GROWTH OF SOLUTIONS OF CERTAIN NON-HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS

BENHARRAT BELAÏDI

Department of Mathematics
Laboratory of Pure and Applied Mathematics
University of Mostaganem
B. P 227 Mostaganem-(Algeria).
belaidi@univ-mosta.dz

Received 31 December, 2003; accepted 06 March, 2004
Communicated by H.M. Srivastava

> AbSTRACT. In this paper, we investigate the growth of solutions of the differential equation $f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=F$, where $A_{0}(z), \ldots, A_{k-1}(z), F(z)$ $\not \equiv 0$ are entire functions, and we obtain general estimates of the hyper-exponent of convergence of distinct zeros and the hyper-order of solutions for the above equation.

Key words and phrases: Differential equations, Hyper-order, Hyper-exponent of convergence of distinct zeros, WimanValiron theory.

2000 Mathematics Subject Classification 34M10, 30D35.

1. Introduction and Statement of Results

In this paper, we will use the standard notations of the Nevanlinna value distribution theory (see [8]). In addition, we use the notations $\sigma(f)$ and $\mu(f)$ to denote respectively the order and the lower order of growth of $f(z)$. Recalling the following definitions of hyper-order and hyper-exponent of convergence of distinct zeros.

Definition 1.1. ([3] - [6], [12]). Let f be an entire function. Then the hyper-order $\sigma_{2}(f)$ of $f(z)$ is defined by

$$
\begin{equation*}
\sigma_{2}(f)=\varlimsup_{r \rightarrow+\infty} \frac{\log \log T(r, f)}{\log r}=\varlimsup_{r \rightarrow+\infty} \frac{\log \log \log M(r, f)}{\log r}, \tag{1.1}
\end{equation*}
$$

where $T(r, f)$ is the Nevanlinna characteristic function of f (see [8]), and $M(r, f)=$ $\max _{|z|=r}|f(z)|$.

[^0]Definition 1.2. ([5]). Let f be an entire function. Then the hyper-exponent of convergence of distinct zeros of $f(z)$ is defined by

$$
\begin{equation*}
\bar{\lambda}_{2}(f)=\varlimsup_{r \rightarrow+\infty} \frac{\log \log \bar{N}\left(r, \frac{1}{f}\right)}{\log r} \tag{1.2}
\end{equation*}
$$

where $\bar{N}\left(r, \frac{1}{f}\right)$ is the counting function of distinct zeros of $f(z)$ in $\{|z|<r\}$. We define the linear measure of a set $E \subset\left[0,+\infty\left[\right.\right.$ by $m(E)=\int_{0}^{+\infty} \chi_{E}(t) d t$ and the logarithmic measure of a set $F \subset\left[1,+\infty\left[\right.\right.$ by $\operatorname{lm}(F)=\int_{1}^{+\infty} \frac{\chi_{F}(t) d t}{t}$, where χ_{H} is the characteristic function of a set H. The upper and the lower densities of E are defined by

$$
\begin{equation*}
\overline{\operatorname{dens}} E=\varlimsup_{r \rightarrow+\infty} \frac{m(E \cap[0, r])}{r}, \underline{\operatorname{dens} E}=\lim _{r \rightarrow+\infty} \frac{m(E \cap[0, r])}{r} \tag{1.3}
\end{equation*}
$$

The upper and the lower logarithmic densities of F are defined by

$$
\begin{equation*}
\overline{\log \operatorname{dens}}(F)=\varlimsup_{r \rightarrow+\infty} \frac{\operatorname{lm}(F \cap[1, r])}{\log r}, \underline{\log \operatorname{dens}}(F)=\lim _{r \rightarrow+\infty} \frac{\operatorname{lm}(F \cap[1, r])}{\log r} . \tag{1.4}
\end{equation*}
$$

In the study of the solutions of complex differential equations, the growth of a solution is a very important property. Recently, Z. X. Chen and C. C. Yang have investigated the growth of solutions of the non-homogeneous linear differential equation of second order

$$
\begin{equation*}
f^{\prime \prime}+A_{1}(z) f^{\prime}+A_{0}(z) f=F \tag{1.5}
\end{equation*}
$$

and have obtained the following two results:
Theorem A. [5] p. 276]. Let E be a set of complex numbers satisfying $\overline{\operatorname{dens}}\{|z|: z \in E\}>0$, and let $A_{0}(z), A_{1}(z)$ be entire functions, with $\sigma\left(A_{1}\right) \leq \sigma\left(A_{0}\right)=\sigma<+\infty$ such that for a real constant $C(>0)$ and for any given $\varepsilon>0$,

$$
\begin{equation*}
\left|A_{1}(z)\right| \leq \exp \left(o(1)|z|^{\sigma-\varepsilon}\right) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{0}(z)\right| \geq \exp \left((1+o(1)) C|z|^{\sigma-\varepsilon}\right) \tag{1.7}
\end{equation*}
$$

as $z \rightarrow \infty$ for $z \in E$, and let $F \not \equiv 0$ be an entire function with $\sigma(F)<+\infty$. Then every entire solution $f(z)$ of the equation (1.5) satisfies $\overline{\lambda_{2}}(f)=\sigma_{2}(f)=\sigma$, with at most one exceptional solution f_{0} satisfying $\sigma\left(f_{0}\right)<\sigma$.

Theorem B. [5], p. 276]. Let $A_{1}(z), A_{0}(z) \not \equiv 0$ be entire functions such that $\sigma\left(A_{0}\right)<\sigma\left(A_{1}\right)<$ $\frac{1}{2}$ (or A_{1} is transcendental, $\sigma\left(A_{1}\right)=0, A_{0}$ is a polynomial), and let $F \not \equiv 0$ be an entire function. Consider a solution f of the equation (1.5), we have
(i) If $\sigma(F)<\sigma\left(A_{1}\right)$ (or F is a polynomial when A_{1} is transcendental, $\sigma\left(A_{1}\right)=0, A_{0}$ is a polynomial), then every entire solution $f(z)$ of (1.5) satisfies $\overline{\lambda_{2}}(f)=\sigma_{2}(f)=\sigma\left(A_{1}\right)$.
(ii) If $\sigma\left(A_{1}\right) \leq \sigma(F)<+\infty$, then every entire solution $f(z)$ of (1.5) satisfies $\overline{\lambda_{2}}(f)=$ $\sigma_{2}(f)=\sigma\left(A_{1}\right)$, with at most one exceptional solution f_{0} satisfying $\sigma\left(f_{0}\right)<\sigma\left(A_{1}\right)$.
For $k \geq 2$, we consider the non-homogeneous linear differential equation

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=F \tag{1.8}
\end{equation*}
$$

where $A_{0}(z), \ldots, A_{k-1}(z)$ and $F(z) \not \equiv 0$ are entire functions. It is well-known that all solutions of equation (1.8) are entire functions.

Recently, the concepts of hyper-order [3] - [6] and iterated order [10] were used to further investigate the growth of infinite order solutions of complex differential equations. The main
purposes of this paper are to investigate the hyper-exponent of convergence of distinct zeros and the hyper-order of infinite order solutions for the above equation. We will prove the following two theorems:

Theorem 1.1. Let E be a set of complex numbers satisfying $\overline{\operatorname{dens}}\{|z|: z \in E\}>0$, and let $A_{0}(z), \ldots, A_{k-1}(z)$ be entire functions, with $\max \left\{\sigma\left(A_{j}\right): j=1, \ldots, k\right\} \leq \sigma\left(A_{0}\right)=\sigma<$ $+\infty$ such that for real constants $0 \leq \beta<\alpha$ and for any given $\varepsilon>0$,

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp \left(\beta|z|^{\sigma-\varepsilon}\right) \quad(j=1, \ldots, k-1) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{0}(z)\right| \geq \exp \left(\alpha|z|^{\sigma-\varepsilon}\right) \tag{1.10}
\end{equation*}
$$

as $z \rightarrow \infty$ for $z \in E$, and let $F \not \equiv 0$ be an entire function with $\sigma(F)<+\infty$. Then every entire solution $f(z)$ of the equation (1.8) satisfies $\overline{\lambda_{2}}(f)=\sigma_{2}(f)=\sigma$, with at most one exceptional solution f_{0} satisfying $\sigma\left(f_{0}\right)<\sigma$.

Theorem 1.2. Let $A_{0}(z), \ldots, A_{k-1}(z)$ be entire functions with $A_{0}(z) \not \equiv 0$ such that $\max \left\{\sigma\left(A_{j}\right)\right.$: $j=0,2, \ldots, k-1\}<\sigma\left(A_{1}\right)<\frac{1}{2}\left(\right.$ or A_{1} is transcendental, $\sigma\left(A_{1}\right)=0, A_{0}, A_{2}, \ldots, A_{k-1}$ are polynomials), and let $F \not \equiv 0$ be an entire function. Consider a solution f of the equation (1.8), we have
(i) If $\sigma(F)<\sigma\left(A_{1}\right)$ (or F is a polynomial when A_{1} is transcendental, $\sigma\left(A_{1}\right)=0$, $A_{0}, A_{2}, \ldots, A_{k-1}$ are polynomials), then every entire solution $f(z)$ of (1.8) satisfies $\overline{\lambda_{2}}(f)=\sigma_{2}(f)=\sigma\left(A_{1}\right)$.
(ii) If $\sigma\left(A_{1}\right) \leq \sigma(F)<+\infty$, then every entire solution $f(z)$ of (1.8) satisfies $\overline{\lambda_{2}}(f)=$ $\sigma_{2}(f)=\sigma\left(A_{1}\right)$, with at most one exceptional solution f_{0} satisfying $\sigma\left(f_{0}\right)<\sigma\left(A_{1}\right)$.

2. Preliminary Lemmas

Our proofs depend mainly upon the following lemmas.
Lemma 2.1. ([3]). Let E be a set of complex numbers satisfying $\overline{\operatorname{dens}}\{|z|: z \in E\}>0$, and let $A_{0}(z), \ldots, A_{k-1}(z)$ be entire functions, with $\max \left\{\sigma\left(A_{j}\right): j=1, \ldots, k\right\} \leq \sigma\left(A_{0}\right)=\sigma<$ $+\infty$ such that for some real constants $0 \leq \beta<\alpha$ and for any given $\varepsilon>0$,

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp \left(\beta|z|^{\sigma-\varepsilon}\right) \quad(j=1, \ldots, k-1) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{0}(z)\right| \geq \exp \left(\alpha|z|^{\sigma-\varepsilon}\right) \tag{2.2}
\end{equation*}
$$

as $z \rightarrow \infty$ for $z \in E$. Then every entire solution $f \not \equiv 0$ of the equation

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=0 \tag{2.3}
\end{equation*}
$$

satisfies $\sigma(f)=+\infty$ and $\sigma_{2}(f)=\sigma\left(A_{0}\right)$.
Lemma 2.2. ([7]). Let $f(z)$ be a nontrivial entire function, and let $\alpha>1$ and $\varepsilon>0$ be given constants. Then there exist a constant $c>0$ and a set $E \subset[0,+\infty)$ having finite linear measure such that for all z satisfying $|z|=r \notin E$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq c\left[T(\alpha r, f) r^{\varepsilon} \log T(\alpha r, f)\right]^{j} \quad(j \in \mathbf{N}) \tag{2.4}
\end{equation*}
$$

Lemma 2.3. ([7]). Let $f(z)$ be a transcendental meromorphic function, and let $\alpha>1$ be a given constant. Then there exists a set $E \subset(1,+\infty)$ of finite logarithmic measure and a constant $B>0$ that depends only on α and (m, n) (m, n positive integers with $m<n$) such that for all z satisfying $|z|=r \notin[0,1] \cup E$, we have

$$
\begin{equation*}
\left|\frac{f^{(n)}(z)}{f^{(m)}(z)}\right| \leq B\left[\frac{T(\alpha r, f)}{r}\left(\log ^{\alpha} r\right) \log T(\alpha r, f)\right]^{n-m} \tag{2.5}
\end{equation*}
$$

Lemma 2.4. ([5]). Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function of infinite order with the hyper-order $\sigma_{2}(f)=\sigma, \mu(r)$ be the maximum term, i.e $\mu(r)=\max \left\{\left|a_{n}\right| r^{n} ; n=0,1, \ldots\right\}$ and let $\nu_{f}(r)$ be the central index of f, i.e $\nu_{f}(r)=\max \left\{m, \mu(r)=\left|a_{m}\right| r^{m}\right\}$. Then

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log \log \nu_{f}(r)}{\log r}=\sigma \tag{2.6}
\end{equation*}
$$

Lemma 2.5. (Wiman-Valiron, [9, 11]). Let $f(z)$ be a transcendental entire function and let z be a point with $|z|=r$ at which $|f(z)|=M(r, f)$. Then for all $|z|$ outside a set E of r of finite logarithmic measure, we have

$$
\begin{equation*}
\frac{f^{(j)}(z)}{f(z)}=\left(\frac{\nu_{f}(r)}{z}\right)^{j}(1+o(1))(j \text { is an integer, } r \notin E) . \tag{2.7}
\end{equation*}
$$

Lemma 2.6. ([1]). Let $f(z)$ be an entire function of order $\sigma(f)=\sigma<\frac{1}{2}$, and denote $A(r)=$ $\inf _{|z|=r} \log |f(z)|, B(r)=\sup _{|z|=r} \log |f(z)|$. If $\sigma<\alpha<1$, then

$$
\begin{equation*}
\underline{\log d e n s}\{r: A(r)>(\cos \pi \alpha) B(r)\} \geq 1-\frac{\sigma}{\alpha} \tag{2.8}
\end{equation*}
$$

Lemma 2.7. ([2]). Let $f(z)$ be an entire function with $\mu(f)=\mu<\frac{1}{2}$ and $\mu<\sigma(f)=\sigma$. If $\mu \leq \delta<\min \left(\sigma, \frac{1}{2}\right)$ and $\delta<\alpha<\frac{1}{2}$, then

$$
\begin{equation*}
\overline{\log \operatorname{dens}}\left\{r: A(r)>(\cos \pi \alpha) B(r)>r^{\delta}\right\}>C(\sigma, \delta, \alpha) \tag{2.9}
\end{equation*}
$$

where $C(\sigma, \delta, \alpha)$ is a positive constant depending only on σ, δ and α.
Lemma 2.8. Suppose that $A_{0}(z), \ldots, A_{k-1}(z)$ are entire functions such that $A_{0}(z) \not \equiv 0$ and

$$
\begin{equation*}
\max \left\{\sigma\left(A_{j}\right): j=0,2, \ldots, k-1\right\}<\sigma\left(A_{1}\right)<\frac{1}{2} \tag{2.10}
\end{equation*}
$$

Then every transcendental solution $f \not \equiv 0$ of (2.3) is of infinite order.
Proof. Using the same argument as in the proof of Theorem 4 in [6, p. 222], we conclude that $\sigma(f)=+\infty$.

3. Proof of Theorem 1.1

We affirm that (1.8) can only possess at most one exceptional solution f_{0} such that $\sigma\left(f_{0}\right)<\sigma$. In fact, if f^{*} is a second solution with $\sigma\left(f^{*}\right)<\sigma$, then $\sigma\left(f_{0}-f^{*}\right)<\sigma$. But $f_{0}-f^{*}$ is a solution of the corresponding homogeneous equation (2.3) of (1.8). This contradicts Lemma 2.1. We assume that f is a solution of 1.8 with $\sigma(f)=+\infty$ and f_{1}, \ldots, f_{k} are k entire solutions of the corresponding homogeneous equation (2.3). Then by Lemma 2.1, we have $\sigma_{2}\left(f_{j}\right)=\sigma\left(A_{0}\right)=\sigma(j=1, \ldots, k)$. By variation of parameters, f can be expressed in the form

$$
\begin{equation*}
f(z)=B_{1}(z) f_{1}(z)+\cdots+B_{k}(z) f_{k}(z) \tag{3.1}
\end{equation*}
$$

where $B_{1}(z), \ldots, B_{k}(z)$ are determined by

$$
\begin{aligned}
& B_{1}^{\prime}(z) f_{1}(z)+\cdots+B_{k}^{\prime}(z) f_{k}(z)=0 \\
& B_{1}^{\prime}(z) f_{1}^{\prime}(z)+\cdots+B_{k}^{\prime}(z) f_{k}^{\prime}(z)=0
\end{aligned}
$$

Noting that the Wronskian $W\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ is a differential polynomial in $f_{1}, f_{2}, \ldots, f_{k}$ with constant coefficients, it easy to deduce that $\sigma_{2}(W) \leq \sigma_{2}\left(f_{j}\right)=\sigma\left(A_{0}\right)=\sigma$. Set

$$
W_{i}=\left|\begin{array}{c}
f_{1}, \ldots, \stackrel{(i)}{0}, \ldots, f_{k} \tag{3.3}\\
\ldots \\
\ldots \\
f_{1}^{(k-1)}, \ldots, F, \ldots, f_{k}^{(k-1)}
\end{array}\right|=F \cdot g_{i}(i=1, \ldots, k),
$$

where g_{i} are differential polynomials in $f_{1}, f_{2}, \ldots, f_{k}$ with constant coefficients. So

$$
\begin{equation*}
\sigma_{2}\left(g_{i}\right) \leq \sigma_{2}\left(f_{j}\right)=\sigma\left(A_{0}\right), B_{i}^{\prime}=\frac{W_{i}}{W}=\frac{F \cdot g_{i}}{W}(i=1, \ldots, k) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{2}\left(B_{i}\right)=\sigma_{2}\left(B_{i}^{\prime}\right) \leq \max \left(\sigma_{2}(F), \sigma\left(A_{0}\right)\right)=\sigma\left(A_{0}\right) \quad(i=1, \ldots, k) \tag{3.5}
\end{equation*}
$$

because $\sigma_{2}(F)=0(\sigma(F)<+\infty)$. Then from (3.1) and (3.5), we get

$$
\begin{equation*}
\sigma_{2}(f) \leq \max \left(\sigma_{2}\left(f_{j}\right), \sigma_{2}\left(B_{i}\right)\right)=\sigma\left(A_{0}\right) \tag{3.6}
\end{equation*}
$$

Now from (1.8), it follows that

$$
\begin{equation*}
\left|A_{0}(z)\right| \leq\left|\frac{f^{(k)}}{f}\right|+\left|A_{k-1}(z)\right|\left|\frac{f^{(k-1)}}{f}\right|+\cdots+\left|A_{1}(z)\right|\left|\frac{f^{\prime}}{f}\right|+\left|\frac{F}{f}\right| \tag{3.7}
\end{equation*}
$$

Then by Lemma 2.2, there exists a set $E_{1} \subset[0,+\infty)$ with a finite linear measure such that for all z satisfying $|z|=r \notin E_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq r[T(2 r, f)]^{k+1} \quad(j=1, \ldots, k) \tag{3.8}
\end{equation*}
$$

Also, by the hypothesis of Theorem 1.1, there exists a set E_{2} with $\overline{\operatorname{dens}}\left\{|z|: z \in E_{2}\right\}>0$ such that for all z satisfying $z \in E_{2}$, we have

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp \left(\beta|z|^{\sigma-\varepsilon}\right)(j=1, \ldots, k-1) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{0}(z)\right| \geq \exp \left(\alpha|z|^{\sigma-\varepsilon}\right) \tag{3.10}
\end{equation*}
$$

as $z \rightarrow \infty$. Since $\sigma(f)=+\infty$, then for a given arbitrary large $\rho>\sigma(F)$,

$$
\begin{equation*}
M(r, f) \geq \exp \left(r^{\rho}\right) \tag{3.11}
\end{equation*}
$$

holds for sufficiently large r. On the other hand, for a given ε with $0<\varepsilon<\rho-\sigma(F)$, we have

$$
\begin{equation*}
|F(z)| \leq \exp \left(r^{\sigma(F)+\varepsilon}\right),\left|\frac{F(z)}{f(z)}\right| \leq \exp \left(r^{\sigma(F)+\varepsilon}-r^{\rho}\right) \rightarrow 0(r \rightarrow+\infty) \tag{3.12}
\end{equation*}
$$

where $|f(z)|=M(r, f)$ and $|z|=r$. Hence from 3.7) - 3.10) and (3.12), it follows that for all z satisfying $z \in E_{2},|z|=r \notin E_{1}$ and $|f(z)|=M(r, f)$

$$
\begin{equation*}
\exp \left(\alpha|z|^{\sigma-\varepsilon}\right) \leq|z|[T(2|z|, f)]^{k+1}\left[1+(k-1) \exp \left(\beta|z|^{\sigma-\varepsilon}\right)\right]+o(1) \tag{3.13}
\end{equation*}
$$

as $z \rightarrow \infty$. Thus there exists a set $E \subset[0,+\infty)$ with a positive upper density such that

$$
\begin{equation*}
\exp \left(\alpha r^{\sigma-\varepsilon}\right) \leq d r \exp \left(\beta r^{\sigma-\varepsilon}\right)[T(2 r, f)]^{k+1} \tag{3.14}
\end{equation*}
$$

as $r \rightarrow+\infty$ in E, where $d(>0)$ is some constant. Therefore

$$
\begin{equation*}
\sigma_{2}(f)=\varlimsup_{r \rightarrow+\infty} \frac{\log \log T(r, f)}{\log r} \geq \sigma-\varepsilon \tag{3.15}
\end{equation*}
$$

Since ε is arbitrary, then by 3.15) we get $\sigma_{2}(f) \geq \sigma\left(A_{0}\right)=\sigma$. This and the fact that $\sigma_{2}(f) \leq \sigma$ yield $\sigma_{2}(f)=\sigma\left(A_{0}\right)=\sigma$.

By (1.8), it is easy to see that if f has a zero at z_{0} of order $\alpha(>k)$, then F must have a zero at z_{0} of order $\alpha-k$. Hence,

$$
\begin{equation*}
n\left(r, \frac{1}{f}\right) \leq k \bar{n}\left(r, \frac{1}{f}\right)+n\left(r, \frac{1}{F}\right) \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
N\left(r, \frac{1}{f}\right) \leq k \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{F}\right) \tag{3.17}
\end{equation*}
$$

Now (1.8) can be rewritten as

$$
\begin{equation*}
\frac{1}{f}=\frac{1}{F}\left(\frac{f^{(k)}}{f}+A_{k-1} \frac{f^{(k-1)}}{f}+\cdots+A_{1} \frac{f^{\prime}}{f}+A_{0}\right) \tag{3.18}
\end{equation*}
$$

By (3.18), we have

$$
\begin{equation*}
m\left(r, \frac{1}{f}\right) \leq \sum_{j=1}^{k} m\left(r, \frac{f^{(j)}}{f}\right)+\sum_{j=1}^{k} m\left(r, A_{k-j}\right)+m\left(r, \frac{1}{F}\right)+O(1) \tag{3.19}
\end{equation*}
$$

By 3.17) and (3.19), we get for $|z|=r$ outside a set E_{3} of finite linear measure,

$$
\begin{align*}
T(r, f) & =T\left(r, \frac{1}{f}\right)+O(1) \tag{3.20}\\
& \leq k \bar{N}\left(r, \frac{1}{f}\right)+\sum_{j=1}^{k} T\left(r, A_{k-j}\right)+T(r, F)+O(\log (r T(r, f)))
\end{align*}
$$

For sufficiently large r, we have

$$
\begin{gather*}
O(\log r+\log T(r, f)) \leq \frac{1}{2} T(r, f) \tag{3.21}\\
T\left(r, A_{0}\right)+\cdots+T\left(r, A_{k-1}\right) \leq k r^{\sigma+\varepsilon} \tag{3.22}\\
T(r, F) \leq r^{\sigma(F)+\varepsilon} \tag{3.23}
\end{gather*}
$$

Thus, by (3.20) - (3.23), we have

$$
\begin{equation*}
T(r, f) \leq 2 k \bar{N}\left(r, \frac{1}{f}\right)+2 k r^{\sigma+\varepsilon}+2 r^{\sigma(F)+\varepsilon}\left(|z|=r \notin E_{3}\right) . \tag{3.24}
\end{equation*}
$$

Hence for any f with $\sigma_{2}(f)=\sigma$, by (3.24), we have $\sigma_{2}(f) \leq \overline{\lambda_{2}}(f)$. Therefore, $\overline{\lambda_{2}}(f)=$ $\sigma_{2}(f)=\sigma$.

4. Proof of Theorem 1.2

Assume that $f(z)$ is an entire solution of 1.8 . For case (i), we assume $\sigma\left(A_{1}\right)>0$ (when $\sigma\left(A_{1}\right)=0$, Theorem 1.2 clearly holds). By 1.8 we get

$$
\begin{align*}
A_{1} & =\frac{F}{f^{\prime}}-\frac{f^{(k)}}{f^{\prime}}-A_{k-1} \frac{f^{(k-1)}}{f^{\prime}}-\cdots-A_{2} \frac{f^{\prime \prime}}{f^{\prime}}-A_{0} \frac{f}{f^{\prime}} \tag{4.1}\\
& =\frac{F}{f} \frac{f}{f^{\prime}}-\frac{f^{(k)}}{f^{\prime}}-A_{k-1} \frac{f^{(k-1)}}{f^{\prime}}-\cdots-A_{2} \frac{f^{\prime \prime}}{f^{\prime}}-A_{0} \frac{f}{f^{\prime}} .
\end{align*}
$$

By Lemma 2.3, we see that there exists a set $E_{4} \subset(1,+\infty)$ with finite logarithmic measure such that for all z satisfying $|z|=r \notin[0,1] \cup E_{4}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{\prime}(z)}\right| \leq \operatorname{Br}[T(2 r, f)]^{k} \quad(j=2, \ldots, k) \tag{4.2}
\end{equation*}
$$

Now set $b=\max \left\{\sigma\left(A_{j}\right): j=0,2, \ldots, k-1 ; \sigma(F)\right\}$, and we choose real numbers α, β such that

$$
\begin{equation*}
b<\alpha<\beta<\sigma\left(A_{1}\right) . \tag{4.3}
\end{equation*}
$$

Then for sufficiently large r, we have

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp \left(r^{\alpha}\right) \quad(j=0,2, \ldots, k-1) \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
|F(z)| \leq \exp \left(r^{\alpha}\right) \tag{4.5}
\end{equation*}
$$

By Lemma 2.6 (if $\mu\left(A_{1}\right)=\sigma\left(A_{1}\right)$) or Lemma 2.7 (if $\mu\left(A_{1}\right)<\sigma\left(A_{1}\right)$) there exists a subset $E_{5} \subset(1,+\infty)$ with logarithmic measure $\operatorname{lm}\left(E_{5}\right)=\infty$ such that for all z satisfying $|z|=r \in$ E_{5}, we have

$$
\begin{equation*}
\left|A_{1}(z)\right|>\exp \left(r^{\beta}\right) \tag{4.6}
\end{equation*}
$$

Since $M(r, f)>1$ for sufficiently large r, we have by (4.5)

$$
\begin{equation*}
\frac{|F(z)|}{M(r, f)} \leq \exp \left(r^{\alpha}\right) \tag{4.7}
\end{equation*}
$$

On the other hand, by Lemma 2.5, there exists a set $E_{6} \subset(1,+\infty)$ of finite logarithmic measure such that (2.7) holds for some point z satisfying $|z|=r \notin[0,1] \cup E_{6}$ and $|f(z)|=M(r, f)$. By (2.7), we get

$$
\left|\frac{f^{\prime}(z)}{f(z)}\right| \geq \frac{1}{2}\left|\frac{\nu_{f}(r)}{z}\right|>\frac{1}{2 r}
$$

or

$$
\begin{equation*}
\left|\frac{f(z)}{f^{\prime}(z)}\right|<2 r . \tag{4.8}
\end{equation*}
$$

Now by (4.1), (4.2), (4.4), and (4.6) - (4.8), we get

$$
\exp \left(r^{\beta}\right) \leq \operatorname{Lr}[T(2 r, f)]^{k} 2 \exp \left(r^{\alpha}\right) 2 r
$$

for $|z|=r \in E_{5} \backslash\left([0,1] \cup E_{4} \cup E_{6}\right)$ and $|f(z)|=M(r, f)$, where $L(>0)$ is some constant. From this and since β is arbitrary, we get $\sigma(f)=+\infty$ and $\sigma_{2}(f) \geq \sigma\left(A_{1}\right)$.

On the other hand, for any given $\varepsilon>0$, if r is sufficiently large, we have

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp \left(r^{\sigma\left(A_{1}\right)+\varepsilon}\right) \quad(j=0,1, \ldots, k-1) \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
|F(z)| \leq \exp \left(r^{\sigma\left(A_{1}\right)+\varepsilon}\right) . \tag{4.10}
\end{equation*}
$$

Since $M(r, f)>1$ for sufficiently large r, we have by 4.10)

$$
\begin{equation*}
\frac{|F(z)|}{M(r, f)} \leq \exp \left(r^{\sigma\left(A_{1}\right)+\varepsilon}\right) \tag{4.11}
\end{equation*}
$$

Substituting (2.7), (4.9) and (4.11) into (1.8), we obtain

$$
\begin{align*}
\left(\frac{\nu_{f}(r)}{|z|}\right)^{k}|1+o(1)| \leq & \exp \left(r^{\sigma\left(A_{1}\right)+\varepsilon}\right)\left(\frac{\nu_{f}(r)}{|z|}\right)^{k-1}|1+o(1)| \tag{4.12}\\
& +\exp \left(r^{\sigma\left(A_{1}\right)+\varepsilon}\right)\left(\frac{\nu_{f}(r)}{|z|}\right)^{k-2}|1+o(1)|+\cdots \\
& +\exp \left(r^{\sigma\left(A_{1}\right)+\varepsilon}\right)\left(\frac{\nu_{f}(r)}{|z|}\right)|1+o(1)|+2 \exp \left(r^{\sigma\left(A_{1}\right)+\varepsilon}\right)
\end{align*}
$$

where z satisfies $|z|=r \notin[0,1] \cup E_{6}$ and $|f(z)|=M(r, f)$. By 4.12), we get

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\log \log \nu_{f}(r)}{\log r} \leq \sigma\left(A_{1}\right)+\varepsilon \tag{4.13}
\end{equation*}
$$

Since ε is arbitrary, by (4.13) and Lemma 2.4 we have $\sigma_{2}(f) \leq \sigma\left(A_{1}\right)$. This and the fact that $\sigma_{2}(f) \geq \sigma\left(A_{1}\right)$ yield $\sigma_{2}(f)=\sigma\left(A_{1}\right)$.
By a similar argument to that used in the proof of Theorem1.1, we can get $\overline{\lambda_{2}}(f)=\sigma_{2}(f)=$ $\sigma\left(A_{1}\right)$.
Finally, case (ii) can also be obtained by using Lemma 2.8 and an argument similar to that in the proof of Theorem 1.1.

References

[1] P.D. BARRY, On a theorem of Besicovitch, Quart. J. Math. Oxford Ser. (2), 14 (1963), 293-302.
[2] P.D. BARRY, Some theorems related to the $\cos \pi \rho$-theorem, Proc. London Math. Soc. (3), 21 (1970), 334-360.
[3] B. BELAïDI, Estimation of the hyper-order of entire solutions of complex linear ordinary differential equations whose coefficients are entire functions, E. J. Qualitative Theory of Diff. Equ., $\mathbf{5}$ (2002), 1-8.
[4] B. BELAïDI and K. HAMANI, Order and hyper-order of entire solutions of linear differential equations with entire coefficients, Electron. J. Diff. Eqns, 17 (2003), 1-12.
[5] Z.X. CHEN and C.C. YANG, Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J., 22 (1999), 273-285.
[6] Z.X. CHEN AND C.C. YANG, On the zeros and hyper-order of meromorphic solutions of linear differential equations, Ann. Acad. Sci. Fenn. Math., 24 (1999), 215-224.
[7] G.G. GUNDERSEN, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2), 37 (1988), 88-104.
[8] W.K. HAYMAN, Meromorphic functions, Clarendon Press, Oxford, 1964.
[9] W.K. HAYMAN, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull., 17 (1974), 317-358.
[10] L. KINNUNEN, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math., 22 (1998), 385-405.
[11] G. VALIRON, Lectures on the General Theory of Integral Functions, translated by E. F. Collingwood, Chelsea, New York, 1949.
[12] H.X. YI AND C.C. YANG, The Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995 (in Chinese).

[^0]: ISSN (electronic): 1443-5756
 (c) 2004 Victoria University. All rights reserved.

 005-04

