LOCAL ESTIMATES FOR JACOBI POLYNOMIALS

MICHAEL FELTEN

Faculty of Mathematics and Informatics
University of Hagen
58084 Hagen, Germany.
EMail: michael.felten@fernuni-hagen.de

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract:

12 October, 2006
02 January, 2007
A. Lupaş

33C45, 42C05.
Jacobi polynomials, Jacobi weights, Local estimates.
It is shown that if $\alpha, \beta \geq-\frac{1}{2}$, then the orthonormal Jacobi polynomials $p_{n}^{(\alpha, \beta)}$ fulfill the local estimate

$$
\left|p_{n}^{(\alpha, \beta)}(t)\right| \leq \frac{C(\alpha, \beta)}{\left(\sqrt{1-x}+\frac{1}{n}\right)^{\alpha+\frac{1}{2}}\left(\sqrt{1+x}+\frac{1}{n}\right)^{\beta+\frac{1}{2}}}
$$

for all $t \in U_{n}(x)$ and each $x \in[-1,1]$, where $U_{n}(x)$ are subintervals of $[-1,1]$ defined by $U_{n}(x)=\left[x-\frac{\varphi_{n}(x)}{n}, x+\frac{\varphi_{n}(x)}{n}\right] \cap[-1,1]$ for $n \in \mathbb{N}$ and $x \in[-1,1]$ with $\varphi_{n}(x)=\sqrt{1-x^{2}}+\frac{1}{n}$. Applications of the local estimate are given at the end of the paper.

Estimates for Jacobi Polynomials

Michael Felten
vol. 8, iss. 1, art. 3, 2007

Title Page

Contents

44

Page 1 of 14
Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction 3
2 Theorems 5
3 Applications 12
vol. 8, iss. 1, art. 3, 2007

Title Page
Contents

$\boldsymbol{4}$	
$\boldsymbol{4}$	
Page 2 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-5756

1. Introduction

Let $w^{(\alpha, \beta)}(x)=(1-x)^{\alpha}(1+x)^{\beta}, x \in[-1,1]$, be a Jacobi weight with $\alpha, \beta>$ -1 . Let $p_{n}(x)=p_{n}^{(\alpha, \beta)}(x)=\gamma_{n}^{(\alpha, \beta)} x^{n}+\ldots, n \in \mathbb{N}_{0}$, denote the unique Jacobi polynomials of precise degree n, with leading coefficients $\gamma_{n}^{(\alpha, \beta)}>0$, fulfilling the orthonormal condition $\int_{-1}^{1} p_{n}(x) p_{m}(x) w^{(\alpha, \beta)}(x) d x=\delta_{n, m}, n, m \in \mathbb{N}_{0}$.

This paper is concerned with local estimates of Jacobi polynomials by means of modified Jacobi weights. By the modified Jacobi weights we understand the functions

$$
\begin{equation*}
w_{n}^{(\alpha, \beta)}(x):=\left(\sqrt{1-x}+\frac{1}{n}\right)^{2 \alpha}\left(\sqrt{1+x}+\frac{1}{n}\right)^{2 \beta}, \quad x \in[-1,1], n \in \mathbb{N} . \tag{1.1}
\end{equation*}
$$

We observe that all modified Jacobi weights $w_{n}^{(\alpha, \beta)}$ are finite and positive. This is in contrast to the fact that the Jacobi weight $w^{(\alpha, \beta)}$ may have singularities and roots in ± 1, depending on whether α and β are negative or positive. The Jacobi polynomials can be estimated by means of modified Jacobi weights as follows (see [3] and Theorem 2.1 below):

$$
\left|p_{n}^{(\alpha, \beta)}(x)\right| \leq C \frac{1}{w_{n}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x)}
$$

Title Page

Contents

Page 3 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756
for all $t \in U_{n}(x)$ and each $x \in[-1,1]$, where $U_{n}(x)$ are subintervals of $[-1,1]$
defined by

$$
\begin{align*}
U_{n}(x) & :=\left\{t \in[-1,1]| | t-x \left\lvert\, \leq \frac{\varphi_{n}(x)}{n}\right.\right\} \tag{1.2}\\
& =\left[x-\frac{\varphi_{n}(x)}{n}, x+\frac{\varphi_{n}(x)}{n}\right] \cap[-1,1]
\end{align*}
$$

for $n \in \mathbb{N}$ and $x \in[-1,1]$ with

$$
\begin{equation*}
\varphi_{n}(x):=\sqrt{1-x^{2}}+\frac{1}{n} . \tag{1.3}
\end{equation*}
$$

Thus $U_{n}(x)$ is located around x and is small, i.e., $\left|U_{n}(x)\right|=O(1 / n)$. In our case of Jacobi weights on $[-1,1]$ we need intervals around x with radius $\frac{\varphi_{n}(x)}{n}$ instead of $\frac{1}{n}$. In this case the radius varies together with x and becomes smaller if x tends to 1 or -1 .

Estimates for Jacobi Polynomials

Michael Felten
vol. 8, iss. 1, art. 3, 2007

Title Page
Contents

$\mathbf{4}$	
$\boldsymbol{4}$	
Page 4 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-5756

2. Theorems

The following theorem provides a useful local estimate of the orthonormal Jacobi polynomials by means of the modified weights w_{n}. The estimate can also be found in the paper [3] by Lubinsky and Totik. Here we will give an explicit proof. The proof is essentially based on an estimate taken from Szegö [4].

Theorem 2.1. Let $\alpha, \beta>-1$ and $n \in \mathbb{N}$. Then

$$
\begin{equation*}
\left|p_{n}^{(\alpha, \beta)}(x)\right| \leq C \frac{1}{w_{n}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x)} \tag{2.1}
\end{equation*}
$$

for all $x \in[-1,1]$ with a positive constant $C=C(\alpha, \beta)$ being independent of n and x.

Proof. First let $x \in[0,1]$, and let $t \in\left[0, \frac{\pi}{2}\right]$ such that $x=\cos t$. Moreover, let $P_{n}=P_{n}^{(\alpha, \beta)}=\left(h_{n}^{(\alpha, \beta)}\right)^{\frac{1}{2}} p_{n}^{(\alpha, \beta)}(x), n \in \mathbb{N}$, be the polynomials normalized by the factor $\left(h_{n}^{(\alpha, \beta)}\right)^{\frac{1}{2}}$, namely $P_{n}^{(\alpha, \beta)}=\left(h_{n}^{(\alpha, \beta)}\right)^{\frac{1}{2}} p_{n}^{(\alpha, \beta)}(x)$, as can be found in Szegö [4, eq. (4.3.4)]. According to Szegö's book [4, Theorem 7.32.2] the estimate

$$
\left|P_{n}^{(\alpha, \beta)}(\cos t)\right| \leq C \begin{cases}n^{\alpha}, & \text { if } 0 \leq t \leq \frac{c}{n} \tag{2.2}\\ t^{-\left(\alpha+\frac{1}{2}\right)} n^{-\frac{1}{2}}, & \text { if } \frac{c}{n} \leq t \leq \frac{\pi}{2}\end{cases}
$$

Estimates for Jacobi
Polynomials
Michael Felten
vol. 8, iss. 1, art. 3, 2007

Title Page
Contents

Page 5 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
with $C_{1}=C_{1}(\alpha, \beta)>0$ independent of n and x. Below we will make use of the estimates

$$
\begin{align*}
\frac{\pi}{2} \sqrt{1-x} & =\frac{\pi}{\sqrt{2}} \sqrt{\frac{1-x}{2}}=\frac{\pi}{\sqrt{2}} \sin \frac{t}{2} \\
& \geq \frac{\pi}{\sqrt{2}}\left(\frac{2}{\pi} \cdot \frac{t}{\sqrt{2}}\right)=t=\arccos x \tag{2.4}
\end{align*}
$$

and

$$
\begin{equation*}
\sqrt{2} \sqrt{1-x}=2 \sqrt{\frac{1-x}{2}}=2 \sin \frac{t}{2} \leq 2 \cdot \frac{t}{2}=t=\arccos x \tag{2.5}
\end{equation*}
$$

The cases $-1<\alpha \leq-\frac{1}{2}$ and $\alpha>-\frac{1}{2}$ are considered separately in the following.
Case $-\mathbf{1}<\boldsymbol{\alpha} \leq-\frac{1}{2}$: In this case it follows that $-\left(\alpha+\frac{1}{2}\right) \geq 0$. If $0 \leq \arccos x \leq$ $\frac{c}{n}$, then

$$
\left|p_{n}^{(\alpha, \beta)}(x)\right| \stackrel{(2.3)}{\leq} C_{1} n^{\alpha+\frac{1}{2}}=C_{1}\left(\frac{1}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)} \leq C_{1}\left(\sqrt{1-x}+\frac{1}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)}
$$

Estimates for Jacobi Polynomials
Michael Felten
vol. 8, iss. 1, art. 3, 2007

Title Page

Contents

44

Page 6 of 14

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
Case $\boldsymbol{\alpha}>-\frac{1}{2}$: In this case we obtain $-\left(\alpha+\frac{1}{2}\right)<0$. If $0 \leq \arccos \leq \frac{c}{n}$, then
issn: 1443-575b
from (2.5) we obtain $\frac{c}{n} \geq \sqrt{2} \sqrt{1-x}$ and hence

$$
\begin{aligned}
\left|p_{n}^{(\alpha, \beta)}(x)\right| & \stackrel{(2.3)}{\leq} C_{1} n^{\alpha+\frac{1}{2}}=C_{2}\left(\frac{c}{n}+\frac{c}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)} \\
& \leq C_{3}\left(\sqrt{1-x}+\frac{1}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)}
\end{aligned}
$$

If $\frac{c}{n} \leq \arccos x \leq \frac{\pi}{2}$, then

$$
\begin{aligned}
\left|p_{n}^{(\alpha, \beta)}(x)\right| & \stackrel{(2.3)}{\leq} C_{1}(\arccos x)^{-\left(\alpha+\frac{1}{2}\right)}=C_{4}(\arccos x+\underbrace{\arccos x}_{\geq \frac{c}{n}})^{-\left(\alpha+\frac{1}{2}\right)} \\
& \stackrel{(2.5)}{\leq} C_{5}\left(\sqrt{1-x}+\frac{1}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)}
\end{aligned}
$$

With both previous cases we have proved

$$
\left|p_{n}^{(\alpha, \beta)}(x)\right| \leq C_{6}(\alpha, \beta)\left(\sqrt{1-x}+\frac{1}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)} \cdot\left(\sqrt{1+x}+\frac{1}{n}\right)^{-\left(\beta+\frac{1}{2}\right)}
$$

for all $x \in[0,1], n \in \mathbb{N}$ and $\alpha, \beta>-1$. Since $p_{n}^{(\alpha, \beta)}(x)=(-1)^{n} p_{n}^{(\beta, \alpha)}(-x)$, we obtain

$$
\left|p_{n}^{(\alpha, \beta)}(x)\right| \leq C_{6}(\beta, \alpha)\left(\sqrt{1+x}+\frac{1}{n}\right)^{-\left(\beta+\frac{1}{2}\right)} \cdot\left(\sqrt{1-x}+\frac{1}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)}
$$

for all $x \in[-1,0), n \in \mathbb{N}$ and $\alpha, \beta>-1$. This furnishes the validity of (2.1).

Estimates for Jacobi

 PolynomialsMichael Felten
vol. 8, iss. 1, art. 3, 2007

Title Page

Contents

Page 7 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

Estimate (2.1) of Theorem 2.1 cannot hold true for $n=0$ since the modified weight w_{n} is not defined for $n=0$. However, if $n=0$, then

$$
\begin{equation*}
\left|p_{0}^{(\alpha, \beta)}(x)\right| \leq C(\alpha, \beta) \frac{1}{w_{1}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x)} \tag{2.6}
\end{equation*}
$$

since $p_{0}^{(\alpha, \beta)}(x)$ is a constant and $C_{1}(\alpha, \beta) \leq w_{1}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x) \leq C_{2}(\alpha, \beta)$ with positive constants $C_{1}(\alpha, \beta)$ and $C_{2}(\alpha, \beta)$.

Next, we will see that the local estimate of Theorem 2.1 can be further extended. We will show that $\left|p_{n}^{(\alpha, \beta)}(x)\right|$ in (2.1) can be replaced by $\left|p_{n}^{(\alpha, \beta)}(t)\right|$, whenever t is not too far away from x, namely if t is in the interval $U_{n}(x)=\left[x-\frac{\varphi_{n}(x)}{n}, x+\frac{\varphi_{n}(x)}{n}\right] \cap$ $[-1,1]$. However, for this estimate we will need the assumption $\alpha, \beta \geq-\frac{1}{2}$. The result is stated in the following

Theorem 2.2. Let $\alpha, \beta \geq-\frac{1}{2}$ and $n \in \mathbb{N}$. Then

$$
\begin{equation*}
\left|p_{n}^{(\alpha, \beta)}(t)\right| \leq C \frac{1}{w_{n}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x)} \tag{2.7}
\end{equation*}
$$

Page 8 of 14
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics

Lemma 2.3. Let $a, b \leq 0, n \in \mathbb{N}$ and $x \in[-1,1]$. Then

$$
\begin{equation*}
w_{n}^{(a, b)}(t) \leq 16^{-(a+b)} w_{n}^{(a, b)}(x) \tag{2.8}
\end{equation*}
$$

for all $t \in U_{n}(x)$.
Proof. First, let $a \leq 0$. We will prove that

$$
\begin{equation*}
16^{a}\left(\sqrt{1-t}+\frac{1}{n}\right)^{2 a} \leq\left(\sqrt{1-x}+\frac{1}{n}\right)^{2 a} \tag{2.9}
\end{equation*}
$$

holds true for all $t \in U_{n}(x)$ with $x \in[-1,1]$ and $n \in \mathbb{N}$. There is nothing to prove for $a=0$. Let $a<0$. Then inequality (2.9) is equivalent to

$$
4\left(\sqrt{1-t}+\frac{1}{n}\right) \geq \sqrt{1-x}+\frac{1}{n}
$$

and

$$
\begin{equation*}
4 \sqrt{1-t} \geq \sqrt{1-x}-\frac{3}{n} \tag{2.10}
\end{equation*}
$$

respectively. In order to prove (2.10) for $t \in U_{n}(x)$ we will discuss below the cases $x \in\left[1-\frac{9}{n^{2}}, 1\right]$ and $x \in\left[-1,1-\frac{9}{n^{2}}\right)$ separately. We must note that the latter interval is empty for $n=1,2,3$.

Estimates for Jacobi Polynomials

Michael Felten
vol. 8, iss. 1, art. 3, 2007

Title Page
Contents

Page 9 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
or, rewritten,

$$
\begin{equation*}
15+x+\frac{6}{n} \sqrt{1-x}-\frac{9}{n^{2}} \geq 16 t \tag{2.11}
\end{equation*}
$$

Since $t \in U_{n}(x) \subset\left[x-\frac{\varphi_{n}(x)}{n}, x+\frac{\varphi_{n}(x)}{n}\right]$, we obtain

$$
\begin{aligned}
x+\frac{6}{n} \sqrt{1-x}-\frac{9}{n^{2}} & =\left(x+\frac{2}{n} \sqrt{1-x}+\frac{1}{n^{2}}\right)+\left(\frac{4}{n} \sqrt{1-x}-\frac{10}{n^{2}}\right) \\
& \geq x+\frac{\varphi_{n}(x)}{n}+\frac{4}{n} \sqrt{1-x}-\frac{10}{n^{2}} \\
& \geq t+\frac{4}{n} \sqrt{1-x}-\frac{10}{n^{2}} .
\end{aligned}
$$

Estimates for Jacobi

 PolynomialsMichael Felten
vol. 8, iss. 1, art. 3, 2007

Title Page
Hence, inequality (2.11) holds true if

$$
15+\frac{4}{n} \underbrace{\sqrt{1-x}}_{\geq \frac{3}{n}}-\frac{10}{n^{2}} \geq 15 t
$$

or if

$$
\begin{equation*}
15+\frac{2}{n^{2}} \geq 15 t \tag{2.12}
\end{equation*}
$$

Since $t \leq 1$, inequality (2.12) is fulfilled. Hence inequality (2.10) is also proved. This completes the proof of (2.9) for all $x \in[-1,1]$ and $t \in U_{n}(x)$.

Now, let $b \leq 0, x \in[-1,1]$ and $t \in U_{n}(x)$. Then $-t \in U_{n}(-x)$. From (2.9) we

Contents

Page 10 of 14
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756
obtain

$$
\begin{aligned}
16^{b}\left(\sqrt{1+t}+\frac{1}{n}\right)^{2 b} & =16^{b}\left(\sqrt{1-(-t)}+\frac{1}{n}\right)^{2 b} \\
& \leq\left(\sqrt{1-(-x)}+\frac{1}{n}\right)^{2 b}=\left(\sqrt{1+x}+\frac{1}{n}\right)^{2 b}
\end{aligned}
$$

which proves the validity of (2.8).
Proof of Theorem 2.2. Since $\alpha, \beta \geq-\frac{1}{2}$, it follows that $\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4} \geq 0$. Therefore we can apply Lemma 2.3 with $a=-\frac{\alpha}{2}-\frac{1}{4}$ and $b=-\frac{\beta}{2}-\frac{1}{4}$, obtaining

$$
\frac{1}{w_{n}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(t)}=w_{n}^{\left(-\frac{\alpha}{2}-\frac{1}{4},-\frac{\beta}{2}-\frac{1}{4}\right)}(t) \stackrel{\text { Lem. } 2.3}{\leq} \frac{4^{\alpha+\beta+1}}{w_{n}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x)}
$$

for all $t \in U_{n}(x)$. Application of Theorem 2.1 therefore yields inequality (2.2) for all $t \in U_{n}(x)$ as claimed.

Estimates for Jacobi Polynomials
Michael Felten
vol. 8, iss. 1, art. 3, 2007

Title Page
Contents

Page 11 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

3. Applications

In this section we will give some applications of the local estimates of the Jacobi polynomials.

We apply Theorem 2.2 and obtain

$$
\int_{U_{n}(x)}\left|p_{n}^{(\alpha, \beta)}(t)\right|^{2} w^{(\alpha, \beta)}(t) d t \leq C \frac{1}{w_{n}^{\left(\alpha+\frac{1}{2}, \beta+\frac{1}{2}\right)}(x)} \int_{U_{n}(x)} w^{(\alpha, \beta)}(t) d t
$$

Using

$$
\int_{U_{n}(x)} w^{(\alpha, \beta)}(t) d t \leq C \frac{1}{n} w_{n}^{\left(\alpha+\frac{1}{2}, \beta+\frac{1}{2}\right)}(x)
$$

(see [2]) we find that

$$
\begin{equation*}
\int_{U_{n}(x)}\left|p_{n}^{(\alpha, \beta)}(t)\right|^{2} w^{(\alpha, \beta)}(t) d t \leq C(\alpha, \beta) \frac{1}{n}, \quad x \in[-1,1] \tag{3.1}
\end{equation*}
$$

is valid for all $n \in \mathbb{N}$ with $\alpha, \beta \geq-\frac{1}{2}$. Estimate (3.1) shows that the intervals $U_{n}(x)$ are appropriate for measuring the growth of the orthonormal polynomials on subintervals of $[-1,1]: U_{n}(x)$ is located around $x,\left|U_{n}(x)\right|=O(1 / n)$, the radius $\frac{\varphi_{n}(x)}{n}$ varies together with x and becomes smaller if x tends to 1 or -1 and the weighted integration of $\left(p_{n}^{(\alpha, \beta)}(t)\right)^{2}$ on $U_{n}(x)$ is $O(1 / n)$, whereas the weighted integral on $[-1,1]$ equals 1 , i.e.,

$$
\int_{-1}^{1}\left|p_{n}^{(\alpha, \beta)}(t)\right|^{2} w^{(\alpha, \beta)}(t) d t=1, \quad x \in[-1,1]
$$

Let $a, b>-\frac{1}{2}$ and $C_{1}, C_{2}>0$. Let $m:[1, \infty) \rightarrow \mathbb{R}$ be a differentiable function fulfilling the Hormander conditions

$$
0 \leq m(t) \leq C_{1} \quad \text { and } \quad\left|m^{\prime}(t)\right| \leq C_{2} t^{-1}
$$

Estimates for Jacobi

Polynomials
Michael Felten
vol. 8, iss. 1, art. 3, 2007

Title Page
Contents

Page 12 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for $t \geq 1$. It was proved in [1] that

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{m(k)}{w_{k}^{(a, b)}(x)} \leq C \frac{n}{w_{n}^{(a, b)}(x)} \tag{3.2}
\end{equation*}
$$

for all $x \in[-1,1]$ and $n \in \mathbb{N}$ with a positive constant $C=C\left(a, b, C_{1}, C_{2}\right)$ being
independent of n and x.

Let $\alpha, \beta \geq-\frac{1}{2}$. Now, we will apply Theorem 2.2 and the above estimate (3.2) with $a=\alpha+\frac{1}{2} \geq 0$ and $b=\beta+\frac{1}{2} \geq 0$, to obtain

$$
\begin{equation*}
\sum_{k=1}^{n} m(k)\left(p_{k}^{(\alpha, \beta)}(t)\right)^{2} \underset{(3.2)}{\leq} C \frac{n}{w_{n}^{\left(\alpha+\frac{1}{2}, \beta+\frac{1}{2}\right)}(x)} \tag{3.3}
\end{equation*}
$$

Estimates for Jacobi
Polynomials
Michael Felten
vol. 8, iss. 1, art. 3, 2007

Title Page
for all $t \in U_{n}(x)$ and each $x \in[-1,1]$ with a constant $C=C\left(\alpha, \beta, C_{1}, C_{2}\right)>0$ being independent of n and x.

In particular, if we let $m(k)=1$, then estimate (3.3) shows that the Christoffel function, defined by

$$
\lambda_{n}^{(\alpha, \beta)}(t):=\left\{\sum_{k=1}^{n}\left(p_{k}^{(\alpha, \beta)}(t)\right)^{2}\right\}^{-1}
$$

Contents

Page 13 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] M. FELTEN, Multiplier theorems for finite sums of Jacobi polynomials, submitted, 1-9.
[2] M. FELTEN, Uniform boundedness of $(C, 1)$ means of Jacobi expansions in weighted sup norms. II (Some necessary estimations), accepted for publication in Acta Math. Hung.
[3] D.S. LUBINSKY AND V. TOTIK, Best weighted polynomial approximation via Jacobi expansions, SIAM Journal on Mathematical Analysis, 25(2) (1994), 555570.
[4] G. SZEGŐ, Orthogonal Polynomials, 4th Ed., American Mathematical Society, Providence, R.I., 1975, American Mathematical Society, Colloquium Publications, Vol. XXIII.

Estimates for Jacobi Polynomials

Michael Felten
vol. 8, iss. 1, art. 3, 2007

Title Page
Contents

Page 14 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

