journal of inequalities in pure and applied mathematics

http://jipam.vu.edu.au

issn: 1443-5756

Volume 8 (2007), Issue 1, Article 3, 6 pp.

LOCAL ESTIMATES FOR JACOBI POLYNOMIALS

MICHAEL FELTEN

FACULTY OF MATHEMATICS AND INFORMATICS
UNIVERSITY OF HAGEN
58084 HAGEN, GERMANY
michael.felten@fernuni-hagen.de

Received 12 October, 2006; accepted 02 January, 2007 Communicated by A. Lupaş

ABSTRACT. It is shown that if $\alpha, \beta \geq -\frac{1}{2}$, then the orthonormal Jacobi polynomials $p_n^{(\alpha,\beta)}$ fulfill the local estimate

$$|p_n^{(\alpha,\beta)}(t)| \le \frac{C(\alpha,\beta)}{(\sqrt{1-x} + \frac{1}{n})^{\alpha + \frac{1}{2}}(\sqrt{1+x} + \frac{1}{n})^{\beta + \frac{1}{2}}}$$

for all $t\in U_n(x)$ and each $x\in [-1,1]$, where $U_n(x)$ are subintervals of [-1,1] defined by $U_n(x)=[x-\frac{\varphi_n(x)}{n},x+\frac{\varphi_n(x)}{n}]\cap [-1,1]$ for $n\in \mathbb{N}$ and $x\in [-1,1]$ with $\varphi_n(x)=\sqrt{1-x^2}+\frac{1}{n}$. Applications of the local estimate are given at the end of the paper.

Key words and phrases: Jacobi polynomials, Jacobi weights, Local estimates.

2000 Mathematics Subject Classification. 33C45, 42C05.

1. Introduction

Let $w^{(\alpha,\beta)}(x)=(1-x)^{\alpha}(1+x)^{\beta}, \ x\in [-1,1],$ be a Jacobi weight with $\alpha,\beta>-1.$ Let $p_n(x)=p_n^{(\alpha,\beta)}(x)=\gamma_n^{(\alpha,\beta)}x^n+\ldots, \ n\in\mathbb{N}_0,$ denote the unique *Jacobi polynomials* of precise degree n, with leading coefficients $\gamma_n^{(\alpha,\beta)}>0$, fulfilling the orthonormal condition $\int_{-1}^1 p_n(x)p_m(x)w^{(\alpha,\beta)}(x)\ dx=\delta_{n,m}, \ n,m\in\mathbb{N}_0.$

This paper is concerned with local estimates of Jacobi polynomials by means of modified Jacobi weights. By the *modified Jacobi weights* we understand the functions

$$(1.1) w_n^{(\alpha,\beta)}(x) := \left(\sqrt{1-x} + \frac{1}{n}\right)^{2\alpha} \left(\sqrt{1+x} + \frac{1}{n}\right)^{2\beta}, \quad x \in [-1,1], \ n \in \mathbb{N}.$$

We observe that all modified Jacobi weights $w_n^{(\alpha,\beta)}$ are finite and positive. This is in contrast to the fact that the Jacobi weight $w^{(\alpha,\beta)}$ may have singularities and roots in ± 1 , depending on whether α and β are negative or positive. The Jacobi polynomials can be estimated by means

2 MICHAEL FELTEN

of modified Jacobi weights as follows (see [3] and Theorem 2.1 below):

$$|p_n^{(\alpha,\beta)}(x)| \le C \frac{1}{w_n^{(\frac{\alpha}{2} + \frac{1}{4}, \frac{\beta}{2} + \frac{1}{4})}(x)}$$

for all $x \in [-1, 1]$. If $\alpha, \beta \ge -\frac{1}{2}$, then we will show that this estimate can be further extended, namely

$$|p_n^{(\alpha,\beta)}(t)| \le C \frac{1}{w_n^{(\frac{\alpha}{2} + \frac{1}{4}, \frac{\beta}{2} + \frac{1}{4})}(x)}$$

for all $t \in U_n(x)$ and each $x \in [-1, 1]$, where $U_n(x)$ are subintervals of [-1, 1] defined by

(1.2)
$$U_n(x) := \left\{ t \in [-1, 1] \mid |t - x| \le \frac{\varphi_n(x)}{n} \right\}$$
$$= \left[x - \frac{\varphi_n(x)}{n}, x + \frac{\varphi_n(x)}{n} \right] \cap [-1, 1]$$

for $n \in \mathbb{N}$ and $x \in [-1, 1]$ with

(1.3)
$$\varphi_n(x) := \sqrt{1 - x^2} + \frac{1}{n}.$$

Thus $U_n(x)$ is located around x and is *small*, i.e., $|U_n(x)| = O(1/n)$. In our case of Jacobi weights on [-1,1] we need intervals around x with radius $\frac{\varphi_n(x)}{n}$ instead of $\frac{1}{n}$. In this case the radius varies together with x and becomes smaller if x tends to x or x.

2. THEOREMS

The following theorem provides a useful local estimate of the orthonormal Jacobi polynomials by means of the modified weights w_n . The estimate can also be found in the paper [3] by Lubinsky and Totik. Here we will give an explicit proof. The proof is essentially based on an estimate taken from Szegö [4].

Theorem 2.1. Let $\alpha, \beta > -1$ and $n \in \mathbb{N}$. Then

$$|p_n^{(\alpha,\beta)}(x)| \le C \frac{1}{w_n^{(\frac{\alpha}{2} + \frac{1}{4}, \frac{\beta}{2} + \frac{1}{4})}(x)}$$

for all $x \in [-1, 1]$ with a positive constant $C = C(\alpha, \beta)$ being independent of n and x.

Proof. First let $x \in [0,1]$, and let $t \in [0,\frac{\pi}{2}]$ such that $x = \cos t$. Moreover, let $P_n = P_n^{(\alpha,\beta)} = (h_n^{(\alpha,\beta)})^{\frac{1}{2}} p_n^{(\alpha,\beta)}(x)$, $n \in \mathbb{N}$, be the polynomials normalized by the factor $(h_n^{(\alpha,\beta)})^{\frac{1}{2}}$, namely $P_n^{(\alpha,\beta)} = (h_n^{(\alpha,\beta)})^{\frac{1}{2}} p_n^{(\alpha,\beta)}(x)$, as can be found in Szegö [4, eq. (4.3.4)]. According to Szegö's book [4, Theorem 7.32.2] the estimate

(2.2)
$$|P_n^{(\alpha,\beta)}(\cos t)| \le C \left\{ \begin{array}{ll} n^{\alpha}, & \text{if } 0 \le t \le \frac{c}{n} \\ t^{-(\alpha + \frac{1}{2})} n^{-\frac{1}{2}}, & \text{if } \frac{c}{n} \le t \le \frac{\pi}{2} \end{array} \right.$$

is valid, where c and C are fixed positive constants being independent of n and t. We substitute $t = \arccos x \in [0, \frac{\pi}{2}]$ and $P_n^{(\alpha,\beta)}(x) = (h_n^{(\alpha,\beta)})^{\frac{1}{2}} p_n^{(\alpha,\beta)}(x)$ in (2.2) and obtain, using $(h_n^{(\alpha,\beta)})^{-\frac{1}{2}} \leq \tilde{C} \cdot n^{\frac{1}{2}}$ (resulting from [4, eq. (4.3.4)]),

(2.3)
$$|p_n^{(\alpha,\beta)}(x)| \le C_1 \left\{ \begin{array}{ll} n^{\alpha+\frac{1}{2}}, & \text{if } 0 \le \arccos x \le \frac{c}{n} \\ (\arccos x)^{-(\alpha+\frac{1}{2})}, & \text{if } \frac{c}{n} \le \arccos x \le \frac{\pi}{2} \end{array} \right.$$

with $C_1 = C_1(\alpha, \beta) > 0$ independent of n and x. Below we will make use of the estimates

(2.4)
$$\frac{\pi}{2}\sqrt{1-x} = \frac{\pi}{\sqrt{2}}\sqrt{\frac{1-x}{2}} = \frac{\pi}{\sqrt{2}}\sin\frac{t}{2}$$
$$\geq \frac{\pi}{\sqrt{2}}\left(\frac{2}{\pi}\cdot\frac{t}{\sqrt{2}}\right) = t = \arccos x$$

and

(2.5)
$$\sqrt{2}\sqrt{1-x} = 2\sqrt{\frac{1-x}{2}} = 2\sin\frac{t}{2} \le 2 \cdot \frac{t}{2} = t = \arccos x.$$

The cases $-1 < \alpha \le -\frac{1}{2}$ and $\alpha > -\frac{1}{2}$ are considered separately in the following.

Case $-1 < \alpha \le -\frac{1}{2}$: In this case it follows that $-\left(\alpha + \frac{1}{2}\right) \ge 0$. If $0 \le \arccos x \le \frac{c}{n}$, then

$$\left| p_n^{(\alpha,\beta)}(x) \right| \stackrel{(2.3)}{\leq} C_1 \, n^{\alpha + \frac{1}{2}} = C_1 \, \left(\frac{1}{n} \right)^{-\left(\alpha + \frac{1}{2}\right)} \leq C_1 \, \left(\sqrt{1 - x} + \frac{1}{n} \right)^{-\left(\alpha + \frac{1}{2}\right)}.$$

If $\frac{c}{n} \leq \arccos x \leq \frac{\pi}{2}$, then

$$|p_n^{(\alpha,\beta)}(x)| \stackrel{(2.3)}{\leq} C_1 \left(\arccos x\right)^{-\left(\alpha + \frac{1}{2}\right)} \stackrel{(2.4)}{\leq} C_2 \left(\sqrt{1-x}\right)^{-\left(\alpha + \frac{1}{2}\right)}$$

$$\leq C_2 \left(\sqrt{1-x} + \frac{1}{n}\right)^{-\left(\alpha + \frac{1}{2}\right)}.$$

Case $\alpha > -\frac{1}{2}$: In this case we obtain $-\left(\alpha + \frac{1}{2}\right) < 0$. If $0 \le \arccos \le \frac{c}{n}$, then from (2.5) we obtain $\frac{c}{n} \ge \sqrt{2}\sqrt{1-x}$ and hence

$$|p_n^{(\alpha,\beta)}(x)| \stackrel{(2.3)}{\leq} C_1 n^{\alpha + \frac{1}{2}} = C_2 \left(\frac{c}{n} + \frac{c}{n}\right)^{-\left(\alpha + \frac{1}{2}\right)}$$

 $\leq C_3 \left(\sqrt{1-x} + \frac{1}{n}\right)^{-\left(\alpha + \frac{1}{2}\right)}.$

If $\frac{c}{n} \leq \arccos x \leq \frac{\pi}{2}$, then

$$\left| p_n^{(\alpha,\beta)}(x) \right| \stackrel{(2.3)}{\leq} C_1 \left(\arccos x \right)^{-\left(\alpha + \frac{1}{2}\right)} = C_4 \left(\arccos x + \underbrace{\arccos x} \right)^{-\left(\alpha + \frac{1}{2}\right)}$$

$$\stackrel{(2.5)}{\leq} C_5 \left(\sqrt{1 - x} + \frac{1}{n} \right)^{-\left(\alpha + \frac{1}{2}\right)}.$$

With both previous cases we have proved

$$\left| p_n^{(\alpha,\beta)}(x) \right| \le C_6(\alpha,\beta) \left(\sqrt{1-x} + \frac{1}{n} \right)^{-\left(\alpha + \frac{1}{2}\right)} \cdot \left(\sqrt{1+x} + \frac{1}{n} \right)^{-\left(\beta + \frac{1}{2}\right)}$$

for all $x \in [0,1]$, $n \in \mathbb{N}$ and $\alpha, \beta > -1$. Since $p_n^{(\alpha,\beta)}(x) = (-1)^n p_n^{(\beta,\alpha)}(-x)$, we obtain

$$\left| p_n^{(\alpha,\beta)}(x) \right| \le C_6(\beta,\alpha) \left(\sqrt{1+x} + \frac{1}{n} \right)^{-\left(\beta + \frac{1}{2}\right)} \cdot \left(\sqrt{1-x} + \frac{1}{n} \right)^{-\left(\alpha + \frac{1}{2}\right)}$$

for all $x \in [-1, 0)$, $n \in \mathbb{N}$ and $\alpha, \beta > -1$. This furnishes the validity of (2.1).

Estimate (2.1) of Theorem 2.1 cannot hold true for n = 0 since the modified weight w_n is not defined for n = 0. However, if n = 0, then

$$\left| p_0^{(\alpha,\beta)}(x) \right| \le C(\alpha,\beta) \frac{1}{w_1^{\left(\frac{\alpha}{2} + \frac{1}{4}, \frac{\beta}{2} + \frac{1}{4}\right)}(x)},$$

since $p_0^{(\alpha,\beta)}(x)$ is a constant and $C_1(\alpha,\beta) \leq w_1^{\left(\frac{\alpha}{2}+\frac{1}{4},\frac{\beta}{2}+\frac{1}{4}\right)}(x) \leq C_2(\alpha,\beta)$ with positive constants $C_1(\alpha,\beta)$ and $C_2(\alpha,\beta)$.

Next, we will see that the local estimate of Theorem 2.1 can be further extended. We will show that $\left|p_n^{(\alpha,\beta)}(x)\right|$ in (2.1) can be replaced by $\left|p_n^{(\alpha,\beta)}(t)\right|$, whenever t is not too far away from x, namely if t is in the interval $U_n(x) = \left[x - \frac{\varphi_n(x)}{n}, x + \frac{\varphi_n(x)}{n}\right] \cap [-1,1]$. However, for this estimate we will need the assumption $\alpha, \beta \geq -\frac{1}{2}$. The result is stated in the following

Theorem 2.2. Let $\alpha, \beta \geq -\frac{1}{2}$ and $n \in \mathbb{N}$. Then

(2.7)
$$|p_n^{(\alpha,\beta)}(t)| \le C \frac{1}{w_n^{(\frac{\alpha}{2} + \frac{1}{4}, \frac{\beta}{2} + \frac{1}{4})}(x)}$$

for all $t \in U_n(x)$ and each $x \in [-1,1]$, where the interval $U_n(x)$ has been given in (1.2) and $C = C(\alpha, \beta)$ is a positive constant independent of n, t and x.

It must be mentioned that Theorem 2.2 cannot be extended to hold true even for all $\alpha, \beta > -1$. This is due to the fact that $1/w_n^{(\frac{\alpha}{2}+\frac{1}{4},\frac{\beta}{2}+\frac{1}{4})}(x) \to 0$ as $n \to \infty$, if x is a boundary point x=1 or x=-1 and $\frac{\alpha}{2}+\frac{1}{4}<0$ or $\frac{\beta}{2}+\frac{1}{4}<0$ respectively. First, we need an auxiliary lemma.

Lemma 2.3. Let $a, b \leq 0$, $n \in \mathbb{N}$ and $x \in [-1, 1]$. Then

(2.8)
$$w_n^{(a,b)}(t) \le 16^{-(a+b)} w_n^{(a,b)}(x)$$

for all $t \in U_n(x)$.

Proof. First, let $a \leq 0$. We will prove that

(2.9)
$$16^{a} \left(\sqrt{1-t} + \frac{1}{n}\right)^{2a} \le \left(\sqrt{1-x} + \frac{1}{n}\right)^{2a}$$

holds true for all $t \in U_n(x)$ with $x \in [-1, 1]$ and $n \in \mathbb{N}$. There is nothing to prove for a = 0. Let a < 0. Then inequality (2.9) is equivalent to

$$4\left(\sqrt{1-t} + \frac{1}{n}\right) \ge \sqrt{1-x} + \frac{1}{n}$$

and

$$(2.10) 4\sqrt{1-t} \ge \sqrt{1-x} - \frac{3}{n}$$

respectively. In order to prove (2.10) for $t \in U_n(x)$ we will discuss below the cases $x \in \left[1-\frac{9}{n^2},1\right]$ and $x \in \left[-1,1-\frac{9}{n^2}\right)$ separately. We must note that the latter interval is empty for n=1,2,3.

Case $x \in [1 - \frac{9}{n^2}, 1]$: In this case we obtain $\sqrt{1 - x} - \frac{3}{n} \le \frac{3}{n} - \frac{3}{n} = 0$, which immediately gives (2.10).

Case $x \in [-1, 1 - \frac{9}{n^2}]$: In this case we obtain $\sqrt{1-x} - \frac{3}{n} > 0$. Therefore inequality (2.10) is equivalent to (squaring both sides of (2.10))

$$16(1-t) \ge 1 - x - \frac{6}{n}\sqrt{1-x} + \frac{9}{n^2}$$

or, rewritten,

(2.11)
$$15 + x + \frac{6}{n}\sqrt{1-x} - \frac{9}{n^2} \ge 16t.$$

Since $t \in U_n(x) \subset \left[x - \frac{\varphi_n(x)}{n}, x + \frac{\varphi_n(x)}{n}\right]$, we obtain

$$x + \frac{6}{n}\sqrt{1 - x} - \frac{9}{n^2} = \left(x + \frac{2}{n}\sqrt{1 - x} + \frac{1}{n^2}\right) + \left(\frac{4}{n}\sqrt{1 - x} - \frac{10}{n^2}\right)$$
$$\ge x + \frac{\varphi_n(x)}{n} + \frac{4}{n}\sqrt{1 - x} - \frac{10}{n^2}$$
$$\ge t + \frac{4}{n}\sqrt{1 - x} - \frac{10}{n^2}.$$

Hence, inequality (2.11) holds true if

$$15 + \frac{4}{n} \underbrace{\sqrt{1-x}}_{\geq \frac{3}{n}} - \frac{10}{n^2} \geq 15t$$

or if

$$(2.12) 15 + \frac{2}{n^2} \ge 15t.$$

Since $t \le 1$, inequality (2.12) is fulfilled. Hence inequality (2.10) is also proved. This completes the proof of (2.9) for all $x \in [-1, 1]$ and $t \in U_n(x)$.

Now, let $b \le 0$, $x \in [-1, 1]$ and $t \in U_n(x)$. Then $-t \in U_n(-x)$. From (2.9) we obtain

$$16^{b} \left(\sqrt{1+t} + \frac{1}{n} \right)^{2b} = 16^{b} \left(\sqrt{1-(-t)} + \frac{1}{n} \right)^{2b} \\ \stackrel{(2.9)}{\leq} \left(\sqrt{1-(-x)} + \frac{1}{n} \right)^{2b} = \left(\sqrt{1+x} + \frac{1}{n} \right)^{2b},$$

which proves the validity of (2.8).

Proof of Theorem 2.2. Since $\alpha, \beta \geq -\frac{1}{2}$, it follows that $\frac{\alpha}{2} + \frac{1}{4}, \frac{\beta}{2} + \frac{1}{4} \geq 0$. Therefore we can apply Lemma 2.3 with $a = -\frac{\alpha}{2} - \frac{1}{4}$ and $b = -\frac{\beta}{2} - \frac{1}{4}$, obtaining

$$\frac{1}{w_n^{(\frac{\alpha}{2}+\frac{1}{4},\frac{\beta}{2}+\frac{1}{4})}(t)} = w_n^{(-\frac{\alpha}{2}-\frac{1}{4},-\frac{\beta}{2}-\frac{1}{4})}(t) \overset{\text{Lem. 2.3}}{\leq} \frac{4^{\alpha+\beta+1}}{w_n^{(\frac{\alpha}{2}+\frac{1}{4},\frac{\beta}{2}+\frac{1}{4})}(x)}$$

for all $t \in U_n(x)$. Application of Theorem 2.1 therefore yields inequality (2.2) for all $t \in U_n(x)$ as claimed.

3. APPLICATIONS

In this section we will give some applications of the local estimates of the Jacobi polynomials. We apply Theorem 2.2 and obtain

$$\int_{U_n(x)} |p_n^{(\alpha,\beta)}(t)|^2 w^{(\alpha,\beta)}(t) dt \le C \frac{1}{w_n^{(\alpha+\frac{1}{2},\beta+\frac{1}{2})}(x)} \int_{U_n(x)} w^{(\alpha,\beta)}(t) dt.$$

Using

$$\int_{U_n(x)} w^{(\alpha,\beta)}(t) dt \le C \frac{1}{n} w_n^{(\alpha + \frac{1}{2}, \beta + \frac{1}{2})}(x)$$

(see [2]) we find that

(3.1)
$$\int_{U_n(x)} |p_n^{(\alpha,\beta)}(t)|^2 w^{(\alpha,\beta)}(t) dt \le C(\alpha,\beta) \frac{1}{n}, \quad x \in [-1,1],$$

is valid for all $n \in \mathbb{N}$ with $\alpha, \beta \geq -\frac{1}{2}$. Estimate (3.1) shows that the intervals $U_n(x)$ are appropriate for measuring the growth of the orthonormal polynomials on subintervals of [-1,1]: $U_n(x)$ is located around x, $|U_n(x)| = O(1/n)$, the radius $\frac{\varphi_n(x)}{n}$ varies together with x and becomes smaller if x tends to 1 or -1 and the weighted integration of $(p_n^{(\alpha,\beta)}(t))^2$ on $U_n(x)$ is O(1/n), whereas the weighted integral on [-1,1] equals 1, i.e.,

$$\int_{-1}^{1} \left| p_n^{(\alpha,\beta)}(t) \right|^2 w^{(\alpha,\beta)}(t) dt = 1, \quad x \in [-1,1].$$

Let $a, b > -\frac{1}{2}$ and $C_1, C_2 > 0$. Let $m: [1, \infty) \to \mathbb{R}$ be a differentiable function fulfilling the Hormander conditions

$$0 \le m(t) \le C_1$$
 and $|m'(t)| \le C_2 t^{-1}$

for $t \ge 1$. It was proved in [1] that

(3.2)
$$\sum_{k=1}^{n} \frac{m(k)}{w_k^{(a,b)}(x)} \le C \frac{n}{w_n^{(a,b)}(x)}$$

for all $x \in [-1, 1]$ and $n \in \mathbb{N}$ with a positive constant $C = C(a, b, C_1, C_2)$ being independent of n and x.

Let $\alpha, \beta \ge -\frac{1}{2}$. Now, we will apply Theorem 2.2 and the above estimate (3.2) with $a = \alpha + \frac{1}{2} \ge 0$ and $b = \beta + \frac{1}{2} \ge 0$, to obtain

(3.3)
$$\sum_{k=1}^{n} m(k) \left(p_k^{(\alpha,\beta)}(t) \right)^2 \stackrel{\text{Theorem 2.2}}{\leq} C \frac{n}{w_n^{(\alpha+\frac{1}{2},\beta+\frac{1}{2})}(x)}$$

for all $t \in U_n(x)$ and each $x \in [-1,1]$ with a constant $C = C(\alpha,\beta,C_1,C_2) > 0$ being independent of n and x.

In particular, if we let m(k) = 1, then estimate (3.3) shows that the Christoffel function, defined by

$$\lambda_n^{(\alpha,\beta)}(t) := \left\{ \sum_{k=1}^n (p_k^{(\alpha,\beta)}(t))^2 \right\}^{-1},$$

fulfills the estimate

$$(\lambda_n^{(\alpha,\beta)}(t))^{-1} \le C(\alpha,\beta) \frac{n}{w_n^{(\alpha+\frac{1}{2},\beta+\frac{1}{2})}(x)}$$

for $t \in U_n(x)$ and $x \in [-1, 1]$ and $n \in \mathbb{N}$.

REFERENCES

- [1] M. FELTEN, Multiplier theorems for finite sums of Jacobi polynomials, submitted, 1–9.
- [2] M. FELTEN, Uniform boundedness of (C, 1) means of Jacobi expansions in weighted sup norms. II (Some necessary estimations), accepted for publication in *Acta Math. Hung*.

- [3] D.S. LUBINSKY AND V. TOTIK, Best weighted polynomial approximation via Jacobi expansions, *SIAM Journal on Mathematical Analysis*, **25**(2) (1994), 555–570.
- [4] G. SZEGŐ, *Orthogonal Polynomials*, 4th Ed., American Mathematical Society, Providence, R.I., 1975, American Mathematical Society, Colloquium Publications, Vol. XXIII.