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ABSTRACT. In this short note, an algebraic inequality related to those of Alzer, Minc and Sathre
is proved by using analytic arguments and Cauchy’s mean-value theorem. An open problem is
proposed.
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1. AN ALGEBRAIC I NEQUALITY

In this note, we prove the following algebraic inequality

Theorem 1.1. Let b > a > 0 andδ > 0 be real numbers. Then for any given positiver ∈ R,
we have

(1.1)

(
b + δ − a

b− a
· br+1 − ar+1

(b + δ)r+1 − ar+1

)1/r

>
b

b + δ
.

The lower bound in(1.1) is best possible.

Proof. The inequality (1.1) is equivalent to

br+1 − ar+1

b− a

/
(b + δ)r+1 − ar+1

b + δ − a
>

(
b

b + δ

)r

,

that is,

(1.2)
br+1 − ar+1

br(b− a)
>

(b + δ)r+1 − ar+1

(b + δ)r(b + δ − a)
.
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Therefore, it is sufficient to prove that the function(sr+1 − ar+1)/sr(s− a) is decreasing for
s > a. By direct computation, we have(

sr+1 − ar+1

sr(s− a)

)′
s

=
(r + 1)(s− a)s2r − sr−1(sr+1 − ar+1)[(r + 1)s− ra]

[sr(s− a)]2
.

So, it suffices to prove

(1.3) (r + 1)(s− a)sr+1 − [(r + 1)s− ra](sr+1 − ar+1) 6 0.

A straightforward calculation shows that the inequality (1.3) reduces to

sr − ar

r(s− a)
>

ar

s
.(1.4)

From Cauchy’s mean-value theorem, there exists a pointξ ∈ (a, s) such that

sr − ar

r(s− a)
= ξr−1 =

ξr

ξ
>

ar

ξ
>

ar

s
.

Hence, the inequality (1.4) holds.
The L’Hospital rule yields

(1.5) lim
r→+∞

(
b + δ − a

b− a
· br+1 − ar+1

(b + δ)r+1 − ar+1

)1/r

=
b

b + δ
,

so the lower bound in (1.1) is best possible. The proof is complete. �

Remark 1.2. The inequality (1.1) can be rewritten as

(1.6)
b

b + δ
<

(
1

b− a

∫ b

a

xrdx

/
1

b + δ − a

∫ b+δ

a

xrdx

)1/r

.

It is easy to see that inequality (1.6) is indeed an integral analogue of the following inequality

(1.7)
n + k

n + m + k
<

(
1

n

n+k∑
i=k+1

ir
/

1

n + m

n+m+k∑
i=k+1

ir

)1/r

,

wherer is a given positive real number,n andm are natural numbers, andk is a nonnegative
integer. The lower bound in (1.7) is best possible.

The inequality (1.7) was presented in [5] by the author using Cauchy’s mean-value theorem
and mathematical induction. It generalizes the inequality of Alzer in [1].

Using the same method as in [5], the author in [9] further generalized the inequality of Alzer
and obtained that, ifa = (a1, a2, . . . ) is a positive and increasing sequence satisfying

a2
k+1 > akak+2,(1.8)

ak+1 − ak

a2
k+1 − akak+2

> max

{
k + 1

ak+1

,
k + 2

ak+2

}
(1.9)

for k ∈ N, then we have

(1.10)
an

an+m

<

(
1

n

n∑
i=1

ar
i

/
1

n + m

n+m∑
i=1

ar
i

)1/r

,

wheren andm are natural numbers. The lower bound in (1.10) is best possible.
Recently, some new inequalities related to those of Alzer, Minc and Sathre were obtained by

many mathematician. These inequalities involve ratios for the sum of powers of positive num-
bers (see [2, 12]) and for the geometric mean of natural numbers (see [4, 6, 7, 10, 11]). Many
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of them can be deduced from monotonicity and convexity considerations (see [8]). Moreover,
inequality (1.1) has been generalised to an inequality for linear positive functionals in [3].

Here L’Hospital’s rule yields

(1.11) lim
r→0+

(
b + δ − a

b− a
· br+1 − ar+1

(b + δ)r+1 − ar+1

)1/r

=
[bb/aa]1/(b−a)

[(b + δ)b+δ/aa]1/(b+δ−a)
.

Hence, we propose the following
Open Problem.Let b > a > 0 andδ > 0 be real numbers. Then for any positiver ∈ R, we

have

(1.12)

(
b + δ − a

b− a
· br+1 − ar+1

(b + δ)r+1 − ar+1

)1/r

<
[bb/aa]1/(b−a)

[(b + δ)b+δ/aa]1/(b+δ−a)
.

The upper bound in(1.12)is best possible.

Remark 1.3. The inequalities in this paper are related to the study of monotonicity of the ratios
and differences of mean values.
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