LOCAL ESTIMATES FOR JACOBI POLYNOMIALS

MICHAEL FELTEN

Faculty of Mathematics and Informatics
University of Hagen
58084 Hagen, Germany
michael.felten@fernuni-hagen.de

Received 12 October, 2006; accepted 02 January, 2007
Communicated by A. Lupaş

AbStract. It is shown that if $\alpha, \beta \geq-\frac{1}{2}$, then the orthonormal Jacobi polynomials $p_{n}^{(\alpha, \beta)}$ fulfill the local estimate

$$
\left|p_{n}^{(\alpha, \beta)}(t)\right| \leq \frac{C(\alpha, \beta)}{\left(\sqrt{1-x}+\frac{1}{n}\right)^{\alpha+\frac{1}{2}}\left(\sqrt{1+x}+\frac{1}{n}\right)^{\beta+\frac{1}{2}}}
$$

for all $t \in U_{n}(x)$ and each $x \in[-1,1]$, where $U_{n}(x)$ are subintervals of $[-1,1]$ defined by $U_{n}(x)=\left[x-\frac{\varphi_{n}(x)}{n}, x+\frac{\varphi_{n}(x)}{n}\right] \cap[-1,1]$ for $n \in \mathbb{N}$ and $x \in[-1,1]$ with $\varphi_{n}(x)=\sqrt{1-x^{2}}+\frac{1}{n}$. Applications of the local estimate are given at the end of the paper.

Key words and phrases: Jacobi polynomials, Jacobi weights, Local estimates.
2000 Mathematics Subject Classification. 33C45, 42C05.

1. Introduction

Let $w^{(\alpha, \beta)}(x)=(1-x)^{\alpha}(1+x)^{\beta}, x \in[-1,1]$, be a Jacobi weight with $\alpha, \beta>-1$. Let $p_{n}(x)=p_{n}^{(\alpha, \beta)}(x)=\gamma_{n}^{(\alpha, \beta)} x^{n}+\ldots, n \in \mathbb{N}_{0}$, denote the unique Jacobi polynomials of precise degree n, with leading coefficients $\gamma_{n}^{(\alpha, \beta)}>0$, fulfilling the orthonormal condition $\int_{-1}^{1} p_{n}(x) p_{m}(x) w^{(\alpha, \beta)}(x) d x=\delta_{n, m}, n, m \in \mathbb{N}_{0}$.

This paper is concerned with local estimates of Jacobi polynomials by means of modified Jacobi weights. By the modified Jacobi weights we understand the functions

$$
\begin{equation*}
w_{n}^{(\alpha, \beta)}(x):=\left(\sqrt{1-x}+\frac{1}{n}\right)^{2 \alpha}\left(\sqrt{1+x}+\frac{1}{n}\right)^{2 \beta}, \quad x \in[-1,1], n \in \mathbb{N} . \tag{1.1}
\end{equation*}
$$

We observe that all modified Jacobi weights $w_{n}^{(\alpha, \beta)}$ are finite and positive. This is in contrast to the fact that the Jacobi weight $w^{(\alpha, \beta)}$ may have singularities and roots in ± 1, depending on whether α and β are negative or positive. The Jacobi polynomials can be estimated by means
of modified Jacobi weights as follows (see [3] and Theorem 2.1] below):

$$
\left|p_{n}^{(\alpha, \beta)}(x)\right| \leq C \frac{1}{w_{n}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x)}
$$

for all $x \in[-1,1]$. If $\alpha, \beta \geq-\frac{1}{2}$, then we will show that this estimate can be further extended, namely

$$
\left|p_{n}^{(\alpha, \beta)}(t)\right| \leq C \frac{1}{w_{n}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x)}
$$

for all $t \in U_{n}(x)$ and each $x \in[-1,1]$, where $U_{n}(x)$ are subintervals of $[-1,1]$ defined by

$$
\begin{align*}
U_{n}(x) & :=\left\{t \in[-1,1]| | t-x \left\lvert\, \leq \frac{\varphi_{n}(x)}{n}\right.\right\} \tag{1.2}\\
& =\left[x-\frac{\varphi_{n}(x)}{n}, x+\frac{\varphi_{n}(x)}{n}\right] \cap[-1,1]
\end{align*}
$$

for $n \in \mathbb{N}$ and $x \in[-1,1]$ with

$$
\begin{equation*}
\varphi_{n}(x):=\sqrt{1-x^{2}}+\frac{1}{n} \tag{1.3}
\end{equation*}
$$

Thus $U_{n}(x)$ is located around x and is small, i.e., $\left|U_{n}(x)\right|=O(1 / n)$. In our case of Jacobi weights on $[-1,1]$ we need intervals around x with radius $\frac{\varphi_{n}(x)}{n}$ instead of $\frac{1}{n}$. In this case the radius varies together with x and becomes smaller if x tends to 1 or -1 .

2. Theorems

The following theorem provides a useful local estimate of the orthonormal Jacobi polynomials by means of the modified weights w_{n}. The estimate can also be found in the paper [3] by Lubinsky and Totik. Here we will give an explicit proof. The proof is essentially based on an estimate taken from Szegö [4].

Theorem 2.1. Let $\alpha, \beta>-1$ and $n \in \mathbb{N}$. Then

$$
\begin{equation*}
\left|p_{n}^{(\alpha, \beta)}(x)\right| \leq C \frac{1}{w_{n}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x)} \tag{2.1}
\end{equation*}
$$

for all $x \in[-1,1]$ with a positive constant $C=C(\alpha, \beta)$ being independent of n and x.
Proof. First let $x \in[0,1]$, and let $t \in\left[0, \frac{\pi}{2}\right]$ such that $x=\cos t$. Moreover, let $P_{n}=P_{n}^{(\alpha, \beta)}=$ $\left(h_{n}^{(\alpha, \beta)}\right)^{\frac{1}{2}} p_{n}^{(\alpha, \beta)}(x), n \in \mathbb{N}$, be the polynomials normalized by the factor $\left(h_{n}^{(\alpha, \beta)}\right)^{\frac{1}{2}}$, namely $P_{n}^{(\alpha, \beta)}=\left(h_{n}^{(\alpha, \beta)}\right)^{\frac{1}{2}} p_{n}^{(\alpha, \beta)}(x)$, as can be found in Szegö [4] eq. (4.3.4)]. According to Szegö's book [4, Theorem 7.32.2] the estimate

$$
\left|P_{n}^{(\alpha, \beta)}(\cos t)\right| \leq C \begin{cases}n^{\alpha}, & \text { if } 0 \leq t \leq \frac{c}{n} \tag{2.2}\\ t^{-\left(\alpha+\frac{1}{2}\right)} n^{-\frac{1}{2}}, & \text { if } \frac{c}{n} \leq t \leq \frac{\pi}{2}\end{cases}
$$

is valid, where c and C are fixed positive constants being independent of n and t. We substitute $t=\arccos x \in\left[0, \frac{\pi}{2}\right]$ and $P_{n}^{(\alpha, \beta)}(x)=\left(h_{n}^{(\alpha, \beta)}\right)^{\frac{1}{2}} p_{n}^{(\alpha, \beta)}(x)$ in (2.2) and obtain, using $\left(h_{n}^{(\alpha, \beta)}\right)^{-\frac{1}{2}} \leq$ $\tilde{C} \cdot n^{\frac{1}{2}}$ (resulting from [4, eq. (4.3.4)]),

$$
\left|p_{n}^{(\alpha, \beta)}(x)\right| \leq C_{1} \begin{cases}n^{\alpha+\frac{1}{2}}, & \text { if } 0 \leq \arccos x \leq \frac{c}{n} \tag{2.3}\\ (\arccos x)^{-\left(\alpha+\frac{1}{2}\right)}, & \text { if } \frac{c}{n} \leq \arccos x \leq \frac{\pi}{2}\end{cases}
$$

with $C_{1}=C_{1}(\alpha, \beta)>0$ independent of n and x. Below we will make use of the estimates

$$
\begin{align*}
\frac{\pi}{2} \sqrt{1-x} & =\frac{\pi}{\sqrt{2}} \sqrt{\frac{1-x}{2}}=\frac{\pi}{\sqrt{2}} \sin \frac{t}{2} \\
& \geq \frac{\pi}{\sqrt{2}}\left(\frac{2}{\pi} \cdot \frac{t}{\sqrt{2}}\right)=t=\arccos x \tag{2.4}
\end{align*}
$$

and

$$
\begin{equation*}
\sqrt{2} \sqrt{1-x}=2 \sqrt{\frac{1-x}{2}}=2 \sin \frac{t}{2} \leq 2 \cdot \frac{t}{2}=t=\arccos x . \tag{2.5}
\end{equation*}
$$

The cases $-1<\alpha \leq-\frac{1}{2}$ and $\alpha>-\frac{1}{2}$ are considered separately in the following.
Case $-1<\boldsymbol{\alpha} \leq-\frac{1}{2}$: In this case it follows that $-\left(\alpha+\frac{1}{2}\right) \geq 0$. If $0 \leq \arccos x \leq \frac{c}{n}$, then

$$
\left|p_{n}^{(\alpha, \beta)}(x)\right| \stackrel{\mid(2.3 \mid}{\leq} C_{1} n^{\alpha+\frac{1}{2}}=C_{1}\left(\frac{1}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)} \leq C_{1}\left(\sqrt{1-x}+\frac{1}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)}
$$

If $\frac{c}{n} \leq \arccos x \leq \frac{\pi}{2}$, then

$$
\begin{aligned}
\left|p_{n}^{(\alpha, \beta)}(x)\right| & \stackrel{[2.3]}{\leq} C_{1}(\arccos x)^{-\left(\alpha+\frac{1}{2}\right)} \stackrel{\sqrt{2.4}]}{\leq} C_{2}(\sqrt{1-x})^{-\left(\alpha+\frac{1}{2}\right)} \\
& \leq C_{2}\left(\sqrt{1-x}+\frac{1}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)}
\end{aligned}
$$

Case $\alpha>-\frac{1}{2}$: In this case we obtain $-\left(\alpha+\frac{1}{2}\right)<0$. If $0 \leq \arccos \leq \frac{c}{n}$, then from (2.5) we obtain $\frac{c}{n} \geq \sqrt{2} \sqrt{1-x}$ and hence

$$
\begin{aligned}
\left|p_{n}^{(\alpha, \beta)}(x)\right| & \stackrel{\mid 2.3]}{\leq} C_{1} n^{\alpha+\frac{1}{2}}=C_{2}\left(\frac{c}{n}+\frac{c}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)} \\
& \leq C_{3}\left(\sqrt{1-x}+\frac{1}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)}
\end{aligned}
$$

If $\frac{c}{n} \leq \arccos x \leq \frac{\pi}{2}$, then

$$
\begin{aligned}
\left|p_{n}^{(\alpha, \beta)}(x)\right| & \stackrel{\sqrt{2.3}]}{\leq} C_{1}(\arccos x)^{-\left(\alpha+\frac{1}{2}\right)}=C_{4}(\arccos x+\underbrace{\arccos x}_{\geq \frac{c}{n}})^{-\left(\alpha+\frac{1}{2}\right)} \\
& \stackrel{[2.5]}{\leq} C_{5}\left(\sqrt{1-x}+\frac{1}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)}
\end{aligned}
$$

With both previous cases we have proved

$$
\left|p_{n}^{(\alpha, \beta)}(x)\right| \leq C_{6}(\alpha, \beta)\left(\sqrt{1-x}+\frac{1}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)} \cdot\left(\sqrt{1+x}+\frac{1}{n}\right)^{-\left(\beta+\frac{1}{2}\right)}
$$

for all $x \in[0,1], n \in \mathbb{N}$ and $\alpha, \beta>-1$. Since $p_{n}^{(\alpha, \beta)}(x)=(-1)^{n} p_{n}^{(\beta, \alpha)}(-x)$, we obtain

$$
\left|p_{n}^{(\alpha, \beta)}(x)\right| \leq C_{6}(\beta, \alpha)\left(\sqrt{1+x}+\frac{1}{n}\right)^{-\left(\beta+\frac{1}{2}\right)} \cdot\left(\sqrt{1-x}+\frac{1}{n}\right)^{-\left(\alpha+\frac{1}{2}\right)}
$$

for all $x \in[-1,0), n \in \mathbb{N}$ and $\alpha, \beta>-1$. This furnishes the validity of (2.1).

Estimate (2.1) of Theorem 2.1 cannot hold true for $n=0$ since the modified weight w_{n} is not defined for $n=0$. However, if $n=0$, then

$$
\begin{equation*}
\left|p_{0}^{(\alpha, \beta)}(x)\right| \leq C(\alpha, \beta) \frac{1}{w_{1}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x)} \tag{2.6}
\end{equation*}
$$

since $p_{0}^{(\alpha, \beta)}(x)$ is a constant and $C_{1}(\alpha, \beta) \leq w_{1}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x) \leq C_{2}(\alpha, \beta)$ with positive constants $C_{1}(\alpha, \beta)$ and $C_{2}(\alpha, \beta)$.

Next, we will see that the local estimate of Theorem 2.1 can be further extended. We will show that $\left|p_{n}^{(\alpha, \beta)}(x)\right|$ in (2.1) can be replaced by $\left|p_{n}^{(\alpha, \beta)}(t)\right|$, whenever t is not too far away from x, namely if t is in the interval $U_{n}(x)=\left[x-\frac{\varphi_{n}(x)}{n}, x+\frac{\varphi_{n}(x)}{n}\right] \cap[-1,1]$. However, for this estimate we will need the assumption $\alpha, \beta \geq-\frac{1}{2}$. The result is stated in the following
Theorem 2.2. Let $\alpha, \beta \geq-\frac{1}{2}$ and $n \in \mathbb{N}$. Then

$$
\begin{equation*}
\left|p_{n}^{(\alpha, \beta)}(t)\right| \leq C \frac{1}{w_{n}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x)} \tag{2.7}
\end{equation*}
$$

for all $t \in U_{n}(x)$ and each $x \in[-1,1]$, where the interval $U_{n}(x)$ has been given in (1.2) and $C=C(\alpha, \beta)$ is a positive constant independent of n, t and x.

It must be mentioned that Theorem 2.2 cannot be extended to hold true even for all $\alpha, \beta>$ -1 . This is due to the fact that $1 / w_{n}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x) \rightarrow 0$ as $n \rightarrow \infty$, if x is a boundary point $x=1$ or $x=-1$ and $\frac{\alpha}{2}+\frac{1}{4}<0$ or $\frac{\beta}{2}+\frac{1}{4}<0$ respectively.

First, we need an auxiliary lemma.
Lemma 2.3. Let $a, b \leq 0, n \in \mathbb{N}$ and $x \in[-1,1]$. Then

$$
\begin{equation*}
w_{n}^{(a, b)}(t) \leq 16^{-(a+b)} w_{n}^{(a, b)}(x) \tag{2.8}
\end{equation*}
$$

for all $t \in U_{n}(x)$.
Proof. First, let $a \leq 0$. We will prove that

$$
\begin{equation*}
16^{a}\left(\sqrt{1-t}+\frac{1}{n}\right)^{2 a} \leq\left(\sqrt{1-x}+\frac{1}{n}\right)^{2 a} \tag{2.9}
\end{equation*}
$$

holds true for all $t \in U_{n}(x)$ with $x \in[-1,1]$ and $n \in \mathbb{N}$. There is nothing to prove for $a=0$. Let $a<0$. Then inequality (2.9) is equivalent to

$$
4\left(\sqrt{1-t}+\frac{1}{n}\right) \geq \sqrt{1-x}+\frac{1}{n}
$$

and

$$
\begin{equation*}
4 \sqrt{1-t} \geq \sqrt{1-x}-\frac{3}{n} \tag{2.10}
\end{equation*}
$$

respectively. In order to prove (2.10) for $t \in U_{n}(x)$ we will discuss below the cases $x \in$ $\left[1-\frac{9}{n^{2}}, 1\right]$ and $x \in\left[-1,1-\frac{9}{n^{2}}\right)$ separately. We must note that the latter interval is empty for $n=1,2,3$.

Case $\mathbf{x} \in\left[\mathbf{1}-\frac{9}{\mathbf{n}^{2}}, \mathbf{1}\right]$: In this case we obtain $\sqrt{1-x}-\frac{3}{n} \leq \frac{3}{n}-\frac{3}{n}=0$, which immediately gives (2.10).

Case $\mathrm{x} \in\left[-1,1-\frac{9}{\mathrm{n}^{2}}\right)$: In this case we obtain $\sqrt{1-x}-\frac{3}{n}>0$. Therefore inequality (2.10) is equivalent to (squaring both sides of (2.10))

$$
16(1-t) \geq 1-x-\frac{6}{n} \sqrt{1-x}+\frac{9}{n^{2}}
$$

or, rewritten,

$$
\begin{equation*}
15+x+\frac{6}{n} \sqrt{1-x}-\frac{9}{n^{2}} \geq 16 t \tag{2.11}
\end{equation*}
$$

Since $t \in U_{n}(x) \subset\left[x-\frac{\varphi_{n}(x)}{n}, x+\frac{\varphi_{n}(x)}{n}\right]$, we obtain

$$
\begin{aligned}
x+\frac{6}{n} \sqrt{1-x}-\frac{9}{n^{2}} & =\left(x+\frac{2}{n} \sqrt{1-x}+\frac{1}{n^{2}}\right)+\left(\frac{4}{n} \sqrt{1-x}-\frac{10}{n^{2}}\right) \\
& \geq x+\frac{\varphi_{n}(x)}{n}+\frac{4}{n} \sqrt{1-x}-\frac{10}{n^{2}} \\
& \geq t+\frac{4}{n} \sqrt{1-x}-\frac{10}{n^{2}}
\end{aligned}
$$

Hence, inequality (2.11) holds true if

$$
15+\frac{4}{n} \underbrace{\sqrt{1-x}}_{\geq \frac{3}{n}}-\frac{10}{n^{2}} \geq 15 t
$$

or if

$$
\begin{equation*}
15+\frac{2}{n^{2}} \geq 15 t \tag{2.12}
\end{equation*}
$$

Since $t \leq 1$, inequality 2.12 is fulfilled. Hence inequality 2.10 is also proved. This completes the proof of (2.9) for all $x \in[-1,1]$ and $t \in U_{n}(x)$.

Now, let $b \leq 0, x \in[-1,1]$ and $t \in U_{n}(x)$. Then $-t \in U_{n}(-x)$. From (2.9) we obtain

$$
\begin{aligned}
16^{b}\left(\sqrt{1+t}+\frac{1}{n}\right)^{2 b} & =16^{b}\left(\sqrt{1-(-t)}+\frac{1}{n}\right)^{2 b} \\
& \leq\left(\sqrt{1-(-x)}+\frac{1}{n}\right)^{2 b}=\left(\sqrt{1+x}+\frac{1}{n}\right)^{2 b}
\end{aligned}
$$

which proves the validity of (2.8).
Proof of Theorem 2.2. Since $\alpha, \beta \geq-\frac{1}{2}$, it follows that $\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4} \geq 0$. Therefore we can apply Lemma 2.3 with $a=-\frac{\alpha}{2}-\frac{1}{4}$ and $b=-\frac{\beta}{2}-\frac{1}{4}$, obtaining

$$
\frac{1}{w_{n}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(t)}=w_{n}^{\left(-\frac{\alpha}{2}-\frac{1}{4},-\frac{\beta}{2}-\frac{1}{4}\right)}(t) \stackrel{\text { Lem. } 2.3}{\leq} \frac{4^{\alpha+\beta+1}}{w_{n}^{\left(\frac{\alpha}{2}+\frac{1}{4}, \frac{\beta}{2}+\frac{1}{4}\right)}(x)}
$$

for all $t \in U_{n}(x)$. Application of Theorem 2.1 therefore yields inequality 2.2$)$ for all $t \in U_{n}(x)$ as claimed.

3. APPLICATIONS

In this section we will give some applications of the local estimates of the Jacobi polynomials. We apply Theorem 2.2 and obtain

$$
\int_{U_{n}(x)}\left|p_{n}^{(\alpha, \beta)}(t)\right|^{2} w^{(\alpha, \beta)}(t) d t \leq C \frac{1}{w_{n}^{\left(\alpha+\frac{1}{2}, \beta+\frac{1}{2}\right)}(x)} \int_{U_{n}(x)} w^{(\alpha, \beta)}(t) d t
$$

Using

$$
\int_{U_{n}(x)} w^{(\alpha, \beta)}(t) d t \leq C \frac{1}{n} w_{n}^{\left(\alpha+\frac{1}{2}, \beta+\frac{1}{2}\right)}(x)
$$

(see [2]) we find that

$$
\begin{equation*}
\int_{U_{n}(x)}\left|p_{n}^{(\alpha, \beta)}(t)\right|^{2} w^{(\alpha, \beta)}(t) d t \leq C(\alpha, \beta) \frac{1}{n}, \quad x \in[-1,1] \tag{3.1}
\end{equation*}
$$

is valid for all $n \in \mathbb{N}$ with $\alpha, \beta \geq-\frac{1}{2}$. Estimate (3.1) shows that the intervals $U_{n}(x)$ are appropriate for measuring the growth of the orthonormal polynomials on subintervals of $[-1,1]$: $U_{n}(x)$ is located around $x,\left|U_{n}(x)\right|=O(1 / n)$, the radius $\frac{\varphi_{n}(x)}{n}$ varies together with x and becomes smaller if x tends to 1 or -1 and the weighted integration of $\left(p_{n}^{(\alpha, \beta)}(t)\right)^{2}$ on $U_{n}(x)$ is $O(1 / n)$, whereas the weighted integral on $[-1,1]$ equals 1, i.e.,

$$
\int_{-1}^{1}\left|p_{n}^{(\alpha, \beta)}(t)\right|^{2} w^{(\alpha, \beta)}(t) d t=1, \quad x \in[-1,1]
$$

Let $a, b>-\frac{1}{2}$ and $C_{1}, C_{2}>0$. Let $m:[1, \infty) \rightarrow \mathbb{R}$ be a differentiable function fulfilling the Hormander conditions

$$
0 \leq m(t) \leq C_{1} \quad \text { and } \quad\left|m^{\prime}(t)\right| \leq C_{2} t^{-1}
$$

for $t \geq 1$. It was proved in [1] that

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{m(k)}{w_{k}^{(a, b)}(x)} \leq C \frac{n}{w_{n}^{(a, b)}(x)} \tag{3.2}
\end{equation*}
$$

for all $x \in[-1,1]$ and $n \in \mathbb{N}$ with a positive constant $C=C\left(a, b, C_{1}, C_{2}\right)$ being independent of n and x.

Let $\alpha, \beta \geq-\frac{1}{2}$. Now, we will apply Theorem 2.2 and the above estimate (3.2) with $a=$ $\alpha+\frac{1}{2} \geq 0$ and $b=\beta+\frac{1}{2} \geq 0$, to obtain

$$
\begin{equation*}
\sum_{k=1}^{n} m(k)\left(p_{k}^{(\alpha, \beta)}(t)\right)^{2} \underset{\substack{\text { Theorem } \\ \leq 2.2]}}{\leq} \frac{n}{w_{n}^{\left(\alpha+\frac{1}{2}, \beta+\frac{1}{2}\right)}(x)} \tag{3.3}
\end{equation*}
$$

for all $t \in U_{n}(x)$ and each $x \in[-1,1]$ with a constant $C=C\left(\alpha, \beta, C_{1}, C_{2}\right)>0$ being independent of n and x.

In particular, if we let $m(k)=1$, then estimate (3.3) shows that the Christoffel function, defined by

$$
\lambda_{n}^{(\alpha, \beta)}(t):=\left\{\sum_{k=1}^{n}\left(p_{k}^{(\alpha, \beta)}(t)\right)^{2}\right\}^{-1}
$$

fulfills the estimate

$$
\left(\lambda_{n}^{(\alpha, \beta)}(t)\right)^{-1} \leq C(\alpha, \beta) \frac{n}{w_{n}^{\left(\alpha+\frac{1}{2}, \beta+\frac{1}{2}\right)}(x)}
$$

for $t \in U_{n}(x)$ and $x \in[-1,1]$ and $n \in \mathbb{N}$.

References

[1] M. FELTEN, Multiplier theorems for finite sums of Jacobi polynomials, submitted, 1-9.
[2] M. FELTEN, Uniform boundedness of $(C, 1)$ means of Jacobi expansions in weighted sup norms. II (Some necessary estimations), accepted for publication in Acta Math. Hung.
[3] D.S. LUBINSKY AND V. TOTIK, Best weighted polynomial approximation via Jacobi expansions, SIAM Journal on Mathematical Analysis, 25(2) (1994), 555-570.
[4] G. SZEGŐ, Orthogonal Polynomials, 4th Ed., American Mathematical Society, Providence, R.I., 1975, American Mathematical Society, Colloquium Publications, Vol. XXIII.

