Journal of Inequalities in Pure and Applied Mathematics

ERDŐS-TURÁN TYPE INEQUALITIES

LAURENŢIU PANAITOPOL

University of Bucharest
Faculty of Mathematics
14 Academiei St.
RO-70109 Bucharest
Romania.
EMail: pan@al.math.unibuc.ro
volume 4, issue 1, article 23, 2003.

Received 10 January, 2003; accepted 19 February, 2003.
Communicated by: J. Sándor

Abstract
Contents
Gome Page
Go Back
Close

Abstract

Denoting by $\left(r_{n}\right)_{n \geq 1}$ the increasing sequence of the numbers p^{α} with p prime and $\alpha \geq 2$ integer, we prove that $r_{n+1}-2 r_{n}+r_{n-1}$ is positive for infinitely many values of n and negative also for infinitely many values of n. We prove similar properties for $r_{n}^{2}-r_{n-1} r_{n+1}$ and $\frac{1}{r_{n-1}}-\frac{2}{r_{n}}+\frac{1}{r_{n+1}}$ as well.

2000 Mathematics Subject Classification: 11A25, 11N05.
Key words: Powers of prime numbers, Inequalities, Erdős-Turán theorems.

Contents

1 Introduction 3
2 On the Difference $r_{n+1}-r_{n}$ 4
3 Erdős-Turán Type Properties 8
References

Erdős-Turán Type Inequalities
Laurenţiu Panaitopol

J. Ineq. Pure and Appl. Math. 4(1) Art. 23, 2003 http://jipam.vu.edu.au

1. Introduction

Let $\left(r_{n}\right)_{n \geq 0}$ be the increasing sequence of the powers of prime numbers (p^{α} with p prime and $\alpha \geq 2$ integer). Thus, we have $r_{1}=4, r_{2}=8, r_{3}=9, r_{4}=16$, etc. Properties of the sequence $\left(r_{n}\right)_{n \geq 1}$ were studied in [5] and [3].

Denote by p_{n} the n-th prime number. In [1], Erdős and Turán proved that $p_{n+1}-2 p_{n}+p_{n-1}$ is positive for infinitely many values of n and negative also for infinitely many values of n. Until now, no answer is known for the following question raised by Erdős and Turán: Do there exist infinitely many numbers n such that

$$
p_{n+1}-2 p_{n}+p_{n-1}=0 ?
$$

Erdős and Turán also proved that each of the sequences $\left(p_{n}^{2}-p_{n-1} p_{n+1}\right)_{n \geq 2}$ and $\left(\frac{1}{p_{n-1}}-\frac{2}{p_{n}}+\frac{1}{p_{n+1}}\right)_{n \geq 2}$ has infinitely many positive terms and infinitely many negative ones.

Denoting by $\left(q_{n}\right)_{n \geq 1}$ the increasing sequence of the powers of prime numbers, the author proved in [4] that the value of $q_{n+1}-2 q_{n}+q_{n-1}$ changes its sign infinitely many times.

In the present paper, we raise similar problems for the sequence $\left(r_{n}\right)_{n \geq 1}$. We need a few preliminary properties, which will be proved in the next section.
Title Page
Contents

Go Back
Close
Quit
Page 3 of 12

J. Ineq. Pure and Appl. Math. 4(1) Art. 23, 2003
http://jipam.vu.edu.au

2. On the Difference $r_{n+1}-r_{n}$

Property 2.1. We have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(r_{n+1}-r_{n}\right)=\infty \tag{2.1}
\end{equation*}
$$

Proof. Let $m \geq 4$. We show that, among the numbers

$$
m!+2, m!+3, \ldots, m!+[\sqrt{m}]
$$

there is no term of the sequence $\left(r_{n}\right)_{n \geq 1}$.
Assume that there exists an integer a such that $2 \leq a \leq[\sqrt{m}]$ and

$$
\begin{equation*}
m!+a=p^{i} \tag{2.2}
\end{equation*}
$$

where p is prime and $i \geq 2$.
The relation (2.2) can also be written in the form

$$
a\left(\frac{m!}{a}+1\right)=p^{i}, \text { whence } a=p^{j} \text { with } 1 \leq j \leq i
$$

It follows that

$$
\frac{m!}{p^{j}}+1=p^{i-j}, \text { hence } \frac{m!}{p^{j}} \text { is not divisible by } p .
$$

If $e_{p}(n)$ is Legendre's function, we have $e_{p}(m)=j$, that is,

$$
\begin{equation*}
\sum_{s=1}^{\infty}\left[\frac{m}{p^{s}}\right]=j \tag{2.3}
\end{equation*}
$$

Laurenţiu Panaitopol

Title Page

| Contents |
| :---: | :---: |
| Go Back |
| Close |
| Quit |
| Page 4 of 12 |

Since $a \leq \sqrt{m}$, it follows that $p^{j} \leq \sqrt{m}$, that is, $m \geq p^{2 j}$, and then (2.3) implies that

$$
\begin{aligned}
j & \geq\left[\frac{p^{2 j}}{p}\right]+\left[\frac{p^{2 j}}{p^{2}}\right]+\cdots+\left[\frac{p^{2 j}}{p^{2 j}}\right] \\
& =p^{2 j-1}+p^{2 j-2}+\cdots+p+1 \\
& \geq 2^{2 j-1}+2^{2 j-2}+\cdots+2+1 \\
& =2^{2 j}-1
\end{aligned}
$$

Since for $j \geq 1$ we have $2^{2 j}-1>j$, we obtained a contradiction.
Since our assumption turned out to be false, it follows that for every $m \geq 4$ there exists $k=k(m)$ such that

$$
r_{k} \leq m!+1 \text { and } r_{k+1} \geq m!+[\sqrt{m}]+1
$$

whence $r_{k+1}-r_{k} \geq[\sqrt{m}]$, and finally

$$
\limsup _{n \rightarrow \infty}\left(r_{n+1}-r_{n}\right)=\infty
$$

and the proof ends.
We now denote $a_{n}=\frac{r_{n+1}-r_{n}}{n \log ^{2} n}$ and recall that, in [2], H. Meier proved that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log n}<0.248 \tag{2.4}
\end{equation*}
$$

In connection with this result, we prove:

Property 2.2. We have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} a_{n}<0.496 \tag{2.5}
\end{equation*}
$$

Proof. We consider the indices m such that

$$
\frac{p_{m+1}-p_{m}}{\log m}<0.248
$$

Both the numbers p_{m}^{2} and p_{m+1}^{2} occur in the sequence $\left(r_{n}\right)_{n \geq 1}$, that is, $p_{m}^{2}=r_{k}$ and $p_{m+1}^{2}=r_{h}$, with $k=k(m), h=h(m)$ and $h \geq k+1$. In [5], it was proved that, for $m \geq 1783$, we have

$$
\begin{equation*}
p_{m}^{2} \geq r_{m}>m^{2} \log ^{2} m \tag{2.6}
\end{equation*}
$$

Since $p_{m} \sim m \log m$, it follows that $r_{k} \sim k^{2} \log ^{2} k$. But $r_{k}=p_{m}^{2}$, hence $k \log k \sim m \log m$. One can show without difficulty that $k(m) \sim m$. It then follows that

$$
\frac{\sqrt{r_{k+1}}-\sqrt{r_{k}}}{\log k}<\frac{\sqrt{r_{h}}-\sqrt{r_{k}}}{\log k}=\frac{p_{m+1}-p_{m}}{\log k}
$$

Since $\log k \sim \log m$, we get

$$
\liminf _{k \rightarrow \infty} \frac{\sqrt{r_{k+1}}-\sqrt{r_{k}}}{\log k} \leq \liminf _{m \rightarrow \infty} \frac{p_{m+1}-p_{m}}{\log m}<0.248
$$

Since $\sqrt{r_{k}} \sim k \log k$ and $\sqrt{r_{k+1}} \sim(k+1) \log (k+1) \sim k \log k$, it follows that

$$
\liminf _{k \rightarrow \infty} \frac{r_{k+1}-r_{k}}{k \log ^{2} k}<0.496
$$

where $k=k(m)$. Consequently,

$$
\liminf _{n \rightarrow \infty} \frac{r_{n+1}-r_{n}}{n \log ^{2} n}<0.496
$$

Laurenţiu Panaitopol
Contents

3. Erdős-Turán Type Properties

For $k \geq 2$ we denote

$$
R_{k}=r_{k+1}-2 r_{k}+r_{k-1}
$$

and prove
Property 3.1. There exist infinitely many values of n such that

$$
R_{n}>0,
$$

and also infinitely many ones such that

$$
R_{n}<0
$$

Proof. Denoting $S_{m}=\sum_{k=2}^{m} R_{k}$, we have $S_{m}=r_{m+1}-r_{m}-r_{2}+1$. By (2.1) we have $\lim \sup S_{m}=\infty$, hence $R_{n}>0$ for infinitely many values of n.

$$
m \rightarrow \infty
$$

Denoting $\sigma_{m}=\sum_{k=2}^{m} k R_{k}$, we have

$$
\sigma_{m}=m\left(r_{m+1}-r_{m}\right)-r_{m}-r_{2}+2 r_{1}=m^{2} \log ^{2} m\left(a_{m}-\frac{r_{m}}{m^{2} \log ^{2} m}\right) .
$$

Since $r_{m} \sim m^{2} \log ^{2} m$, we get by (2.5) that $\liminf _{m \rightarrow \infty} \sigma_{m}=-\infty$, hence $R_{n}<0$ for infinitely many values of n.

For $k \geq 2$, denoting $\rho_{k}=\frac{1}{r_{k-1}}-\frac{2}{r_{k}}+\frac{1}{r_{k+1}}$, we have

Property 3.2. There exist infinitely many values of n such that

$$
\rho_{n}>0
$$

and also infinitely many ones such that

$$
\rho_{n}<0
$$

Proof. For $\alpha>3$, denoting $S_{m}^{\prime}(\alpha)=\sum_{k=2}^{m} k^{\alpha} \rho_{k}$, we get

$$
\begin{aligned}
S_{m}^{\prime}(\alpha)=-\frac{m^{\alpha}\left(r_{m+1}-r_{m}\right)}{r_{m} r_{m+1}}- & \frac{m^{\alpha}-(m-1)^{\alpha}}{r_{m}} \\
& +\sum_{k=2}^{m-1} \frac{k^{\alpha}-2(k-1)^{\alpha}+(k-2)^{\alpha}}{r_{k}}+O(1)
\end{aligned}
$$

We have

$$
\begin{gathered}
r_{k} \sim k^{2} \log ^{2} k \\
k^{\alpha}-(k-1)^{\alpha} \sim \alpha k^{\alpha-1} \\
k^{\alpha}-2(k-1)^{\alpha}+(k-2)^{\alpha} \sim \alpha(\alpha-1) k^{\alpha-2}
\end{gathered}
$$

whence

$$
\begin{aligned}
\frac{m^{\alpha}\left(r_{m+1}-r_{m}\right)}{r_{m} r_{m+1}} & \sim \frac{m^{\alpha-3} a_{m}}{\log ^{2} m} \\
\frac{m^{\alpha}-(m-1)^{\alpha}}{r_{m}} & \sim \frac{\alpha m^{\alpha-3}}{\log ^{2} m} \\
\frac{k^{\alpha}-2(k-1)^{\alpha}+(k-2)^{\alpha}}{r_{k}} & \sim \frac{\alpha(\alpha-1) k^{\alpha-4}}{\log ^{2} k} .
\end{aligned}
$$

Erdős-Turán Type Inequalities
Laurențiu Panaitopol

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 9 of 12	

Since

$$
\sum_{k=2}^{m-1} \frac{k^{\alpha-4}}{\log ^{2} m} \sim \frac{(\alpha-3) m^{\alpha-3}}{\log ^{2} m}
$$

it follows that

$$
S_{m}^{\prime}(\alpha) \sim \frac{m^{\alpha-3}}{\log ^{2} m} \cdot\left(-a_{m}-\alpha+\alpha(\alpha-1)(\alpha-3)\right)
$$

Then $\lim _{m \rightarrow \infty} S_{m}^{\prime}(3.1)=-\infty$, and thus there exist infinitely many values of n such that $\rho_{n}<0$.

On the other hand, we have by (2.5) that $\lim \sup S_{m}^{\prime}(4)=\infty$, which shows that there exist infinitely many values of n such that $\rho_{n}>0$.

A consequence of Properties 3.1 and 3.2 is the following.
Property 3.3. There exist infinitely many values of n such that

$$
r_{n-1} r_{n+1}>r_{n}^{2}
$$

and also infinitely many ones such that

$$
r_{n-1} r_{n+1}<r_{n}^{2}
$$

Proof. If $r_{n}>\frac{r_{n+1}+r_{n-1}}{2}$, then $r_{n}>\sqrt{r_{n-1} r_{n+1}}$. On the other hand, if $\frac{2}{r_{n}}>$ $\frac{1}{r_{n-1}}+\frac{1}{r_{n+1}}$, then

$$
r_{n}<2 /\left(\frac{1}{r_{n-1}}+\frac{1}{r_{n+1}}\right)<\sqrt{r_{n-1} r_{n+1}}
$$

and then the desired conclusion follows by Properties 3.1 and 3.2.

Open problem. Do there exist infinitely many values of n such that

$$
r_{n+1}-2 r_{n}+r_{n-1}=0 ?
$$

```
Erdős-Turán Type Inequalities
Laurenţiu Panaitopol
Title Page
```


References

[1] P. ERDŐS AND P. TURÁN, On some new question on the distribution of prime numbers, Bull. Amer. Math. Soc., 54(4) (1948), 371-378.
[2] H. MEIER, Small difference between prime numbers, Michigan Math. J., 35 (1988), 324-344.
[3] G. MINCU, An asymptotic expansion, (in press).
[4] L. PANAITOPOL, Some of the properties of the sequence of powers of prime numbers, Rocky Mountain J. Math., 31(4) (2001), 1407-1415.
[5] L. PANAITOPOL, The sequence of the powers of prime numbers revisited, Math. Reports, 5(55)(1) (2003), (in press).

