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Abstract: It is shown that ifα, β ≥ − 1
2
, then the orthonormal Jacobi polynomialsp

(α,β)
n

fulfill the local estimate

|p(α,β)
n (t)| ≤ C(α, β)

(
√

1− x + 1
n
)α+ 1

2 (
√

1 + x + 1
n
)β+ 1

2

for all t ∈ Un(x) and eachx ∈ [−1, 1], whereUn(x) are subintervals of[−1, 1]

defined byUn(x) = [x− ϕn(x)

n
, x+ ϕn(x)

n
]∩ [−1, 1] for n ∈ N andx ∈ [−1, 1]

with ϕn(x) =
√

1− x2 + 1
n

. Applications of the local estimate are given at the
end of the paper.
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1. Introduction

Let w(α,β)(x) = (1 − x)α(1 + x)β, x ∈ [−1, 1], be a Jacobi weight withα, β >

−1. Let pn(x) = p
(α,β)
n (x) = γ

(α,β)
n xn + . . ., n ∈ N0, denote the uniqueJacobi

polynomialsof precise degreen, with leading coefficientsγ(α,β)
n > 0, fulfilling the

orthonormal condition
∫ 1

−1
pn(x)pm(x)w(α,β)(x) dx = δn,m, n,m ∈ N0.

This paper is concerned with local estimates of Jacobi polynomials by means
of modified Jacobi weights. By themodified Jacobi weightswe understand the
functions

(1.1) w(α,β)
n (x) :=

(√
1− x +

1

n

)2α (√
1 + x +

1

n

)2β

, x ∈ [−1, 1], n ∈ N.

We observe that all modified Jacobi weightsw
(α,β)
n are finite and positive. This

is in contrast to the fact that the Jacobi weightw(α,β) may have singularities and
roots in±1, depending on whetherα andβ are negative or positive. The Jacobi
polynomials can be estimated by means of modified Jacobi weights as follows (see
[3] and Theorem2.1below):

|p(α,β)
n (x)| ≤ C

1

w
(α

2
+ 1

4
, β
2
+ 1

4
)

n (x)

for all x ∈ [−1, 1]. If α, β ≥ −1
2
, then we will show that this estimate can be further

extended, namely

|p(α,β)
n (t)| ≤ C

1

w
(α

2
+ 1

4
, β
2
+ 1

4
)

n (x)

for all t ∈ Un(x) and eachx ∈ [−1, 1], whereUn(x) are subintervals of[−1, 1]
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defined by

Un(x) :=

{
t ∈ [−1, 1]

∣∣∣ |t− x| ≤ ϕn(x)

n

}
(1.2)

=

[
x− ϕn(x)

n
, x +

ϕn(x)

n

]
∩ [−1, 1]

for n ∈ N andx ∈ [−1, 1] with

(1.3) ϕn(x) :=
√

1− x2 +
1

n
.

ThusUn(x) is located aroundx and issmall, i.e., |Un(x)| = O(1/n). In our case of
Jacobi weights on[−1, 1] we need intervals aroundx with radiusϕn(x)

n
instead of1

n
.

In this case the radius varies together withx and becomes smaller ifx tends to1 or
−1.
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2. Theorems

The following theorem provides a useful local estimate of the orthonormal Jacobi
polynomials by means of the modified weightswn. The estimate can also be found
in the paper [3] by Lubinsky and Totik. Here we will give an explicit proof. The
proof is essentially based on an estimate taken from Szegö [4].

Theorem 2.1.Letα, β > −1 andn ∈ N. Then

(2.1) |p(α,β)
n (x)| ≤ C

1

w
(α

2
+ 1

4
, β
2
+ 1

4
)

n (x)

for all x ∈ [−1, 1] with a positive constantC = C(α, β) being independent ofn and
x.

Proof. First let x ∈ [0, 1], and lett ∈ [0, π
2
] such thatx = cos t. Moreover, let

Pn = P
(α,β)
n = (h

(α,β)
n )

1
2 p

(α,β)
n (x), n ∈ N, be the polynomials normalized by the

factor (h
(α,β)
n )

1
2 , namelyP

(α,β)
n = (h

(α,β)
n )

1
2 p

(α,β)
n (x), as can be found in Szegö [4,

eq. (4.3.4)]. According to Szegö’s book [4, Theorem 7.32.2] the estimate

(2.2) |P (α,β)
n (cos t)| ≤ C

{
nα, if 0 ≤ t ≤ c

n

t−(α+ 1
2
)n−

1
2 , if c

n
≤ t ≤ π

2

is valid, wherec andC are fixed positive constants being independent ofn andt.
We substitutet = arccos x ∈ [0, π

2
] andP

(α,β)
n (x) = (h

(α,β)
n )

1
2 p

(α,β)
n (x) in (2.2) and

obtain, using(h(α,β)
n )−

1
2 ≤ C̃ · n 1

2 (resulting from [4, eq. (4.3.4)]),

(2.3) |p(α,β)
n (x)| ≤ C1

{
nα+ 1

2 , if 0 ≤ arccos x ≤ c
n

(arccos x)−(α+ 1
2
), if c

n
≤ arccos x ≤ π

2
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with C1 = C1(α, β) > 0 independent ofn andx. Below we will make use of the
estimates

π

2

√
1− x =

π√
2

√
1− x

2
=

π√
2

sin
t

2

≥ π√
2

(
2

π
· t√

2

)
= t = arccos x(2.4)

and

(2.5)
√

2
√

1− x = 2

√
1− x

2
= 2 sin

t

2
≤ 2 · t

2
= t = arccos x.

The cases−1 < α ≤ −1
2

andα > −1
2

are considered separately in the following.

Case−1 < α ≤ −1
2
: In this case it follows that−

(
α + 1

2

)
≥ 0. If 0 ≤ arccos x ≤

c
n
, then

∣∣p(α,β)
n (x)

∣∣ (2.3)

≤ C1 nα+ 1
2 = C1

(
1

n

)−(α+ 1
2)
≤ C1

(√
1− x +

1

n

)−(α+ 1
2)

.

If c
n
≤ arccos x ≤ π

2
, then

∣∣p(α,β)
n (x)

∣∣ (2.3)

≤ C1 (arccos x)−(α+ 1
2)

(2.4)

≤ C2 (
√

1− x)−(α+ 1
2)

≤ C2

(√
1− x +

1

n

)−(α+ 1
2)

.

Caseα > −1
2
: In this case we obtain−

(
α + 1

2

)
< 0. If 0 ≤ arccos ≤ c

n
, then
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from (2.5) we obtainc
n
≥
√

2
√

1− x and hence

∣∣p(α,β)
n (x)

∣∣ (2.3)

≤ C1 nα+ 1
2 = C2

( c

n
+

c

n

)−(α+ 1
2)

≤ C3

(√
1− x +

1

n

)−(α+ 1
2)

.

If c
n
≤ arccos x ≤ π

2
, then

∣∣p(α,β)
n (x)

∣∣ (2.3)

≤ C1 (arccos x)−(α+ 1
2) = C4 (arccos x + arccos x︸ ︷︷ ︸

≥ c
n

)−(α+ 1
2)

(2.5)

≤ C5

(√
1− x +

1

n

)−(α+ 1
2)

.

With both previous cases we have proved

∣∣p(α,β)
n (x)

∣∣ ≤ C6(α, β)

(√
1− x +

1

n

)−(α+ 1
2)
·
(√

1 + x +
1

n

)−(β+ 1
2)

for all x ∈ [0, 1], n ∈ N andα, β > −1. Sincep
(α,β)
n (x) = (−1)np

(β,α)
n (−x), we

obtain

∣∣p(α,β)
n (x)

∣∣ ≤ C6(β, α)

(√
1 + x +

1

n

)−(β+ 1
2)
·
(√

1− x +
1

n

)−(α+ 1
2)

for all x ∈ [−1, 0), n ∈ N andα, β > −1. This furnishes the validity of (2.1).
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Estimate (2.1) of Theorem2.1 cannot hold true forn = 0 since the modified
weightwn is not defined forn = 0. However, ifn = 0, then

(2.6)
∣∣∣p(α,β)

0 (x)
∣∣∣ ≤ C(α, β)

1

w
(α

2
+ 1

4
, β
2
+ 1

4)
1 (x)

,

sincep
(α,β)
0 (x) is a constant andC1(α, β) ≤ w

(α
2
+ 1

4
, β
2
+ 1

4)
1 (x) ≤ C2(α, β) with posi-

tive constantsC1(α, β) andC2(α, β).
Next, we will see that the local estimate of Theorem2.1can be further extended.

We will show that
∣∣∣p(α,β)

n (x)
∣∣∣ in (2.1) can be replaced by

∣∣∣p(α,β)
n (t)

∣∣∣, whenevert is not

too far away fromx, namely ift is in the intervalUn(x) =
[
x− ϕn(x)

n
, x + ϕn(x)

n

]
∩

[−1, 1]. However, for this estimate we will need the assumptionα, β ≥ −1
2
. The

result is stated in the following

Theorem 2.2.Letα, β ≥ −1
2

andn ∈ N. Then

(2.7) |p(α,β)
n (t)| ≤ C

1

w
(α

2
+ 1

4
, β
2
+ 1

4)
n (x)

for all t ∈ Un(x) and eachx ∈ [−1, 1], where the intervalUn(x) has been given in
(1.2) andC = C(α, β) is a positive constant independent ofn, t andx.

It must be mentioned that Theorem2.2cannot be extended to hold true even for
all α, β > −1. This is due to the fact that1/w

(α
2
+ 1

4
, β
2
+ 1

4
)

n (x) → 0 asn → ∞, if x is
a boundary pointx = 1 or x = −1 and α

2
+ 1

4
< 0 or β

2
+ 1

4
< 0 respectively.

First, we need an auxiliary lemma.
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Lemma 2.3. Leta, b ≤ 0, n ∈ N andx ∈ [−1, 1]. Then

(2.8) w(a,b)
n (t) ≤ 16−(a+b) w(a,b)

n (x)

for all t ∈ Un(x).

Proof. First, leta ≤ 0. We will prove that

(2.9) 16a

(√
1− t +

1

n

)2a

≤
(√

1− x +
1

n

)2a

holds true for allt ∈ Un(x) with x ∈ [−1, 1] andn ∈ N. There is nothing to prove
for a = 0. Let a < 0. Then inequality (2.9) is equivalent to

4

(√
1− t +

1

n

)
≥
√

1− x +
1

n

and

(2.10) 4
√

1− t ≥
√

1− x− 3

n

respectively. In order to prove (2.10) for t ∈ Un(x) we will discuss below the cases
x ∈

[
1− 9

n2 , 1
]

and x ∈
[
−1, 1− 9

n2

)
separately. We must note that the latter

interval is empty forn = 1, 2, 3.

Casex ∈
[
1− 9

n2 ,1
]
: In this case we obtain

√
1− x − 3

n
≤ 3

n
− 3

n
= 0, which

immediately gives (2.10).

Casex ∈
[
−1,1− 9

n2

)
: In this case we obtain

√
1− x− 3

n
> 0. Therefore inequal-

ity (2.10) is equivalent to (squaring both sides of (2.10))

16(1− t) ≥ 1− x− 6

n

√
1− x +

9

n2

http://jipam.vu.edu.au
mailto:michael.felten@fernuni-hagen.de
http://jipam.vu.edu.au


Estimates for Jacobi
Polynomials

Michael Felten

vol. 8, iss. 1, art. 3, 2007

Title Page

Contents

JJ II

J I

Page 10 of 14

Go Back

Full Screen

Close

or, rewritten,

(2.11) 15 + x +
6

n

√
1− x− 9

n2
≥ 16t.

Sincet ∈ Un(x) ⊂
[
x− ϕn(x)

n
, x + ϕn(x)

n

]
, we obtain

x +
6

n

√
1− x− 9

n2
=

(
x +

2

n

√
1− x +

1

n2

)
+

(
4

n

√
1− x− 10

n2

)
≥ x +

ϕn(x)

n
+

4

n

√
1− x− 10

n2

≥ t +
4

n

√
1− x− 10

n2
.

Hence, inequality (2.11) holds true if

15 +
4

n

√
1− x︸ ︷︷ ︸
≥ 3

n

−10

n2
≥ 15t

or if

(2.12) 15 +
2

n2
≥ 15t.

Sincet ≤ 1, inequality (2.12) is fulfilled. Hence inequality (2.10) is also proved.
This completes the proof of (2.9) for all x ∈ [−1, 1] andt ∈ Un(x).

Now, let b ≤ 0, x ∈ [−1, 1] andt ∈ Un(x). Then−t ∈ Un(−x). From (2.9) we
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obtain

16b

(√
1 + t +

1

n

)2b

= 16b

(√
1− (−t) +

1

n

)2b

(2.9)

≤
(√

1− (−x) +
1

n

)2b

=

(√
1 + x +

1

n

)2b

,

which proves the validity of (2.8).

Proof of Theorem2.2. Sinceα, β ≥ −1
2
, it follows that α

2
+ 1

4
, β

2
+ 1

4
≥ 0. Therefore

we can apply Lemma2.3with a = −α
2
− 1

4
andb = −β

2
− 1

4
, obtaining

1

w
(α

2
+ 1

4
, β
2
+ 1

4
)

n (t)
= w

(−α
2
− 1

4
,−β

2
− 1

4
)

n (t)
Lem.2.3

≤ 4α+β+1

w
(α

2
+ 1

4
, β
2
+ 1

4
)

n (x)

for all t ∈ Un(x). Application of Theorem2.1 therefore yields inequality (2.2) for
all t ∈ Un(x) as claimed.
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3. Applications

In this section we will give some applications of the local estimates of the Jacobi
polynomials.

We apply Theorem2.2and obtain∫
Un(x)

∣∣p(α,β)
n (t)

∣∣2 w(α,β)(t) dt ≤ C
1

w
(α+ 1

2
,β+ 1

2
)

n (x)

∫
Un(x)

w(α,β)(t) dt.

Using ∫
Un(x)

w(α,β)(t) dt ≤ C
1

n
w

(α+ 1
2
,β+ 1

2
)

n (x)

(see [2]) we find that

(3.1)
∫

Un(x)

∣∣p(α,β)
n (t)

∣∣2 w(α,β)(t) dt ≤ C(α, β)
1

n
, x ∈ [−1, 1],

is valid for alln ∈ N with α, β ≥ −1
2
. Estimate (3.1) shows that the intervalsUn(x)

are appropriate for measuring the growth of the orthonormal polynomials on subin-
tervals of[−1, 1]: Un(x) is located aroundx, |Un(x)| = O(1/n), the radiusϕn(x)

n
varies together withx and becomes smaller ifx tends to1 or −1 and the weighted
integration of(p(α,β)

n (t))2 on Un(x) is O(1/n), whereas the weighted integral on
[−1, 1] equals 1, i.e.,∫ 1

−1

∣∣p(α,β)
n (t)

∣∣2 w(α,β)(t) dt = 1, x ∈ [−1, 1].

Let a, b > −1
2

andC1, C2 > 0. Let m : [1,∞) → R be a differentiable function
fulfilling the Hormander conditions

0 ≤ m(t) ≤ C1 and |m′(t)| ≤ C2 t−1
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for t ≥ 1. It was proved in [1] that

(3.2)
n∑

k=1

m(k)

w
(a,b)
k (x)

≤ C
n

w
(a,b)
n (x)

for all x ∈ [−1, 1] andn ∈ N with a positive constantC = C(a, b, C1, C2) being
independent ofn andx.

Let α, β ≥ −1
2
. Now, we will apply Theorem2.2 and the above estimate (3.2)

with a = α + 1
2
≥ 0 andb = β + 1

2
≥ 0, to obtain

(3.3)
n∑

k=1

m(k) (p
(α,β)
k (t))2

Theorem2.2

≤
(3.2)

C
n

w
(α+ 1

2
,β+ 1

2
)

n (x)

for all t ∈ Un(x) and eachx ∈ [−1, 1] with a constantC = C(α, β, C1, C2) > 0
being independent ofn andx.

In particular, if we letm(k) = 1, then estimate (3.3) shows that the Christoffel
function, defined by

λ(α,β)
n (t) :=

{
n∑

k=1

(p
(α,β)
k (t))2

}−1

,

fulfills the estimate

(λ(α,β)
n (t))−1 ≤ C(α, β)

n

w
(α+ 1

2
,β+ 1

2
)

n (x)

for t ∈ Un(x) andx ∈ [−1, 1] andn ∈ N.
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