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1. I NTRODUCTION

Let f : I ⊆ R → R be a convex mapping defined on the intervalI of real numbers and
a, b ∈ I with a < b. The following double inequality

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2

is known in the literature as Hadamard’s inequality for convex mappings. Note that some of the
classical inequalities for means can be derived from (1.1) for appropriate particular selections
of the mappingf.

In the paper [4] (see also [6] and [7]) the following mapping naturally connected with Hadamard’s
result is considered

H : [0, 1] → R, H (t) :=
1

b− a

∫ b

a

f

(
tx+ (1− t)

a+ b

2

)
dx.

The following properties are also proved:
(i) H is convex and monotonic nondecreasing.

(ii) One has the bounds

sup
t∈[0,1]

H (t) = H (1) =
1

b− a

∫ b

a

f (x) dx
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2 DRAGOMIR

and

inf
t∈[0,1]

H (t) = H (0) = f

(
a+ b

2

)
.

Another mapping also closely connected with Hadamard’s inequality is the following one [6]
(see also [7])

F : [0, 1] → R, F (t) :=
1

(b− a)2

∫ b

a

∫ b

a

f (tx+ (1− t) y) dxdy.

The properties of this mapping are itemized below:

(i) F is convex on[0, 1] and monotonic nonincreasing on
[
0, 1

2

]
and nondecreasing on[

1
2
, 1

]
.

(ii) F is symmetric about1
2
. That is,

F (t) = F (1− t) , for all t ∈ [0, 1] .

(iii) One has the bounds

sup
t∈[0,1]

F (t) = F (0) = F (1) =
1

b− a

∫ b

a

f (x) dx

and

inf
t∈[0,1]

F (t) = F

(
1

2

)
=

1

(b− a)2

∫ b

a

∫ b

a

f

(
x+ y

2

)
dxdy ≥ f

(
a+ b

2

)
.

(iv) The following inequality holds

F (t) ≥ max {H (t) , H (1− t)} , for all t ∈ [0, 1] .

In this paper we will point out a similar inequality to Hadamard’s that applies to convex
mappings defined on a disk embedded in the planeR2. We will also consider some mappings
similar in a sense to the mappingsH andF and establish their main properties.

For recent refinements, counterparts, generalizations and new Hadamard’s type inequalities,
see the papers [1]-[11] and [14]-[15] and the book [13].

2. HADAMARD ’ S I NEQUALITY ON THE DISK

Let us consider a pointC = (a, b) ∈ R2 and the diskD (C,R) centered at the pointC and
having the radiusR > 0. The following inequality of Hadamard type holds.

Theorem 2.1. If the mappingf : D (C,R) → R is convex onD (C,R), then one has the
inequality

(2.1) f (C) ≤ 1

πR2

∫∫
D(C,R)

f (x, y) dxdy ≤ 1

2πR

∫
S(C,R)

f (γ) dl (γ)

whereS (C,R) is the circle centered at the pointC with radiusR. The above inequalities are
sharp.

Proof. Consider the transformation of the planeR2 in itself given by

h : R2 → R2, h = (h1, h2) and h1 (x, y) = −x+ 2a, h2 (x, y) = −y + 2b.

Thenh (D (C,R)) = D (C,R) and since

∂ (h1, h2)

∂ (x, y)
=

∣∣∣∣ −1 0
0 −1

∣∣∣∣ = 1,
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HADAMARD ’ S INEQUALITY ON A DISK 3

we have the change of variable∫∫
D(C,R)

f (x, y) dxdy =

∫∫
D(C,R)

f (h1 (x, y) , h2 (x, y))

∣∣∣∣∂ (h1, h2)

∂ (x, y)

∣∣∣∣ dxdy
=

∫∫
D(C,R)

f (−x+ 2a,−y + 2b) dxdy.

Now, by the convexity off onD (C,R) we also have

1

2
[f (x, y) + f (−x+ 2a,−y + 2b)] ≥ f (a, b)

which gives, by integration on the diskD (C,R), that

(2.2)
1

2

[∫∫
D(C,R)

f (x, y) dxdy +

∫∫
D(C,R)

f (−x+ 2a,−y + 2b) dxdy

]
≥ f (a, b)

∫∫
D(C,R)

dxdy = πR2f (a, b) .

In addition, as∫∫
D(C,R)

f (x, y) dxdy =

∫∫
D(C,R)

f (−x+ 2a,−y + 2b) dxdy,

then by the inequality (2.2) we obtain the first part of (2.1).
Now, consider the transformation

g = (g1, g2) : [0, R]× [0, 2π] → D (C,R)

given by

g :

{
g1 (r, θ) = r cos θ + a,
g2 (r, θ) = r sin θ + b,

r ∈ [0, R] , θ ∈ [0, 2π] .

Then we have
∂ (g1, g2)

∂ (r, θ)
=

∣∣∣∣ cos θ sin θ
−r sin θ r cos θ

∣∣∣∣ = r.

Thus, we have the change of variable∫∫
D(C,R)

f (x, y) dxdy =

∫ R

0

∫ 2π

0

f (g1 (r, θ) , g2 (r, θ))

∣∣∣∣∂ (g1, g2)

∂ (r, θ)

∣∣∣∣ drdθ
=

∫ R

0

∫ 2π

0

f (r cos θ + a, r sin θ + b) rdrdθ.

Note that, by the convexity off onD (C,R), we have

f (r cos θ + a, r sin θ + b) = f
( r
R

(R cos θ + a,R sin θ + b) +
(
1− r

R

)
(a, b)

)
≤ r

R
f (R cos θ + a,R sin θ + b) +

(
1− r

R

)
f (a, b) ,

which yields that

f (r cos θ + a, r sin θ + b) r ≤ r2

R
f (R cos θ + a,R sin θ + b) + r

(
1− r

R

)
f (a, b)

for all (r, θ) ∈ [0, R]× [0, 2π].
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4 DRAGOMIR

Integrating on[0, R]× [0, 2π] we get∫∫
D(C,R)

f (x, y) dxdy ≤
∫ R

0

r2

R
dr

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ

+ f (a, b)

∫ 2π

0

dθ

∫ R

0

r
(
1− r

R

)
dr

=
R2

3

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ +
πR2

3
f (a, b) .

(2.3)

Now, consider the curveγ : [0, 2π] → R2 given by

γ :

{
x (θ) := R cos θ + a,
y (θ) := R sin θ + b,

θ ∈ [0, 2π] .

Thenγ ([0, 2π]) = S (C,R) and we write (integrating with respect to arc length)∫
S(C,R)

f (γ) dl (γ) =

∫ 2π

0

f (x (θ) , y (θ))
(
[ẋ (θ)]2 + [ẏ (θ)]2

) 1
2 dθ

= R

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ.

By the inequality (2.3) we obtain∫∫
D(C,R)

f (x, y) dxdy ≤ R

3

∫
S(C,R)

f (γ) dl (γ) +
πR2

3
f (a, b)

which gives the following inequality which is interesting in itself

(2.4)
1

πR2

∫∫
D(C,R)

f (x, y) dxdy ≤ 2

3
· 1

2πR

∫
S(C,R)

f (γ) dl (γ) +
1

3
f (a, b) .

As we proved that

f (C) ≤ 1

πR2

∫∫
D(C,R)

f (x, y) dxdy,

then by the inequality (2.4) we deduce the inequality

(2.5) f (C) ≤ 1

2πR

∫
S(C,R)

f (γ) dl (γ) .

Finally, by (2.5) and (2.4) we have

1

πR2

∫∫
D(C,R)

f (x, y) dxdy ≤ 2

3
· 1

2πR

∫
S(C,R)

f (γ) dl (γ) +
1

3
f (C)

≤ 1

2πR

∫
S(C,R)

f (γ) dl (γ)

and the second part of (2.1) is proved.
Now, consider the mapf0 : D (C,R) → R, f0 (x, y) = 1. Thus

1 = f0 (λ (x, y) + (1− λ) (u, z))

= λf0 (x, y) + (1− λ) f0 (u, z) = 1.

Thereforef0 is convex onD (C,R) → R. We also have

f0 (C) = 1,
1

πR2

∫∫
D(C,R)

f0 (x, y) dxdy = 1 and
1

2πR

∫
S(C,R)

f0 (γ) dl (γ) = 1,

which shows us the inequalities (2.1) are sharp. �
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HADAMARD ’ S INEQUALITY ON A DISK 5

3. SOME M APPINGS CONNECTED TO HADAMARD ’ S I NEQUALITY ON THE DISK

As above, assume that the mappingf : D (C,R) → R is a convex mapping on the disk
centered at the pointC = (a, b) ∈ R2 and having the radiusR > 0. Consider the mapping
H : [0, 1] → R associated with the functionf and given by

H (t) :=
1

πR2

∫∫
D(C,R)

f (t (x, y) + (1− t)C) dxdy,

which is well-defined for allt ∈ [0, 1].
The following theorem contains the main properties of this mapping.

Theorem 3.1.With the above assumption, we have:

(i) The mappingH is convex on[0, 1].
(ii) One has the bounds

(3.1) inf
t∈[0,1]

H (t) = H (0) = f (C)

and

(3.2) sup
t∈[0,1]

H (t) = H (1) =
1

πR2

∫∫
D(C,R)

f (x, y) dxdy.

(iii) The mappingH is monotonic nondecreasing on[0, 1].

Proof. (i) Let t1, t2 ∈ [0, 1] andα, β ≥ 0 with α+ β = 1. Then we have

H (αt1 + βt2) =
1

πR2

∫∫
D(C,R)

f (α (t1 (x, y) + (1− t1)C)

+ β (t2 (x, y) + (1− t2)C)) dxdy

≤ α · 1

πR2

∫∫
D(C,R)

f (t1 (x, y) + (1− t1)C) dxdy

+β · 1

πR2

∫∫
D(C,R)

f (t2 (x, y) + (1− t2)C) dxdy

= αH (t1) + βH (t2) ,

which proves the convexity ofH on [0, 1].
(ii) We will prove the following identity

(3.3) H (t) =
1

πt2R2

∫∫
D(C,tR)

f (x, y) dxdy

for all t ∈ (0, 1].
Fix t in (0, 1] and consider the transformationg = (ψ, η) : R2 → R2 given by

g :

{
ψ (x, y) := tx+ (1− t) a,
η (x, y) := ty + (1− t) b,

(x, y) ∈ R2;

theng (D (C,R)) = D (C, tR).
Indeed, for all(x, y) ∈ D (C,R) we have

(ψ − a)2 + (η − b)2 = t2
[
(x− a)2 + (y − b)2] ≤ (tR)2

which shows that(ψ, η) ∈ D (C, tR), and conversely, for all(ψ, η) ∈ D (C, tR) , it is
easy to see that there exists(x, y) ∈ D (C,R) so thatg (x, y) = (ψ, η).
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6 DRAGOMIR

We have the change of variable∫∫
D(C,tR)

f (ψ, η) dψdη =

∫∫
D(C,R)

f (ψ (x, y) , η (x, y))

∣∣∣∣∂ (ψ, η)

∂ (x, y)

∣∣∣∣ dxdy
=

∫∫
D(C,R)

f (t (x, y) + (1− t) (a, b)) t2dxdy

= πR2t2H(t)

since
∣∣∣∂(ψ,η)
∂(x,y)

∣∣∣ = t2, which gives us the equality (3.3).

Now, by the inequality (2.1), we have

1

πt2R2

∫∫
D(C,tR)

f (x, y) dxdy ≥ f (C)

which gives usH (t) ≥ f (C) for all t ∈ [0, 1] and sinceH (0) = f (C), we obtain the
bound (3.1).

By the convexity off on the diskD (C,R) we have

H (t) ≤ 1

πR2

∫∫
D(C,R)

[tf (x, y) + (1− t) f (C)] dxdy

=
t

πR2

∫∫
D(C,R)

f (x, y) dxdy + (1− t) f (C)

≤ t

πR2

∫∫
D(C,R)

f (x, y) dxdy +
1− t

πR2

∫∫
D(C,R)

f (x, y) dxdy

=
1

πR2

∫∫
D(C,R)

f (x, y) dxdy.

As we have

H (1) =
1

πR2

∫∫
D(C,R)

f (x, y) dxdy,

then the bound (3.2) holds.
(iii) Let 0 ≤ t1 < t2 ≤ 1. Then, by the convexity of the mappingH we have

H (t2)−H (t1)

t2 − t1
≥ H (t1)−H (0)

t1
≥ 0

asH (t1) ≥ H (0) for all t1 ∈ [0, 1]. This proves the monotonicity of the mappingH in
the interval[0, 1].

�

Further on, we shall introduce another mapping connected to Hadamard’s inequality

h : [0, 1] → R, h (t) :=


1

2πtR

∫
S(C,tR)

f (γ) dl (γ (t)) , t ∈ (0, 1] ,

f (C) , t = 0,

wheref : D (C,R) → R is a convex mapping on the diskD (C,R) centered at the point
C = (a, b) ∈ R2 and having the same radiusR.

The main properties of this mapping are embodied in the following theorem.

Theorem 3.2.With the above assumptions one has:

(i) The mappingh : [0, 1] → R is convex on[0, 1].

J. Ineq. Pure and Appl. Math., 1(1) Art. 2, 2000 http://jipam.vu.edu.au/
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HADAMARD ’ S INEQUALITY ON A DISK 7

(ii) One has the bounds

(3.4) inf
t∈[0,1]

h (t) = h (0) = f (C)

and

(3.5) sup
t∈[0,1]

h (t) = h (1) =
1

2πR

∫
S(C,R)

f (γ) dl (γ) .

(iii) The mappingh is monotonic nondecreasing on[0, 1].
(iv) We have the inequality

H (t) ≤ h (t) for all t ∈ [0, 1] .

Proof. For a fixedt in [0, 1] consider the curve

γ :

{
x (θ) = tR cos θ + a,
y (θ) = tR sin θ + b,

θ ∈ [0, 2π] .

Thenγ ([0, 2π]) = S (C, tR) and

1

2πtR

∫
S(C,tR)

f (γ) dl (γ)

=
1

2πtR

∫ 2π

0

f (tR cos θ + a, tR sin θ + b)

√
(ẋ (θ))2 + (ẏ (θ))2dθ

=
1

2π

∫ 2π

0

f (tR cos θ + a, tR sin θ + b) dθ.

We note that, then

h (t) =
1

2π

∫ 2π

0

f (tR cos θ + a, tR sin θ + b) dθ

=
1

2π

∫ 2π

0

f (t (R cos θ,R sin θ) + (a, b)) dθ

for all t ∈ [0, 1].

(i) Let t1, t2 ∈ [0, 1] andα, β ≥ 0 with α + β = 1. Then, by the convexity off we have
that

h (αt1 + βt2) =
1

2π

∫ 2π

0

f (α [t1 (R cos θ, R sin θ) + (a, b)]

+ β [t2 (R cos θ,R sin θ) + (a, b)]) dθ

≤ α · 1

2π

∫ 2π

0

f (t1 (R cos θ, R sin θ) + (a, b)) dθ

+β · 1

2π

∫ 2π

0

f (t2 (R cos θ, R sin θ) + (a, b)) dθ

= αh (t1) + βh (t2)

which proves the convexity ofh on [0, 1].
(iv) In the above theorem we showed that

H (t) =
1

πt2R2

∫∫
D(C,tR)

f (x, y) dxdy for all t ∈ (0, 1] .
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8 DRAGOMIR

By Hadamard’s inequality (2.1) we can state that

1

πt2R2

∫∫
D(C,tR)

f (x, y) dxdy ≤ 1

2πtR

∫
S(C,tR)

f (γ) dl (γ)

which gives us that

H (t) ≤ h (t) for all t ∈ (0, 1] .

As it is easy to see thatH (0) = h (0) = f (C), then the inequality embodied in(iv) is
proved.

(ii) The bound (3.4) follows by the above considerations and we shall omit the details.
By the convexity off on the diskD (C,R) we have

h (t) =
1

2π

∫ 2π

0

f (t [(R cos θ,R sin θ) + (a, b)] + (1− t) (a, b)) dθ

≤ t · 1

2π

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ + (1− t) f (a, b)
1

2π

∫ 2π

0

dθ

≤ t · 1

2π

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ

+ (1− t) · 1

2π

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ

=
1

2π

∫ 2π

0

f (R cos θ + a,R sin θ + b) dθ = h (1) ,

for all t ∈ [0, 1], which proves the bound (3.5).
(iii) Follows by the above considerations as in the Theorem 3.1. We shall omit the details.

�

For a convex mappingf defined on the diskD (C,R) we can also consider the mapping

g (t, (x, y)) :=
1

πR2

∫∫
D(C,R)

f (t (x, y) + (1− t) (z, u)) dzdu

which is well-defined for allt ∈ [0, 1] and(x, y) ∈ D (C,R).
The main properties of the mappingg are enclosed in the following proposition.

Proposition 3.3. With the above assumptions on the mappingf one has:

(i) For all (x, y) ∈ D (C,R), the mapg (·, (x, y)) is convex on[0, 1].
(ii) For all t ∈ [0, 1], the mapg (t, ·) is convex onD (C,R).

Proof. (i) Let t1, t2 ∈ [0, 1] andα, β ≥ 0 with α+ β = 1. By the convexity off we have

g (αt1 + βt2, (x, y)) =
1

πR2

∫∫
D(C,R)

f (α [t1 (x, y) + (1− t1) (z, u)]

+ β [t2 (x, y) + (1− t2) (z, u)]) dzdu

≤ α · 1

πR2

∫∫
D(C,R)

f (t1 (x, y) + (1− t1) (z, u)) dzdu

+β · 1

πR2

∫∫
D(C,R)

f (t2 (x, y) + (1− t2) (z, u)) dzdu

= αg (t1, (x, y)) + βg (t2, (x, y)) ,

for all (x, y) ∈ D (C,R), and the statement is proved.
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HADAMARD ’ S INEQUALITY ON A DISK 9

(ii) Let (x1, y1) , (x2, y2) ∈ D (C,R) andα, β ≥ 0 with α+ β = 1. Then

g (t, α (x1, y1) + β (x2, y2)) =
1

πR2

∫∫
D(C,R)

f [α (t (x1, y1) + (1− t) (z, u))

+β (t (x2, y2) + (1− t) (z, u))] dzdu

≤ α
1

πR2

∫∫
D(C,R)

f (t (x1, y1) + (1− t) (z, u)) dzdu

+β
1

πR2

∫∫
D(C,R)

f (t (x2, y2) + (1− t) (z, u)) dzdu

= αg (t, (x1, y1)) + βg (t, (x2, y2)) ,

for all t ∈ [0, 1], and the statement is proved.
�

By the use of this mapping we can introduce the following application as well

G : [0, 1] → R, G (t) :=
1

πR2

∫∫
D(C,R)

g (t, (x, y)) dxdy

whereg is as above.
The main properties of this mapping are embodied in the following theorem.

Theorem 3.4.With the above assumptions we have:

(i) For all s ∈
[
0, 1

2

]
G

(
s+

1

2

)
= G

(
1

2
− s

)
,

and for all t ∈ [0, 1] one has

G (1− t) = G (t) .

(ii) The mappingG is convex on the interval[0, 1].
(iii) One has the bounds

inf
t∈[0,1]

G (t) = G

(
1

2

)
=

1

(πR2)2

∫∫∫∫
D(C,R)×D(C,R)

f

(
x+ z

2
,
y + u

2

)
dxdydzdu ≥ f (C)

and

sup
t∈[0,1]

G (t) = G (0) = G (1) =
1

πR2

∫∫
D(C,R)

f (x, y) dxdy.

(iv) The mappingG is monotonic nonincreasing on
[
0, 1

2

]
and nondecreasing on

[
1
2
, 1

]
.

(v) We have the inequality

(3.6) G (t) ≥ max {H (t) , H (1− t)} , for all t ∈ [0, 1] .

Proof. The statements(i) and(ii) are obvious by the properties of the mappingg defined above
and we shall omit the details.

(iii) By (i) and(ii) we have

G (t) =
G (t) +G (1− t)

2
≥ G

(
1

2

)
, for all t ∈ [0, 1]

which proves the first bound in(iii).
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Note that the inequality

G

(
1

2

)
≥ f (C)

follows by (3.6) fort = 1
2

and taking into account thatH
(

1
2

)
≥ f (C).

We also have

G (t) =
1

(πR2)2

∫∫
D(C,R)

(∫∫
D(C,R)

f (t (x, y) + (1− t) (z, u)) dzdu

)
dxdy

≤ 1

(πR2)2

×
∫∫

D(C,R)

[
tf (x, y)πR2 + (1− t)

∫∫
D(C,R)

f (z, u) dzdu

]
dxdy

=
1

(πR2)2

×
[
tπR2

∫∫
D(C,R)

f (x, y) dxdy + (1− t)πR2

∫∫
D(C,R)

f (x, y) dxdy

]
=

1

πR2

∫∫
D(C,R)

f (x, y) dxdy

for all t ∈ [0, 1], and the second bound in(iii) is also proved.
(iv) The argument is similar to the proof of Theorem 3.1(iii) (see also [6]) and we shall

omit the details.
(v) By Theorem 2.1 we have that

G (t) =
1

πR2

∫∫
D(C,R)

g (t, (x, y)) dxdy

≥ g (t, (a, b)) =
1

πR2

∫∫
D(C,R)

f (t (x, y) + (1− t) (a, b)) dxdy = H (t)

for all t ∈ [0, 1].
AsG (t) = G (1− t) ≥ H (1− t), we obtain the desired inequality (3.6).
The theorem is thus proved.

�
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