Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 1, Issue 1, Article 5, 2000

AN INEQUALITY FOR LINEAR POSITIVE FUNCTIONALS

BOGDAN GAVREA AND IOAN GAVREA

University Babeş-Bolyai Cluj-Napoca, Department of Mathematics and Computers, Str. Mihail Kogălniceanu 1, 3400 Cluj-Napoca, Romania gb7581@math.ubbcluj.ro

Technical University Cluj-Napoca, Department of Mathematics, Str. C. Daicoviciu 15, 3400
Cluj-Napoca, Romania
Ioan.Gavrea@math.utcluj.ro
Received 20 September, 1999; accepted 18 February, 2000
Communicated by Feng Qi

AbSTRACT. Using P_{0}-simple functionals, we generalise the result from Theorem 1.1 obtained by Professor F. Qi (F. QI, An algebraic inequality, RGMIA Res. Rep. Coll., 2(1) (1999), article 8).

Key words and phrases: Linear positive functionals, modulus of smoothness, P_{n}-simple functionals, inequalities.
2000 Mathematics Subject Classification. 26D15.

1. Introduction

In [4] Professor Dr. F. Qi proved the following algebraic inequality
Theorem 1.1. Let $b>a>0$ and $\delta>0$ be real numbers, then for any given positive $r \in \mathbb{R}$, we have

$$
\begin{equation*}
\left(\frac{b+\delta-a}{b-a} \cdot \frac{b^{r+1}-a^{r+1}}{(b+\delta)^{r+1}-a^{r+1}}\right)^{1 / r}>\frac{b}{b+\delta} \tag{1.1}
\end{equation*}
$$

The lower bound in (1.1) is the best possible.
In this paper we will present a generalization of the inequality (1.1).

2. Some Lemmas

It is well-known that

$$
C[a, b]=\{f:[a, b] \rightarrow \mathbb{R} ; f \text { is continuous on }[a, b]\},
$$

and let

$$
\omega(f ; t)=\sup \{|f(x+h)-f(x)| ; 0 \leq h \leq t, x, x+h \in[a, b]\} .
$$

[^0]The least concave majorant of this modulus with respect to the variable t is given by

$$
\widetilde{\omega}(f ; t)= \begin{cases}\sup _{0 \leq x \leq t \leq y} \frac{(t-x) \omega(f ; y)+(y-t) \omega(f ; t)}{y-x}, & \text { for } 0 \leq t \leq b-a \\ \omega(f ; b-a), & \text { for } t>b-a\end{cases}
$$

Let $I=[a, b]$ be a compact interval of the real axis, S a subspace of $C(I)$ and A a linear functional defined on S. The following definition was given by T. Popoviciu in [3].
Definition 2.1 ([3]). A linear functional A defined on the subspace S which contains all polynomials is called P_{n}-simple for $n \geq-1$ if
(i) $A\left(e_{n+1}\right) \neq 0$;
(ii) For every $f \in S$ there exist $n+2$ distinct points $t_{1}, t_{2}, \ldots, t_{n+2}$ in $[a, b]$ such that

$$
A(f)=A\left(e_{n+1}\right)\left[t_{1}, t_{2}, \ldots, t_{n+2} ; f\right]
$$

where $\left[t_{1}, t_{2}, \ldots, t_{n+2} ; f\right]$ is the divided difference of the function f on the points $t_{1}, t_{2}, \ldots, t_{n+2}$, and e_{n+1} denotes the monomial of degree $n+1$.
Lemma 2.1 ([2]). Let A be a linear bounded functional, $A: C(I) \rightarrow \mathbb{R}$. If A is P_{0}-simple, then for all $f \in C(I)$ we have

$$
\begin{equation*}
|A(f)| \leq \frac{\|A\|}{2} \widetilde{\omega}\left(f ; \frac{2 A\left(e_{1}\right)}{\|A\|}\right) . \tag{2.1}
\end{equation*}
$$

Lemma 2.2 ([2]). Let A be a linear bounded functional, $A: C(I) \rightarrow \mathbb{R}$. If $A\left(e_{1}\right) \neq 0$ and the inequality (2.1) holds for all $f \in C(I)$, then A is P_{0}-simple.

A function $f \in C^{(k)}[a, b]$ is called P_{n}-nonconcave if the inequality

$$
\left[t_{1}, t_{2}, \ldots, t_{n+2} ; f\right] \geq 0
$$

holds for any given $n+2$ points $t_{1}, t_{2}, \ldots, t_{n+2} \in[a, b]$.
The following result was proved by I. Raşa in [5]:
Lemma 2.3 ([5]). Let k be a natural number such that $0 \leq k \leq n$ and $A: C^{(k)}[a, b] \rightarrow \mathbb{R} a$ linear bounded functional, $A \neq 0, A\left(e_{i}\right)=0$ for $i=0,1, \ldots, n$ such that $A(f) \geq 0$ for every f which belongs to $C^{(k)}[a, b]$ and is P_{0}-nonconcave. Then A is P_{0}-simple.

In [1], S. G. Gal gave the exact formula for the usual modulus of continuity of the nonconcave continuous functions on $[a, b]$. He proved the following result:
Lemma 2.4 ([1]). Let $f \in C[a, b]$ be nonconcave and monotone on $[a, b]$. For any given $t \in(0, b-a)$ we have
(i) $\omega(f ; t)=f(b)-f(b-t)$ if f is nondecreasing on $[a, b]$;
(ii) $\omega(f ; t)=f(a)-f(a+t)$ if f is nonincreasing on $[a, b]$.

3. Main results

Let a, b, d be real numbers such that $a<b<d$. Consider the functions u_{b} and u_{b}^{*} defined on $[a, d]$ by

$$
u_{b}(t)= \begin{cases}1, & t \in[a, b] ; \\ 0, & t \in(b, d]\end{cases}
$$

and

$$
u_{b}^{*}(t)= \begin{cases}0, & t \in[a, b] \\ 1, & t \in(b, d]\end{cases}
$$

It is clear that

$$
\begin{equation*}
u_{b}(t)+u_{b}^{*}(t)=1, \quad t \in[a, d] . \tag{3.1}
\end{equation*}
$$

Let A be a linear positive functional defined on the subspace S containing the functions u_{b} and u_{b}^{*}, which satisfies
(1) $0<A\left(u_{b}\right) \leq A\left(e_{0}\right), 0<A\left(u_{b}^{*}\right) \leq A\left(e_{0}\right)$;
(2) The functionals A_{1} and A_{2} defined by $A_{1}(f)=A\left(u_{b} f\right)$ and $A_{2}(f)=A\left(u_{b}^{*} f\right)$ are well defined for every $f \in C[a, b]$;
(3) $A\left(e_{1}\right) A\left(u_{b}\right)-A\left(e_{0}\right) A\left(u_{b} e_{1}\right) \neq 0$.

Theorem 3.1. Let A be a linear positive functional which satisfies conditions 1,2 and 3 above. Then the functional $B: C[a, d] \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
B(f)=\frac{A(f)}{A\left(e_{0}\right)}-\frac{A\left(u_{b} f\right)}{A\left(u_{b}\right)} \tag{3.2}
\end{equation*}
$$

is P_{0}-simple, and

$$
\begin{equation*}
\left|\frac{A(f)}{A\left(e_{0}\right)}-\frac{A\left(u_{b} f\right)}{A\left(u_{b}\right)}\right| \leq \frac{A\left(u_{b}^{*}\right)}{A\left(e_{0}\right)} \widetilde{\omega}\left(f ; t_{b}\right), \tag{3.3}
\end{equation*}
$$

where

$$
t_{b}=\frac{A\left(e_{1} u_{b}^{*}\right)}{A\left(u_{b}^{*}\right)}-\frac{A\left(e_{1} u_{b}\right)}{A\left(u_{b}\right)} .
$$

Proof. In order to prove that the functional B is P_{0}-simple, from Lemma 2.3, it is sufficient to verify $B(f) \geq 0$ for every nondecreasing function f on $[a, d]$.

It is easy to see that

$$
\begin{align*}
B(f) & =\frac{\left(A\left(f u_{b}\right)+A\left(f u_{b}^{*}\right)\right) A\left(u_{b}\right)-A\left(f u_{b}\right)\left(A\left(u_{b}\right)+A\left(u_{b}^{*}\right)\right)}{A\left(e_{0}\right) A\left(u_{b}\right)} \\
& =\frac{A\left(u_{b}\right) A\left(f u_{b}^{*}\right)-A\left(f u_{b}\right) A\left(u_{b}^{*}\right)}{A\left(e_{0}\right) A\left(u_{b}\right)} . \tag{3.4}
\end{align*}
$$

From the definitions of functions u_{b} and u_{b}^{*} and f being nodecreasing, we have

$$
\begin{align*}
f u_{b}^{*} & \geq f(b) u_{b}^{*} \tag{3.5}\\
-f u_{b} & \geq-f(b) u_{b} .
\end{align*}
$$

Substitution of inequality (3.5) into (3.4) yields $B(f) \geq 0$ for every nondecreasing function $f \in C[a, d]$.

From the equality (3.4) we get

$$
\begin{equation*}
\|B\|=\frac{2 A\left(u_{b}^{*}\right)}{A\left(e_{0}\right)} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
B\left(e_{1}\right)=\frac{A\left(u_{b}\right) A\left(e_{1} u_{b}^{*}\right)-A\left(e_{1} u_{b}\right) A\left(u_{b}^{*}\right)}{A\left(e_{0}\right) A\left(u_{b}\right)} . \tag{3.7}
\end{equation*}
$$

Since the functional B is P_{0}-simple, from Lemma 2.1, the inequality (3.3) follows.
Corollary 3.1. Let $f \in C[a, b]$ be nonconcave and monotone on $[a, b]$ and A a functional defined as in Theorem 3.1] then

$$
\begin{equation*}
\frac{A(f)}{A\left(e_{0}\right)}-\frac{A\left(u_{b} f\right)}{A\left(u_{b}\right)} \leq \frac{A\left(u_{b}^{*}\right)}{A\left(e_{0}\right)}\left(f(d)-f\left(d-t_{b}\right)\right) \tag{3.8}
\end{equation*}
$$

if f is nondecreasing on $[a, d]$, and

$$
\begin{equation*}
-\frac{A(f)}{A\left(e_{0}\right)}+\frac{A\left(u_{b} f\right)}{A\left(u_{b}\right)} \leq \frac{A\left(u_{b}^{*}\right)}{A\left(e_{0}\right)}\left(f(a)-f\left(a+t_{b}\right)\right) \tag{3.9}
\end{equation*}
$$

iff is nonincreasing on $[a, d]$.
Proof. From Lemma 2.3 we have

$$
\begin{equation*}
\omega(f ; t)=f(d)-f(d-t) \tag{3.10}
\end{equation*}
$$

if f is nondecreasing on $[a, d]$, and

$$
\begin{equation*}
\omega(f ; t)=f(a)-f(a+t) \tag{3.11}
\end{equation*}
$$

if the function f is nonincreasing on $[a, d]$.
The functions $f(d)-f(d-\cdot)$ and $f(a)-f(a+\cdot)$ are concave on $[0, d-a)$ if the function f is a convex function. Since $\widetilde{\omega}(f ; \cdot)$ is the least concave majorant of the function ω under above conditions, then we get $\widetilde{\omega}(f ; \cdot)=\omega(f ; \cdot)$.

Combining (3.10) and (3.11) with Theorem 3.1 leads to inequalities (3.8) and (3.9).

4. Applications

Let a, b and d be positive numbers such that $0<a<b<d$. Consider the functional $A: C[a, d] \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
A(f)=\int_{a}^{d} w(t) f(t) d t \tag{4.1}
\end{equation*}
$$

where $w:(a, d) \rightarrow \mathbb{R}$ is a positive weight function.
It is easy to verify that the functional A defined by (4.1) satisfies conditions in Theorem 3.1 and the functional B can be expressed as

$$
B(f)=\frac{\int_{a}^{d} w(t) f(t) d t}{\int_{a}^{d} w(t) f(t) d t}-\frac{\int_{a}^{b} w(t) f(t) d t}{\int_{a}^{b} w(t) f(t) d t}
$$

Then, from Theorem 3.1, we obtain
Theorem 4.1. For every $f \in C[a, b]$,

$$
\begin{equation*}
\left|\frac{\int_{a}^{d} w(t) f(t) d t}{\int_{a}^{d} w(t) f(t) d t}-\frac{\int_{a}^{b} w(t) f(t) d t}{\int_{a}^{b} w(t) f(t) d t}\right| \leq \frac{\int_{b}^{d} w(t) d t}{\int_{a}^{d} w(t) d t} \widetilde{\omega}\left(f ; t_{b}\right) \tag{4.2}
\end{equation*}
$$

where

$$
t_{b}=\frac{\int_{b}^{d} t w(t) d t}{\int_{b}^{d} w(t) d t}-\frac{\int_{a}^{b} t w(t) d t}{\int_{a}^{b} w(t) d t}
$$

Corollary 4.1. Let a, b and c be positive numbers such that $0<a<b<d$. Then we have the following inequalities:

$$
\begin{equation*}
0<\frac{a b}{b-a} \int_{a}^{b} \frac{f(t)}{t^{2}} d t-\frac{d a}{d-a} \int_{a}^{d} \frac{f(t)}{t^{2}} d t \leq \frac{d-b}{d-a} \cdot \frac{a}{b}\left(f(a)-f\left(a+t_{b}\right)\right) \tag{4.3}
\end{equation*}
$$

for every convex and nonincreasing function f on $[a, d]$, where

$$
t_{b}=\frac{b d \ln \frac{d}{b}}{d-b}-\frac{a b \ln \frac{b}{a}}{b-a} .
$$

Proof. Taking $w(t)=\frac{1}{t^{2}}, t \in[a, d]$ in Theorem 4.1] produces inequality (4.3).

Remark 1. Letting $f(t)=\frac{1}{t^{r}}, r>0$ in inequality (4.3) gives us

$$
\begin{equation*}
\frac{b^{r+1}-a^{r+1}}{d^{r+1}-a^{r+1}} \cdot \frac{d-a}{b-a}>\frac{b^{r}}{d^{r}} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{b^{r+1}-a^{r+1}}{d^{r+1}-a^{r+1}} \cdot \frac{d-a}{b-a}<\frac{b^{r}}{d^{r}}+(r+1)(d-b)\left(\frac{b}{a+t_{b}}\right)^{r} \frac{\left(a+t_{b}\right)^{r}-a^{r}}{d^{r+1}-a^{r+1}} \cdot \frac{a}{b} . \tag{4.5}
\end{equation*}
$$

If we let $d=b+\delta$ in inequality (4.4), inequality (1.1) follows. Thus Theorem 1.1] by Professor Dr. F. Qi in [4] is generalized.
Remark 2. We can obtain some discrete inequalities if we select the functional A of the form

$$
A(f)=\sum_{k=1}^{n+m} \lambda_{k} f\left(x_{k}\right),
$$

where $x_{k}, k=1,2, \ldots, n+m$, are $n+m$ distinct points such that

$$
x_{1}<x_{2}<\cdots<x_{n}<x_{n+1}<\cdots<x_{n+m},
$$

and $\lambda_{k}, k=1,2, \ldots, n+m$, are $n+m$ positive numbers.
Choose the point $b=x_{n}$, then from Theorem 3.1, we obtain the discrete analogue of Theorem 4.1 .

$$
\left|\frac{\sum_{k=1}^{n+m} \lambda_{k} f\left(x_{k}\right)}{\sum_{k=1}^{n+m} \lambda_{k}}-\frac{\sum_{k=n+1}^{n+m} \lambda_{k} f\left(x_{k}\right)}{\sum_{k=n+1}^{n+m} \lambda_{k}}\right| \leq \frac{\sum_{k=n+1}^{n+m} \lambda_{k}}{\sum_{k=1}^{n+m} \lambda_{k}} \widetilde{\omega}\left(f ; t_{b}\right),
$$

where

$$
t_{b}=\frac{\sum_{k=n+1}^{n+m} \lambda_{k} x_{k}}{\sum_{k=n+1}^{n+m} \lambda_{k}}-\frac{\sum_{k=1}^{n} \lambda_{k} x_{k}}{\sum_{k=n+1}^{n+m} \lambda_{k}} .
$$

References

[1] S.G. GAL, Calculus of the modulus of continuity for nonconcave functions and applications, Calcolo, 27(3-4) (1990), 195-202.
[2] I. GAVREA, Preservation of Lipschitz constants by linear transformations and global smoothness preservation, submitted.
[3] T. POPOVICIU, Sur le reste dans certains formules lineaires d'approximation de l'analyse, Mathematica, Cluj, 1(24) (1959), 95-142.
[4] F. QI, An algebraic inequality, RGMIA Res. Rep. Coll., 2(1) (1999), article 8. [ONLINE] Available online at http://rgmia.vu.edu.au/v2n1.html.
[5] I. RAŞA, Sur les fonctionnelles de la forme simple au sens de T. Popoviciu, L'Anal. Num. et la Theorie de l'Approx., 9 (1980), 261-268.

[^0]: ISSN (electronic): 1443-5756
 (c) 2000 Victoria University. All rights reserved.

 004-99

