0}^{\infty} n |a_n| r^{n+1} \ge \alpha \left(1 + \sum_{n=0}^{\infty} |a_n| r^{n+1} \right),$$

which is equivalent to (2.3).

Example 2.1. The function f(z) given by

$$f(z) = \frac{1}{z} + a_0 + \left(\frac{1 - \alpha - \alpha |a_0|}{n + \alpha}\right) e^{i\theta} z^n$$

belongs to the class $\mathcal{T}_r^*(\alpha)$ for some real θ with $\frac{1}{2} \leq \alpha \leq \frac{1}{1+|a_0|} < 1$.

Remark 2.4. If $f(z) \in \Sigma_r$ with $a_0 = 0$, then Corollary 2.3 holds true for some α $(0 \le \alpha < 1)$. **Corollary 2.5.** Let the function $f(z) \in \Sigma_r$ be given by (1.1) with $a_n \ge 0$, then $f(z) \in \mathcal{T}_r^*(\alpha)$ if and only if

$$\sum_{n=0}^{\infty} (n+\alpha)a_n r^{n+1} \leq 1-\alpha$$

for some α $(\frac{1}{2} \leq \alpha < 1)$.

Remark 2.6. If $f(z) \in \Sigma_r$ with $a_0 = 0$, then Corollary 2.5 holds true for $0 \leq \alpha < 1$. **Remark 2.7.** Juneja and Reddy [1] have given that $f(z) \in \Sigma_1$ with $a_0 = 0$ and $a_n \geq 0$ belongs to the class $\mathcal{T}_1^*(\alpha)$ if and only if

$$\sum_{n=1}^{\infty} (n+\alpha)a_n \leq 1-\alpha.$$

Theorem 2.8. If $f(z) \in \Sigma_r$ satisfies

(2.4)
$$\sum_{n=1}^{\infty} n(n+\alpha) |a_n| r^{n+1} \leq 1 - \alpha$$

for some α ($0 \leq \alpha < 1$), then f(z) belongs to the class $C_r(\alpha)$.

Proof. Noting that $f(z) \in \mathcal{C}_r(\alpha)$ if and only if $-zf'(z) \in \mathcal{T}_r^*(\alpha)$, and that

$$-zf'(z) = \frac{1}{z} - \sum_{n=1}^{\infty} na_n z^n,$$

we complete the proof of the theorem with the aid of Theorem 2.1.

Corollary 2.9. Let the function $f(z) \in \Sigma_r$ be given by (1.1) with $a_n = |a_n|e^{-\frac{n+1}{2\pi}i}$, then $f(z) \in C_r(\alpha)$ if and only if the inequality (2.4) holds true for some α ($0 \leq \alpha < 1$).

Example 2.2. The function f(z) given by

$$f(z) = \frac{1}{z} + a_0 + \left(\frac{1-\alpha}{n(n+\alpha)}\right)e^{i\theta}z^n$$

belongs to the class $C_r(\alpha)$ for some real θ with $0 \leq \alpha < 1$.

Corollary 2.10. Let the function $f(z) \in \Sigma_r$ be given by (1.1) with $a_n \ge 0$, then $f(z) \in C_r(\alpha)$ if and only if

(2.5)
$$\sum_{n=1}^{\infty} n(n+\alpha)a_n r^{n+1} \leq 1-\alpha$$

for some $\alpha (0 \leq \alpha < 1)$.

3. STARLIKENESS AND CONVEXITY OF FUNCTIONS

We consider the radius problems for starlikeness and convexity of functions f(z) belonging to the class Σ_r .

Theorem 3.1. A function $f(z) \in \Sigma_r$ belongs to the class $\mathcal{T}_r^*(\alpha)$ for $0 \leq r < r_0$, where r_0 is the smallest positive root of the equation

(3.1)
$$\alpha |a_0| r^3 - (\delta + 1 - \alpha) r^2 - \alpha |a_0| r + 1 - \alpha = 0,$$

and

(3.2)
$$\delta = \sqrt{\sum_{n=1}^{\infty} n|a_n|^2 + \alpha} \sqrt{\sum_{n=1}^{\infty} \frac{1}{n}|a_n|^2}$$

Proof. Using the Cauchy inequality, we see that

$$\begin{split} \sum_{n=0}^{\infty} (n+\alpha) |a_n| r^{n+1} \\ &= \alpha |a_0| r + \sum_{n=1}^{\infty} |a_n| r^{n+1} \\ &\leq \alpha |a_0| r + \sqrt{\sum_{n=1}^{\infty} n |a_n|^2} \sqrt{\sum_{n=1}^{\infty} n r^{2n+2}} + \alpha \sqrt{\sum_{n=1}^{\infty} \frac{1}{n} |a_n|^2} \sqrt{\sum_{n=1}^{\infty} n r^{2n+2}} \\ &= \alpha |a_0| r + \sqrt{\frac{r^4}{(1-r^2)^2}} \left(\sqrt{\sum_{n=1}^{\infty} n |a_n|^2} + \alpha \sqrt{\sum_{n=1}^{\infty} \frac{1}{n} |a_n|^2} \right) \\ &= \alpha |a_0| r + \frac{r^2}{1-r^2} \delta < 1 - \alpha, \end{split}$$

where δ is given by (3.2). Therefore, an application of Corollary 2.2 gives us that $f(z) \in \mathcal{T}_r^*(\alpha)$ for $0 \leq r < r_0$.

Letting $a_0 = 0$ in Theorem 3.1, we have

Corollary 3.2. A function $f(z) \in \Sigma_r$ with $a_0 = 0$ belongs to the class $\mathcal{T}_r^*(\alpha)$ for $0 \leq r < r_0$, where

$$r_0 = \sqrt{1 - \frac{\delta}{\delta + 1 - \alpha}}$$

and δ is given by (3.2).

Example 3.1. If we consider the function f(z) given by

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} e^{i\theta_n} z^n \qquad (\theta_n \text{ is real}),$$

then $f(z) \in \mathcal{T}^*_r(\alpha)$ for $0 \leq r < r_0$ with

$$\delta = \sqrt{\sum_{n=1}^{\infty} \frac{1}{n^2}} + \alpha \sqrt{\sum_{n=1}^{\infty} \frac{1}{n^4}}$$
$$= \sqrt{\zeta(2)} + \alpha \sqrt{\zeta(4)}$$
$$= \pi \left(\frac{1}{\sqrt{6}} + \frac{\pi \alpha}{3\sqrt{10}}\right).$$

Further, letting $\alpha = 0$, we have that

$$\delta = \frac{\pi}{\sqrt{6}} \cong 1.282550$$

and

$$r_0 = \sqrt{\frac{\sqrt{6}}{\sqrt{6} + \pi}} \approx 0.661896.$$

Finally, for convexity of functions f(z), we derive

Theorem 3.3. A function $f(z) \in \Sigma_r$ belongs to the class $C_r(\alpha)$ for $0 \leq r < r_1$, where

$$r_1 = \sqrt{1 - \frac{\sigma}{\sigma + 1 - \alpha}}$$

and

$$\sigma = \sqrt{\sum_{n=1}^{\infty} n^3 |a_n|^2} + \alpha \sqrt{\sum_{n=1}^{\infty} n |a_n|^2}.$$

Example 3.2. Let us consider the function f(z) given by

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{1}{n^2 \sqrt{n}} e^{i\theta_n} z^n \qquad (\theta_n \text{ is real}).$$

We see that $f(z) \in \mathcal{C}_r(\alpha)$ for $0 \leq r < r_0$ with

$$\delta = \pi \left(\frac{1}{\sqrt{6}} + \frac{\pi \alpha}{3\sqrt{10}} \right)$$

Taking $\alpha = 0$, we obtain

$$\delta = \frac{\pi}{\sqrt{6}} \cong 1.282550$$

and

$$r_0 = \sqrt{\frac{\sqrt{6}}{\sqrt{6} + \pi}} \approx 0.661896.$$

REFERENCES

- [1] O.P. JUNEJA AND T.R. REDDY, Meromorphic starlike and univalent functions with positive coefficients, *Ann. Univ. Mariae Curie-Sklodowska*, **39**(1985), 65–76.
- [2] S. OZAKI, Some remarks on the univalency and multivalency of functions, Sci. Rep. Tokyo Bunrika Daigaku, 2(1934), 41–55.
- [3] H.M. SRIVASTAVA AND S. OWA (Ed.), *Current Topics in Analytic Function Theory*, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.