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ABSTRACT. In this paper an inequality of Hadamard type for convex functions defined on a
disk in the plane is proved. Some mappings naturally connected with this inequality and related
results are also obtained.
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1. INTRODUCTION

Let f : I C R — R be a convex mapping defined on the interfaf real numbers and
a,b € I with a < b. The following double inequality

(1.1) f(a+b)Sbia/abf(x)dmgf(a)—i_f(b)

2 2

is known in the literature as Hadamard’s inequality for convex mappings. Note that some of the
classical inequalities for means can be derived from (1.1) for appropriate particular selections
of the mappingf.

In the paperi[4] (see alsol[6] and [7]) the following mapping naturally connected with Hadamard's
result is considered

b
H:[0,1] >R, H():= L /f(tx+(1—t)&+b>dx.
b—a /, 2
The following properties are also proved:

(1) H is convex and monotonic nondecreasing.
(7i) One has the bounds

sup H (1) = H (1) = — /f(x)dx

t€[0,1] b—a

ISSN (electronic): 1443-5756
(© 2000 Victoria University. All rights reserved.
003-99


http://jipam.vu.edu.au/
mailto:Sever.Dragomir@vu.edu.au
http://rgmia.vu.edu.au/SSDragomirWeb.html
http://www.ams.org/msc/

2 DRAGOMIR

and

inf H(t)_H(O)_f<a+b).

te(0,1] 2
Another mapping also closely connected with Hadamard’s inequality is the following lone [6]

(see alsa7])
b ay //ftm—i— (1 —1t)y)dxdy.

The properties of this mapping are itemized below:
(i) F is convex on[0, 1] and monotonic nonincreasing dA, 1] and nondecreasing on

[1.1].
27
(i4) F is symmetric abou}. That s,

F{t)=F(1-t), forallte][0,1].

(737) One has the bounds

1 b
til[ég]F(t):F(O):F(l):b_a/a f (@) da

F:[0,1]—R, F(

and

. 1 1 bt 4y a+b
anF0=r(5) = gt [ () ez (57),

(iv) The following inequality holds
F(t)>max{H (t),H(1—-1t)}, forallte]l0,1].

In this paper we will point out a similar inequality to Hadamard’s that applies to convex
mappings defined on a disk embedded in the plaheWe will also consider some mappings
similar in a sense to the mappingisand F' and establish their main properties.

For recent refinements, counterparts, generalizations and new Hadamard’s type inequalities,
see the papersl|[1]-[11] and [|14]-]15] and the bdoK [13].

2. HADAMARD 'S INEQUALITY ON THE DISK

Let us consider a poir® = (a,b) € R? and the diskD (C, R) centered at the poirt’ and
having the radiug? > 0. The following inequality of Hadamard type holds.

Theorem 2.1. If the mappingf : D (C,R) — R is convex onD (C, R), then one has the
inequality

1
(2.1) < // f(zy)dedy < — fy)dl(y
7TR2 D(C,R) 2R &(C,R) ( ) ( )

where& (C, R) is the circle centered at the point with radius R. The above inequalities are
sharp.
Proof. Consider the transformation of the plaRéin itself given by
h:R*—R?* h=(hi,hy) and hy (z,y) = —x +2a, hy(x,y) = —y + 2b.
Thenh (D (C, R)) = D (C, R) and since
d (hy, hs) :‘ -1 0 ’:1
9 (x,y) ’
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we have the change of variable

M 509200 = [ Ot 10 55

= // f(=z+2a,—y + 2b) dzdy.
D(C,R)

Now, by the convexity off on D (C, R) we also have

dxdy

%[f(x’y)+f(—x+2a, —y+25)] > f(avb)

which gives, by integration on the didk (C, R), that

1
(2.2) 5 [//D(C’R) f(z,y)dxdy + //D(C’R) f(=x+2a,—y + 2b) dxdy}

>f(a,b)// dxdy = nR*f (a,b).
D(C,R)
In addition, as

[ swdsy= [[ 20y oy,
D(C,R) D(C,R)

then by the inequality (2] 2) we obtain the first part[of [2.1).
Now, consider the transformation

9= (glqu) : [OaR} X [0727T] — D (07 R)
given by

| g1(r,0) =rcosf +a,
g.{92(7",9)=7“sin9—|—b, re€[0,R], 0 €[0,27].

Then we have
d(91,92) | cos® sinf |
d(r,0) T | —rsin® rcosh |

Thus, we have the change of variable

//D(C’R)f(m,y)dxdy _ / %f 8o 9»’88(?;,3;)

2m
= / / f(rcos@+a,rsin€+b)rdrdd.
o Jo

drdf

Note that, by the convexity of on D (C, R), we have

. r . r
f(rcosf+a,rsinf+0b)=f <E (Rcos® + a, Rsinf +b) + (1 - E> (a,b))
Lf(Rcos@—i—a Rsinf +b) + (1—%)]”(@,6),

:U

which yields that
2

f(rcosf+a,rsinf + b rSr—f Rcosf +a,Rsinf +b)+1r 1- = f(a,b
R R

for all (r,0) € [0, R] x [0, 27].
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Integrating on0, R] x [0, 27] we get

// (x,y dacdy</ —dr f (Rcosf + a, Rsin @ + b) df
C’R)

(2.3) +f(a,b)/ d@/Rr<1—%> dr
0 0

) 2
% f (Rcosf+ a, Rsm@—ib)d@—i—ﬂf(a b) .
0

Now, consider the curve : [0, 27r] — R? given by

]
z(0) := Rcosb + a,
v y(6) := Rsin + b,

Then~ ([0, 27]) = & (C, R) and we write (integrating with respect to arc length)
21 1
[oreae = [ @6 (@ OF + o) a
&(C,R) 0
2

= R f(Rcosf+ a, Rsinf + b) df.
0

0 € [0,27].

By the inequality|[(2.3) we obtain

R TR?
//D(QR) [ (2, y) dedy < 3 /e(c,R) f(y)dl(v) + = (a,b)

which gives the following inequality Which is interesting in itself

1
(2.4) s // ) f@,y)dedy < 3 %R 6(C’R)f(v)dl(vHgf(a,b)-

d d
- R2 [/ C I’ y X y,

then by the inequalit;i_(_ZM) we deduce the mequallty

1
2. C) < — dl ().
(2.5) f( )SQWR CR)f(v) (7)

Finally, by @) and[(2]4) we have
2 1 1
< 2. 1
TR? // CR) (z,9) dvdy < 3 27R S(C.R) fy)dl(v) + 3f(0)

1
— dl
7R Jscn f(v)dl(v)

IN

and the second part gf (2.1) is proved.
Now, consider the mayy, : D (C,R) — R, fo(z,y) =1. Thus

= Mo(z,y)+ (1 =X fo(u,2) =1.
Thereforef, is convex onD (C, R) — R. We also have

1
fo( // xydxdy—land—/ fo(y)dl(v) =1,
" D(C,R) 2R Je(c,r) o () di ()
which shows us the mequalltl.l) are sharp. O
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3. SOME MAPPINGS CONNECTED TO HADAMARD 'S INEQUALITY ON THE DisK

As above, assume that the mappifng D (C, R) — R is a convex mapping on the disk
centered at the poir = (a,b) € R? and having the radiu® > 0. Consider the mapping
H :]0,1] — R associated with the functiofiand given by

t(x,y)+ (1 —1t)C)dzdy,
7TR // CR) * )©)

which is well-defined for alt € [0, 1].
The following theorem contains the main properties of this mapping.

Theorem 3.1. With the above assumption, we have:

(i) The mappingd is convex ono, 1].
(7i) One has the bounds

(3.1) uf H(t)=H{(0)=f(C)
and
1
(3.2) ti%l?l] H({t)=H(1)= — //D(C,R) f (z,y) dzdy.

(#4¢) The mappingd is monotonic nondecreasing ¢ 1].

Proof. (1) Letty, ty € [0,1] anda, § > 0 with « + 5 = 1. Then we have

H(Oétl—f—ﬁtg) = 7TR \//;(CR tl xy)+(1—t1)0)
+ 6 tg z,y)+ (1 —t2) C)) dedy

1—
e // . [t (z,y)+ (1 —t1)C)dady

W //D(C’R) F(ts (22y) + (1 — 1) C) dady
= OéH (tl) + ﬁH (t2)7

which proves the convexity aff on [0, 1].
(7i) We will prove the following identity

1
(3.3) H(t)= m//l)(CtR) f(z,y) dzdy

forallt € (0,1].
Fix ¢ in (0, 1] and consider the transformatign= (v, ) : R* — R? given by

Y (r,y) =t + (1 —1t)a, 2.
S b S
theng (D (C, R)) = D (C,tR).
Indeed, for all(z,y) € D (C, R) we have
(& —a)’ + (=)= [(zr —a)’ +(y —b)°] < (tR)’

which shows thaty,n) € D (C,tR), and conversely, for all),n) € D (C,tR),itis
easy to see that there exists y) € D (C, R) so thaty (x,y) = (¢, n).

IN
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We have the change of variable

//D(C’m)f(%bﬂ?)d@bdn:// e f(@b(x,y),n(x,y))‘%‘dmdy

// )+ (1 —1) (a,b)) t*dxdy
(C,R)

= 7R*t*H(t)
since‘ ‘g((;fz)) = t?, which gives us the equalit.3).

Now, by the inequality{(2]1), we have

1
—_— x,y)dxdy > f(C
T ] 0y 2 £ C)

which gives usH (t) > f (C) for all t € [0,1] and sinceH (0) = f (C), we obtain the

bound [3.1).
By the convexity off on the diskD (C, R) we have

1
i x,y)+ (1 — O] dxd
H(t) < WR?KLmRJﬁ< y)+ (1 —1) f(C)] dzdy

t
_ —2//D(CR)f<x,y>dxdy+<1—t>f<c>
= 7T—RQ//D(aR)f(x,y) dzdy.

As we have
) dzxd
D= g oy 50 e

then the bound (3]2) holds.
(7i7) Let0 < t; < ty < 1. Then, by the convexity of the mappirig we have
H (t2) — H (t1) > H (t1) — H(0)
to — 1 N 131
asH (t;) > H (0) for all ; € [0, 1]. This proves the monotonicity of the mappihgin
the intervall0, 1].

f (2, y) dedy

D(C,R)

>0

O

Further on, we shall introduce another mapping connected to Hadamard’s inequality

dl (v (1), te(0,1],
t=0,

h:[0,1] = R, h(t):= {QWtR S(C,tR) 1)

wheref : D(C,R) — R is a convex mapping on the disk (C, R) centered at the point
= (a,b) € R? and having the same radiiis
The main properties of this mapping are embodied in the following theorem.

Theorem 3.2. With the above assumptions one has:

() The mapping: : [0,1] — R is convex or0, 1].

J. Ineq. Pure and Appl. Math1(1) Art. 2, 2000 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

HADAMARD 'S INEQUALITY ON A DiIsK

(7i) One has the bounds

(3.4) tei%fﬂ h(t)=h(0)=f(C)
and
(3.5) s h(B)=h()= o= [ fdi).
te[0,1] ™ &(C,R)

(77i) The mappingd: is monotonic nondecreasing ¢ 1].
(iv) We have the inequality

H(t)<h(t) foralltel0,1].
Proof. For a fixedt in [0, 1] consider the curve

J x(0) =tRcosb +a,
"1 y(0) =tRsinf + b,

Then ([0, 27]) = & (C, tR) and

6 € [0,27].

Q;t 7 /6 o f()dl(v)
= 50h / f(tRcosO + a,tRsinf +b) \/( () + (y(0))*d0
= % 2ﬂf(tRc059 + a,tRsinf + b) db.
We note that, then
h(t) = % 2Trf (tRcosf + a,tRsin6 + b) do
1 on

= o f(t(Rcosb, Rsinf) + (a,b))dd

forallt € [0,1].

(1) Letty, to € [0,1] anda, § > 0 with « + 3 = 1. Then, by the convexity of we have

that

2
h(at; + fBty) = %/ f(afti (Rcosf, Rsinf) + (a,b)]
0
+ B[t2 (Rcosf, Rsinf) + (a,b)]) df

IN

i /27r f(t1 (Rcos@, Rsin®) + (a,b)) dd

+3 - _/ f (ta (Rcos6, Rsinf) + (a, b)) do
= ah(ty) + Bh(ts)

which proves the convexity df on [0, 1].
(iv) In the above theorem we showed that

1
H()=—%; for all 1.
)= —m //I)(CJR)f(x,y) dzdy for all t € (0,1]
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By Hadamard's inequality (2.1) we can state that

(x,y) dzd dl
7Tt2R2 // CtR) . Y) y < tR o(cam) f(y)dl(v)

which gives us that
H(t)<h(t) forallte (0,1].

As itis easy to see thdi (0) = 2 (0) = f (C), then the inequality embodied {iv) is
proved.
(¢¢) The bound[(3}4) follows by the above considerations and we shall omit the details.
By the convexity off on the diskD (C, R) we have

1 2

h(t) = gy f(t[(Rcos,Rsinf) + (a,b)] + (1 —1t) (a,b)) dd

1 2w

1 2m
< t-— f (Rcosf + a, Rs1n9+b)d9—|—(1—t)f(a,b)—/ do
27T 27T 0

< t- —/ f(Rcosf+a,Rsinf +b) df

2

+(1—1§)-2i f(Rcos@+a, Rsinf +b)do

T Jo
1 27
= o ), f(RcosO+a,Rsinf +b)dd =h(1),
™
forallt € [0, 1], which proves the bound (3.5).
(44¢) Follows by the above considerations as in the Thedrein 3.1. We shall omit the details.

O

For a convex mapping defined on the dislo (C, R) we can also consider the mapping

9(t.tr.0) = [P+ 00 ) e

which is well-defined for alt € [0, 1] and(z,y) € D (C, R).
The main properties of the mappiggre enclosed in the following proposition.

Proposition 3.3. With the above assumptions on the mappirane has:

(z) Forall (x,y) € D(C,R), the mapy (-, (z,y)) is convex ono, 1].
(77) Forall t € [0,1], the mapy (t, -) is convex oD (C, R).

Proof. (i) Lettq,ty € [0,1] ande, 8 > 0 with a 4+ 3 = 1. By the convexity off we have
glati+ Bt o) = = || Flalh )+ 0 -0 )
7TR (C,R)
+6t2 x,y) 1—t2)( w)]) dzdu

// o )+ (1= 1) (2,u)) dzdu

ﬂ%aﬁ/lﬁmﬂw@wﬂﬁb%ﬁ@wﬁﬂw

= ag(ty, (z,y)) + By (t2, (z,y)),
forall (x,y) € D (C, R), and the statement is proved.

IN
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(77) Let(z1,v1), (x2,y2) € D (C, R) anda, f > 0 with o + 3 = 1. Then

g (t,a(@,y) + B (22,92) = # //D(CR) fla (@) + (1 =) (2,u))

+0(t (22, y2) + (1 —t) (2,u))] dzdu

Q%RQ // CR)f(t (1,90) + (1 — ) (2, u)) d=du
tcm [ ) (=) ) ded

= ag (ta (xhyl)) + ﬁg( ) (332792)) )
forall ¢t € [0, 1], and the statement is proved.

IN

By the use of this mapping we can introduce the following application as well

G:[0,1] =R, Gt WRQ// on y)) dxdy

whereg is as above.
The main properties of this mapping are embodied in the following theorem.

Theorem 3.4. With the above assumptions we have:

(i) Forall s € [0, 1]
1 1
G(S+§):G(§—S),
and for allt € [0, 1] one has
G(1-t)=G(t).

(1) The mappind~ is convex on the interval, 1].
(#7¢) One has the bounds

. 1
o003

! rT+z y+u

1
sup G () =G (0) =GV = — [[ 1oy dody.
tefo,1] TR ) Jp(c,r)

iv) The mappind~ is monotonic nonincreasing d, 1| and nondecreasing of}, 1].
. - 2
(v) We have the inequality

(3.6) G(t) > max {H(t),H(1—t)}, foralltelo,1].

Proof. The statement§) and(i:) are obvious by the properties of the mappindefined above
and we shall omit the details.

(737) By (7) and(i7) we have
G(t) = G<t>+§(1 L (%) . forallte [0, 1]

which proves the first bound ifiiz).

and
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Note that the inequality

G (%) > f(C)

follows by (3.6) fort = } and taking into account thaf (3) > f (C).
We also have

G - . ( / /D PRAGCORTED (z,u))dzdu) dady
e
« / /D - {tf (2, 9) 7R + (1 1) / /D AT dzdu} dady
1
T (nR2)

[tﬂ'RQ// (x,y) dedy + (1 —t) 7TR2// (x,y dxdy]
D(C,R) CR)
= ) dzd

8 0

forall ¢ € [0,1], and the second bound (1) is also proved.

(4v) The argument is similar to the proof of Theorgm|8i#) (see also[[6]) and we shall
omit the details.

(v) By Theorenj 2.]1 we have that

G = — // 90, (v,1)) dedy
> g(t,( 7TR2// . y)+ (1 —1)(a,b))dedy = H (t)

forall ¢ € [0, 1].
AsG (t)=G(1—t) > H (1 —t), we obtain the desired inequalify (B.6).
The theorem is thus proved.
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