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Abstract

We first improve two Ostrowski type inequalities for monotonic functions, then
provide its application for special means.
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1. Introduction
In [1], Dragomir established the following Ostrowski’s inequality for monotonic
mappings.

Theorem 1.1. Let f : [a, b] → R be a monotonic nondecreasing mapping on
[a, b]. Then for allx ∈ [a, b], we have the following inequality∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣
≤ 1

b− a

{
[2x− (a + b)]f(x) +

∫ b

a

sgn(t− x)f(t)dt

}
≤ 1

b− a
[(x− a)(f(x)− f(a)) + (b− x)(f(b)− f(x))]

≤

[
1

2
+

∣∣x− a+b
2

∣∣
b− a

]
(f(b)− f(a)).(1.1)

The constant1
2

is the best possible one.

In [2], Dragomir, Pěcaríc and Wang generalized Theorem1.1and proved

Theorem 1.2. Let f : [a, b] → R be a monotonic nondecreasing mapping on
[a, b] andt1, t2, t3 ∈ (a, b) be such thatt1 ≤ t2 ≤ t3. Then∣∣∣∣∫ b

a

f(x)dx− [(t1 − a)f(a) + (t3 − t1)f(t2) + (b− t3)f(b)]

∣∣∣∣
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≤ (b− t3)f(b) + (2t2 − t1 − t3)f(t2)− (t1 − a)f(a)

+

∫ b

a

T (x)f(x)dx

≤ (b− t3)(f(b)− f(t3)) + (t3 − t2)(f(t3)− f(t2))

+ (t2 − t1)(f(t2)− f(t1)) + (t1 − a)(f(t1)− f(a))

≤ max{t1 − a, t2 − t1, t3 − t2, b− t3}(f(b)− f(a)),(1.2)

whereT (x) = sgn(t1 − x), for x ∈ [a, t2], and T (x) = sgn(t3 − x), for
x ∈ [t2, b].

In the present paper, we firstly improve the above results, and then provide
its application for some special means.
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2. Main Result
We shall start with the following result.

Theorem 2.1. Let f : [a, b] → R be a monotonic nondecreasing mapping on
[a, b] and lett1, t2, t3 ∈ [a, b] be such thatt1 ≤ t2 ≤ t3. Then∣∣∣∣∫ b

a

f(x)dx− [(t1 − a)f(a) + (t3 − t1)f(t2) + (b− t3)f(b)]

∣∣∣∣
≤ max{(b− t3)(f(b)− f(t3)) + (t2 − t1)(f(t2)− f(t1)),

(t3 − t2)(f(t3)− f(t2)) + (t1 − a)(f(t1)− f(a))}(2.1)

≤ max{t1 − a, t2 − t1, t3 − t2, b− t3}(f(b)− f(a)).(2.2)

Proof. Sincef(x) is a monotonic nondecreasing mapping on[a, b], we have∣∣∣∣∫ b

a

f(x)dx− [(t1 − a)f(a) + (t3 − t1)f(t2) + (b− t3)f(b)]

∣∣∣∣
=

∣∣∣∣∫ t1

a

(f(x)− f(a))dx +

∫ t3

t1

(f(x)− f(t2))dx +

∫ b

t3

(f(x)− f(b))dx

∣∣∣∣
=

∣∣∣∣[∫ t1

a

(f(x)− f(a))dx +

∫ t3

t2

(f(x)− f(t2))dx

]
−

[∫ t2

t1

(f(t2)− f(x))dx +

∫ b

t3

(f(b)− f(x))dx

]∣∣∣∣
≤ max{(b− t3)(f(b)− f(t3)) + (t2 − t1)(f(t2)− f(t1)),

(t3 − t2)(f(t3)− f(t2)) + (t1 − a)(f(t1)− f(a))}
≤ max{t1 − a, t2 − t1, t3 − t2, b− t3}(f(b)− f(a)).
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Thus (2.1) and (2.2) is proved.

For t1 = t2 = t3 = x, Theorem2.1becomes the following corollary.

Corollary 2.2. Letf be defined as in Theorem2.1. Then∣∣∣∣∫ b

a

f(x)dx− [(x− a)f(a) + (b− x)f(b)]

∣∣∣∣
≤ max{(b− x)(f(b)− f(x)), (x− a)(f(x)− f(a))}
≤ max{x− a, b− x} ·max{(f(x)− f(a)), (f(b)− f(x))}

≤
[
1

2
(b− a) +

∣∣∣∣x− a + b

2

∣∣∣∣] (f(b)− f(a)).

Forx = a+b
2

, we get trapezoid inequality.

Corollary 2.3. Letf be defined as in Theorem2.1. Then∣∣∣∣∫ b

a

f(x)dx− f(a) + f(b)

2
(b− a)

∣∣∣∣
≤ b− a

2
max

{(
f

(
a + b

2

)
− f(a)

)
,

(
f(b)− f

(
a + b

2

))}
(2.3)

≤ 1

2
(b− a)(f(b)− f(a)).

For t1 = a, t2 = x, t3 = b, we get Theorem1.1.
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3. Application for Special Means
In this section, we shall give application of Corollary2.3. Let us recall the
following means.

1. The arithmetic mean:

A = A(a, b) :=
a + b

2
, a, b ≥ 0.

2. The geometric mean:

G = G(a, b) :=
√

ab, a, b ≥ 0.

3. The harmonic mean:

H = H(a, b) :=
2

1/a + 1/b
, a, b ≥ 0.

4. The logarithmic mean:

L = L(a, b) :=
b− a

ln b− ln a
, a, b ≥ 0, a 6= b; If a = b, thenL(a, b) = a.

5. The identric mean:

I = I(a, b) :=
1

e

(
bb

aa

) 1
b−a

, a, b ≥ 0, a 6= b; If a = b, thenI(a, b) = a.
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6. Thep-logarithmic mean:

Lp = Lp(a, b) :=

[
bp+1 − ap+1

(p + 1)(b− a)

] 1
p

, a 6= b; If a = b, thenLp(a, b) = a,

wherep 6= −1, 0 anda, b > 0.

The following simple relationships are known in the literature

H ≤ G ≤ L ≤ I ≤ A.

We are going to use inequality (2.3) in the following equivalent version:∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− f(a) + f(b)

2

∣∣∣∣
≤ 1

2
max

{(
f

(
a + b

2

)
− f(a)

)
,

(
f(b)− f

(
a + b

2

))}
(3.1)

≤ 1

2
(f(b)− f(a)),

wheref : [a, b] → R is monotonic nondecreasing on[a, b].

3.1. Mapping f(x) = xp

Consider the mappingf : [a, b] ⊂ (0,∞) → R, f(x) = xp, p > 0. Then

1

b− a

∫ b

a

f(t)dt = Lp
p(a, b),

http://jipam.vu.edu.au/
mailto:sever.dragomir@vu.edu.au
mailto:mlfang@pine.njnu.edu.cn
http://jipam.vu.edu.au/


Improvement of An Ostrowski
Type Inequality for Monotonic
Mappings and Its Application

for Some Special Means

S.S. Dragomir and M.L. Fang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 9 of 13

J. Ineq. Pure and Appl. Math. 2(3) Art. 31, 2001

http://jipam.vu.edu.au

f(a) + f(b)

2
= A(ap, bp),

f(b)− f(a) = p(b− a)Lp−1
p−1.

Then by (3.1), we get

∣∣Lp
p(a, b)− A(ap, bp)

∣∣ ≤ 1

2
max

{(
a + b

2

)p

− ap, bp −
(

a + b

2

)p}
=

1

2

[
bp −

(
a + b

2

)p]
=

1

2
(bp − ap)− 1

2

((
a + b

2

)p

− ap

)
≤ 1

2
p(b− a)Lp−1

p−1 −
p(b− a)ap−1

4
.(3.2)

Remark3.1. The following result was proved in [2].∣∣Lp
p(a, b)− A(ap, bp)

∣∣ ≤ 1

2
p(b− a)Lp−1

p−1.

3.2. Mapping f(x) = −1/x

Consider the mappingf : [a, b] ⊂ (0,∞) → R, f(x) = − 1
x
. Then

1

b− a

∫ b

a

f(t)dt = −L−1(a, b),

http://jipam.vu.edu.au/
mailto:sever.dragomir@vu.edu.au
mailto:mlfang@pine.njnu.edu.cn
http://jipam.vu.edu.au/


Improvement of An Ostrowski
Type Inequality for Monotonic
Mappings and Its Application

for Some Special Means

S.S. Dragomir and M.L. Fang

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 13

J. Ineq. Pure and Appl. Math. 2(3) Art. 31, 2001

http://jipam.vu.edu.au

f(a) + f(b)

2
= − A(a, b)

G2(a, b)
,

f(b)− f(a) =
b− a

G2(a, b)
.

Then by (3.1), we get∣∣∣∣ A(a, b)

G2(a, b)
− L−1(a, b)

∣∣∣∣ ≤ 1

2
max

{
1

a
− 2

a + b
,

2

a + b
− 1

b

}
=

1

2
· b− a

a(a + b)
=

1

2
· b− a

ab
− 1

2
· b− a

b(a + b)

≤ 1

2
· b− a

G2(a, b)
− 1

2
· b− a

b(a + b)
.

Thus we get

(3.3) 0 ≤ AL−G2 ≤ 1

2

b

a + b
(b− a)L.

Remark3.2. The following result was proved in [2].

0 ≤ AG−G2 ≤ 1

2
(b− a)L.

3.3. Mapping f(x) = ln x

Consider the mappingf : [a, b] ⊂ (0,∞) → R, f(x) = ln x. Then

1

b− a

∫ b

a

f(t)dt = ln I(a, b),
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f(a) + f(b)

2
= ln G(a, b),

f(b)− f(a) =
b− a

L(a, b)
.

Then by (3.1), we get

|ln I(a, b)− ln G(a, b)| ≤ 1

2
max

{
ln

a + b

2
− ln a, ln b− ln

a + b

2

}
=

1

2
ln

a + b

2a
=

1

2

b− a

L(a, b)
− 1

2
ln

2b

a + b
.

Thus we get

(3.4) 1 ≤ I

G
≤

√
a + b

2b
e

1
2
· b−a
L(a,b) .

Remark3.3. The following result was proved in [2].

1 ≤ I

G
≤ e

1
2
· b−a
L(a,b) .
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