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ABSTRACT. S-quasiconvex functions (Phu and An, Optimization, Vol. 38, 1996) are stable with
respect to the properties: “every lower level set is convex", “each local minimizer is a global
minimizer", and “each stationary point is a global minimizer" (i.e., these properties remain true
if a sufficiently small linear disturbance is added to a function of this class). In this paper, we
introduce a subclass ofs-quasiconvex functions, namely strictlys-quasiconvex functions which
guarantee the uniqueness of the minimizer. The density of the set of these functions in the set
of s-quasiconvex functions and some necessary and sufficient conditions of these functions are
presented.
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1. I NTRODUCTION

A function f is said to be stable with respect to some property (P) if there existsε > 0
such thatf + ξ fulfills (P) for all linear functionsξ satisfying‖ξ‖ < ε. It was shown in
[4] that well-known kinds of generalized convex functions are often not stable with respect to
the property they have to keep during the generalization, for example, quasiconvex functions
(pseudoconvex functions, respectively) are not stable with respect to the property “every lower
level set is convex" (“each stationary point is a global minimizer", respectively). Then the
so-calleds-quasiconvex functions were introduced in [4]. They are stable with respect to the
properties “every lower level set is convex", “each local minimizer is a global minimizer" and
“each stationary point is a global minimizer".
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2 P.T. AN

Unfortunately, the uniqueness of the minimizer ofs-quasiconvex functions does not hold
while this property is included often in the sufficient conditions for the continuity of optimal
solutions to parametric optimization problems (see [3]).

In this paper, we introduce strictlys-quasiconvex functions which guarantee the uniqueness
of the minimizer. Proposition 2.3 says that under certain assumptions, we can approximate
affine parts of as-quasiconvex function defined onD ⊂ R, by strictly convex functions to
obtain a strictlys-quasiconvex function. Strictlys-quasiconvex functions are stable with respect
to strict pseudoconvexity (Theorem 2.6). Finally, the necessary and sufficient conditions for
a continuously differentiable function to be strictlys-quasiconvex are stated (Theorems 3.1 –
3.2).

From [5] and [6] the following definitions and properties are used: Letf : D ⊂ Rn → R and
D be open and convex. We recall that:

f is said to be convex if, for allx0, x1 ∈ D, λ ∈ [0, 1],

(1.1) f(xλ) ≤ (1− λ)f(x0) + λf(x1),

wherexλ = (1 − λ)x0 + λx1. f is said to be strictly convex if (1.1) is a strict inequality for
every distinctx0, x1 ∈ D.

f is said to be quasiconvex if, for allx0, x1 ∈ D, λ ∈ [0, 1],

(1.2) f(x0) ≤ f(x1) implies f(xλ) ≤ f(x1).

f is said to be strictly quasiconvex if the second inequality in (1.2) is strict, for every distinct
x0, x1 ∈ D, λ ∈ ]0, 1[ . Note that the concept "strict quasiconvexity" here is exactly the "XC"
concept in [5].

A differentiable functionf is said to be pseudoconvex if, for allx0, x1 ∈ D,

(1.3) f(x0) < f(x1) implies (x0 − x1)
T∇f(x1) < 0,

whereT is the matrix transposition. A differentiable functionf is said to be strictly pseudocon-
vex if the first inequality in (1.3) is not strict, for every distinctx0, x1 ∈ D.

We also recall the definition ofs-quasiconvex functions (“s" stands for “stable").f is said to
bes-quasiconvex if there existsσ > 0 such that

(1.4)
f(x0)− f(x1)

‖x0 − x1‖
≤ δ implies

f(xλ)− f(x1)

‖xλ − x1‖
≤ δ

for |δ| < σ, x0, x1 ∈ D, xλ = (1− λ)x0 + λx1 and λ ∈ [0, 1[ ([4]).
Clearly, every convex function iss-quasiconvex and as-quasiconvex function is quasiconvex.

The following are some properties ofs-quasiconvexity given in [4].

Theorem 1.1([4]). Supposef : D ⊂ Rn → R.

a) f is s-quasiconvex iff there existsε > 0 such thatf + ξ is quasiconvex for each linear
functionξ onRn satisfying‖ξ‖ < ε;

b) f is s-quasiconvex iff there existsε > 0 such thatf + ξ is s-quasiconvex for each linear
functionξ onRn satisfying‖ξ‖ < ε;

c) A continuously differentiable functionf is s-quasiconvex iff there existsε > 0 such that
f + ξ is pseudoconvex for each linear functionξ onRn satisfying‖ξ‖ < ε.

We will show that, in (1.4), both inequalities can be replaced by strict inequalities and first
inequalities can be replaced by strict inequalities.

Proposition 1.2. The following statements are equivalent:

a) f : D ⊂ Rn → R is s-quasiconvex;
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A NEW TYPE OFSTABLE GENERALIZED CONVEX FUNCTIONS 3

b) There existsσ > 0 such that

(1.5)
f(x0)− f(x1)

‖x0 − x1‖
< δ implies

f(xλ)− f(x1)

‖xλ − x1‖
< δ

for |δ| < σ, x0, x1 ∈ D andλ ∈ [0, 1[ ;
c) There existsσ > 0 such that

(1.6)
f(x0)− f(x1)

‖x0 − x1‖
< δ implies

f(xλ)− f(x1)

‖xλ − x1‖
≤ δ

for |δ| < σ, x0, x1 ∈ D andλ ∈ [0, 1[.

Proof. a) ⇒ b) Suppose thatf is s-quasiconvex andσ > 0 is given in the definition ofs-
quasiconvex functionf . Let x0, x1 ∈ D and f(x0)−f(x1)

‖x1−x0‖ < δ with |δ| < σ. Takeδ1 such that

|δ1| < σ and f(x0)−f(x1)
‖x1−x0‖ < δ1 < δ then f(xλ)−f(x1)

‖xλ−x1‖ ≤ δ1 < δ. Hence, (1.5) holds true.

b) ⇒ c) It is trivial, since (1.5) implies (1.6) with the sameσ > 0.

c) ⇒ a) Suppose thatf satisfies (1.6) andf(x0)−f(x1)
‖x1−x0‖ ≤ δ with |δ| < σ. Then, for each

δ1 ∈ ]δ, σ[ , we have(f(x0)−f(x1))/‖x1−x0‖ < δ1. By (1.6), f(xλ)−f(x1)
‖xλ−x1‖ ≤ δ1 with λ ∈ [0, 1[ .

Hencef(xλ)−f(x1)
‖xλ−x1‖ ≤ δ with λ ∈ [0, 1[ . Thus,f is s-quasiconvex. �

As we see from Proposition 1.2, in (1.4), replacing both inequalities by strict inequalities
and replacing first inequalities by strict inequalities will not rise to new types of generalized
convexity. In the following section, we replace second inequalities by strict inequalities, and in
this way we shall generate a new type of generalized convexity.

2. STRICTLY s-QUASICONVEX FUNCTIONS

Let us introduce the notion of strictlys-quasiconvex functions

Definition 2.1. f : D ⊂ Rn → R is said to bestrictly s-quasiconvexif there existsσ > 0 such
that

(2.1)
f(x0)− f(x1)

‖x0 − x1‖
≤ δ implies

f(xλ)− f(x1)

‖xλ − x1‖
< δ

for |δ| < σ, x0, x1 ∈ D, x0 6= x1, xλ = (1− λ)x0 + λx1 andλ ∈ ]0, 1[ .

Clearly, a strictly convex functionf is strictly s-quasiconvex. Furthermore, every strictly
s-quasiconvex function iss-quasiconvex and every strictlys-quasiconvex function is strictly
quasiconvex.

Theorem 2.1. A functionf : D ⊂ Rn → R is strictly s-quasiconvex iff there existsε > 0 such
thatf + ξ is strictly quasiconvex for each linear functionξ onRn satisfying‖ξ‖ < ε.

Proof. (a) Necessity: Assume thatf is strictlys-quasiconvex. Chooseε = σ and supposeξ is a
linear function satisfying‖ξ‖ < ε, whereσ is given in Definition 2.1. Then

f(x0)− f(x1)

‖x1 − x0‖
≤ ξ

(
x1 − x0

‖x1 − x0‖

)
= ξ

(
x1 − xλ

‖x1 − xλ‖

)
,

for every distinctx0, x1 ∈ D satisfyingf(x0) + ξ(x0) ≤ f(x1) + ξ(x1) and for allλ ∈ ]0, 1[.
Since ∣∣∣∣ξ (

x1 − xλ

‖x1 − xλ‖

)∣∣∣∣ ≤ ‖ξ‖ < ε = σ,
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4 P.T. AN

and sincef is strictly s-quasiconvex, we have

f(xλ)− f(x1)

‖xλ − x1‖
< ξ

(
x1 − xλ

‖x1 − xλ‖

)
.

Therefore,f(xλ) + ξ(xλ) < f(x1) + ξ(x1), i.e.,f + ξ is strictly quasiconvex.

(b) Sufficiency: Suppose that there existsε > 0 such thatf + ξ is strictly quasiconvex for each
linear functionξ on Rn satisfying‖ξ‖ < ε. Chooseσ = ε and suppose thatx0, x1 ∈ D satisfy
f(x0)−f(x1)
‖x1−x0‖ ≤ δ with |δ| < ε. By the Hahn-Banach theorem, there exists a linear functionξ

satisfying‖ξ‖ = δ andξ
(

x1−x0

‖x1−x0‖

)
= δ. Then,

f(x0)− f(x1)

‖x1 − x0‖
≤ ξ

(
x1 − x0

‖x1 − x0‖

)
.

Hence,f(x0) + ξ(x0) ≤ f(x1) + ξ(x1). Sincef + ξ is strictly quasiconvex, we havef(xλ) +
ξ(xλ) < f(x1) + ξ(x1) for all λ ∈ ]0, 1[ . It follows that

f(xλ)− f(x1)

‖xλ − x1‖
< ξ

(
x1 − xλ

‖x1 − xλ‖

)
= ξ

(
x1 − x0

‖x1 − x0‖

)
= δ

for all λ ∈ ]0, 1[ . �

We now consider the density of the set of strictlys-quasiconvex functions in the set ofs-
quasiconvex functions.

Proposition 2.2. If a s-quasiconvexf : D ⊂ Rn → R is not strictlys-quasiconvex then it is
affine on a certain interval inD.

Proof. Suppose thatf is not strictlys-quasiconvex. Sincef is s-quasiconvex, there existsε > 0
such thatf+ξ is quasiconvex for each linear functionξ onRn satisfying‖ξ‖ < ε (Theorem 1.1).
On the other hand, in view of Theorem 2.1,f + ξ is not strictly quasiconvex for some linear
function ξ on Rn satisfying‖ξ‖ < ε. Sincef + ξ is quasiconvex, we conclude thatf + ξ is
constant on a certain interval. Hence,f is affine on this interval. �

Proposition 2.3. Suppose thatf : ]a, b[⊂ R → R is s-quasiconvex and letε > 0. If it is affine
only on a finite number of intervals[ai, bi] ⊂ ]a, b[ , (i = 1, 2, . . . , k) then there exist strictly
convex functionsgi defined on[ai, bi] (i = 1, 2, . . . , k) such that

h(x) =

{
gi(x) if x ∈ [ai, bi] (i = 1, 2, . . . , k),

f(x) if x ∈ ]a, b[ \ ∪i=1,2,...,k [ai, bi]

is strictly s-quasiconvex and‖f − h‖ : = supx∈ ]a,b[ |f(x)− h(x)| < ε.

Proof. Assume without loss of generality thatf is affine only on[a1, b1]. By Theorem 1.1 (a),
there existsε0 > 0 such thatf + ξ is quasiconvex for each linear functionξ on R satisfying
‖ξ‖ < ε0. Assume without loss of generality thatf(a1) ≤ f(b1).

First, consider the casef(a1) < f(b1). Chooseg1(x) : = αx2+βx+γ, (α, β, γ ∈ R, α > 0)
such that

g1(a1) = f(a1), g1(b1) = f(b1)

0 < g′1(a1)

ε > sup
x∈[a1,b1]

|f(x)− g1(x)|.
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We are now in a position to show that the sum of the function

h(x) =

{
g1(x) if x ∈ [a1, b1],

f(x) if x ∈ ]a, b[ \[a1, b1]

andξ is quasiconvex for each linear functionξ satisfying‖ξ‖ < min{ε0, g
′
1(a1)}. Suppose that

ξ(x) = −ax, a > 0. Sincea < g′1(a1) andg1 is strictly convex on[a1, b1], f(a1) + a(x− a1) <
f(a1) + g′1(a1)(x − a1) < g1(x) for everyx ∈ ]a1, b1]. It follows thatg1(a1)− aa1 = f(a1)−
aa1 < g1(x)− ax. Hence,

(2.2) g1(a1) + ξ(a1) < g1(x) + ξ(x).

for everyx ∈ ]a1, b1]. Let x0, x1 ∈ ]a, b[⊂ R andλ ∈ ]0, 1[ .
We now consider the casex0 ∈ ]−∞, a1[∩ ]a, b[ andx1 ∈ [a1, b1]. If xλ ∈ [a1, x1] then, by

quasiconvexity ofg1 + ξ and by (2.2) (withx = x1),

h(xλ) + ξ(xλ) = g1(xλ) + ξ(xλ)

≤ max{g1(a1) + ξ(a1), g1(x1) + ξ(x1)}
= g1(x1) + ξ(x1) = h(x1) + ξ(x1).

If xλ ∈ [x0, a1[ then, by quasiconvexity off + ξ and by (2.2) (withx = x1),

h(xλ) + ξ(xλ) = f(xλ) + ξ(xλ)

≤ max{f(x0) + ξ(x0), f(a1) + ξ(a1)}
≤ max{f(x0) + ξ(x0), g1(x1) + ξ(x1)}
= max{h(x0) + ξ(x0), h(x1) + ξ(x1)}.

Similarly, if either x0 ∈ ] − ∞, a1[∩ ]a, b[ and x1 ∈ ]b1, +∞]∩ ]a, b[ or x0 ∈ [a1, b1] and
x1 ∈ ]b1, +∞[∩ ]a, b[ , we have

h(xλ) + ξ(xλ) ≤ max{h(x0) + ξ(x0), h(x1) + ξ(x1)}

for all xλ ∈ [x0, x1]. It implies thath + ξ is quasiconvex for each linear functionξ satisfying
‖ξ‖ < min{ε0, ε1}. By Theorem 1.1 (a),h is s-quasiconvex.

On the other hand, sincef is not affine on any interval contained inD \ [a1, b1] andg1 is
strictly convex,h is not affine on any intervals. By Proposition 2.2,h is strictly s-quasiconvex.
Sincesupx∈[a1,b1] |f(x)− g1(x)| < ε, we conclude that‖f − h‖ < ε.

Finally, we consider the casef(a1) = f(b1). By Theorem 1.1 (b), there existsε0 > 0 such
thatf + ξ is s-quasiconvex for each linear functionξ on R satisfying‖ξ‖ < min{ε/2, ε0}. Set
f̄ = f + ξ whereξ is a linear function onR satisfying‖ξ‖ < min{ε/2, ε0} andξ(a1) < ξ(b1).
Thenf̄ is s-quasiconvex, affine on[a1, b1] andf̄(a1) < f̄(b1). Applying the above case, there
exists a strictlys-quasiconvex functionh such that‖f̄ − h‖ < ε/2. It follows that

‖f − h‖ = ‖f + ξ − h + ξ‖ ≤ ‖f̄ − h‖+ ‖ξ‖ < ε.

�

From Proposition 2.3, we have the following.

Corollary 2.4. The set of strictlys-quasiconvex functions defined onD = ]a, b[⊂ R is dense
in the setω of s-quasiconvex functions, which are affine only on a finite number of intervals in
]a, b[ .
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6 P.T. AN

We do not know whether the conclusion of Corollary 2.4 holds for the caseD ⊂ Rn, n > 1.
Note that the uniqueness of the minimizer of strictlys-quasiconvex functions follows directly
from the uniqueness of the minimizer of strictly quasiconvex functions.

We now consider continuously differentiable functions.

Lemma 2.5. If f : D ⊂ Rn → R is strictly pseudoconvex then it is strictly quasiconvex.

Proof. Suppose thatf is strictly pseudoconvex. Letx0, x1 ∈ D, x0 6= x1 be such thatf(x0) ≤
f(x1). We want to show thatf(xλ) < f(x1) for all xλ ∈ ]x0, x1[ . Assume the contrary that
there existsxλ̄ ∈ ]x0, x1[ such that

f(xλ̄) ≥ f(x1) ≥ f(x0).

By the strictly pseudoconvexity off , we have

(2.3) (x1 − xλ̄)
T∇f(xλ̄) < 0 and (x0 − xλ̄)

T∇f(xλ̄) < 0.

Sets : = (x1 − xλ̄)/‖x1 − xλ̄‖ then−s : = (x0 − xλ̄)/‖x0 − xλ̄‖. It follows from (2.3) that
sT∇f(xλ̄) < 0 and−sT∇f(xλ̄) < 0, a contradiction. �

Theorem 2.6.Suppose thatf : D ⊂ Rn → R is continuously differentiable. Then,f is strictly
s-quasiconvex iff there existsε > 0 such thatf + ξ is strictly pseudoconvex for each linear
functionξ onRn satisfying‖ξ‖ < ε.

Proof. (a) Necessity: Assume thatf is strictly s-quasiconvex. Then, it iss-quasiconvex. By
Theorem 1.1, there existsε1 > 0 such thatf + ξ is pseudoconvex for each linear functionξ
on Rn satisfying‖ξ‖ < ε1. On the either hand, by Theorem 2.1, there existsε2 > 0 such that
f + ξ is strictly quasiconvex for each linear functionξ on Rn satisfying‖ξ‖ < ε2. Therefore,
f + ξ is pseudoconvex and strictly quasiconvex for each linear functionξ on Rn satisfying
‖ξ‖ < ε : = min{ε1, ε2}. Thusf + ξ is pseudoconvex and XC (see [5]). By Theorem 1 [5],
f + ξ is strictly pseudoconvex for each linear functionξ onRn satisfying‖ξ‖ < ε.

(b) Sufficiency: Suppose that there existsε > 0 such thatf + ξ is strictly pseudoconvex for
each linear functionξ on Rn satisfying‖ξ‖ < ε. By Lemma 2.5,f + ξ is strictly quasiconvex.
According to Theorem 2.1,f is strictly s-quasiconvex. �

3. NECESSARY AND SUFFICIENT CONDITIONS FOR STRICTLY s-QUASICONVEX

FUNCTIONS

Our next objective is to give necessary and sufficient conditions for a continuously differen-
tiable function to be strictlys-quasiconvex.

Theorem 3.1.Suppose thatf : D ⊂ Rn → R is continuously differentiable. Then,f is strictly
s-quasiconvex iff there existsσ > 0 such that

(3.1)
f(x0)− f(x1)

‖x0 − x1‖
≤ δ implies

(x0 − x1)
T

‖x0 − x1‖
∇f (x1) < δ

for all |δ| < σ, x0, x1 ∈ D.

Proof. (a) Necessity: Assume thatf is strictly s-quasiconvex. Then, by Theorem 2.6, there
existsε > 0 such thatf + ξ is strictly pseudoconvex for each linear functionξ onRn satisfying
‖ξ‖ < ε. Setσ : = ε. Suppose thatx0, x1 ∈ D, and f(x0)−f(x1)

‖x1−x0‖ ≤ δ for |δ| < ε. Choose a
linear functionξ such that‖ξ‖ = δ andξ ((x1 − x0)/‖x1 − x0‖) = δ. Then,f(x0) + ξ(x0) ≤
f(x1) + ξ(x1). Sincef + ξ is strictly pseudoconvex,

(x0 − x1)
T

‖x0 − x1‖
∇ (f + ξ) (x1) < 0.
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Clearly,ξ can be expressed in the formξ(x) = xT a, with somea ∈ Rn. Hence,

0 >
(x0 − x1)

T

‖x1 − x0‖
∇ (f + ξ) (x1)

=
(x0 − x1)

T

‖x1 − x0‖
∇f(x1) +

(x0 − x1)
T

‖x1 − x0‖
∇ξ(x1)

=
(x0 − x1)

T

‖x1 − x0‖
∇f(x1) +

(x0 − x1)
T

‖x1 − x0‖
a

=
(x0 − x1)

T

‖x1 − x0‖
∇f(x1) + ξ

(
x0 − x1

‖x1 − x0‖

)
.

Thus,

(x0 − x1)
T

‖x0 − x1‖
∇f (x1) < ξ

(
x1 − x0

‖x1 − x0‖

)
= δ.

Therefore, (3.1) holds true.

(b) Sufficiency: Suppose that there existsσ > 0 satisfying (3.1). We prove thatf is strictly
s-quasiconvex. Suppose thatf(x0)−f(x1)

‖x1−x0‖ ≤ δ with |δ| < σ. Choose a linear functionξ such that

‖ξ‖ = δ andξ
(

x1−x0

‖x1−x0‖

)
= δ. Then,

(3.2) f(x0) + ξ(x0) ≤ f(x1) + ξ(x1).

Consider the differentiable functionφ : [0, 1] → R defined as follows

φ(λ) : = (f + ξ) (xλ) = (f + ξ) ((1− λ)x0 + λx1) .

We are now in a position to show thatφ(λ) < φ(1) for all λ ∈ ]0, 1[
Assume the contrary thatφ(λ) ≥ φ(1), for someλ ∈ ]0, 1[ . Then, there existsλ0 ∈ [λ, 1[ ,

such that

φ(λ0) ≥ φ(1), φ′(λ0) = (x1 − x0)
T ∇ (f + ξ) (xλ0) ≤ 0,

wherexλ0 = (1− λ0)x0 + λ0x1. This yields

(3.3) f(x1) + ξ(x1) = φ(1) ≤ φ (λ0) = f (xλ0) + ξ (xλ0) .

By (3.2) and (3.3),f(x0) + ξ(x0) ≤ f (xλ0) + ξ (xλ0). Hence,

f(x0)− f (xλ0)

‖xλ0 − x0‖
≤ ξ

(
xλ0 − x0

‖xλ0 − x0‖

)
= ξ

(
x1 − x0

‖x1 − x0‖

)
= δ.

It follows from (3.1) that

(x0 − xλ0)
T

‖xλ0 − x0‖
∇f (xλ0) < δ = ξ

(
xλ0 − x0

‖xλ0 − x0‖

)
.
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8 P.T. AN

Then,ξ can be expressed in the formξ(x) = xT a, with somea ∈ Rn. Therefore,

0 >
(x0 − xλ0)

T

‖xλ0 − x0‖
∇f (xλ0) + ξ

(
x0 − xλ0

‖xλ0 − x0‖

)
=

(x0 − xλ0)
T

‖xλ0 − x0‖
∇f (xλ0) +

(x0 − xλ0)
T

‖xλ0 − x0‖
a

=
(x0 − xλ0)

T

‖xλ0 − x0‖
(∇f (xλ0) + a)

=
(x0 − xλ0)

T

‖xλ0 − x0‖
∇ (f + ξ) (xλ0) .

Hence(x0 − xλ0)
T ∇ (f + ξ) (xλ0) < 0 which yields(x1 − x0)

T ∇ (f + ξ) (xλ0) > 0. Thus,
φ′ (xλ0) > 0, a contradiction. Therefore,φ(λ) < φ(1) for all λ ∈ ]0, 1[ . It follows thatf (xλ) +
ξ (xλ) < f(x1) + ξ (x1). Hence,

f (xλ)− f(x1)

‖xλ − x1‖
< ξ

(
x1 − xλ

‖xλ − x1‖

)
= ξ

(
x1 − x0

‖x1 − x0‖

)
= δ,

i.e.,f is strictly s-quasiconvex. �

Theorem 3.2. A continuously differentiable functionf onD ⊂ Rn is strictly s-quasiconvex iff
there existsα > 0 such thatf is strictly convex on every segment[x0, x1] satisfying

(3.4)

∣∣∣∣(x1 − x0)
T

‖x1 − x0‖
∇f(xλ)

∣∣∣∣ < α for all xλ ∈ [x0, x1].

Proof. (a) Necessity: Assume thatf is strictly s-quasiconvex. Chooseα = σ, whereσ is given
in Definition 2.1. Let[x0, x1] ∈ D satisfy (3.4). We have to show thatf is strictly convex on
[x0, x1]. Takey0, y1 ∈ [x0, x1], λ ∈ [0, 1]. By the mean-value theorem, there existsȳ ∈ [y0, y1]
such that ∣∣∣∣f(y1)− f(y0)

‖y1 − y0‖

∣∣∣∣ =

∣∣∣∣(y1 − y0)
T

‖y1 − y0‖
∇f(ȳ)

∣∣∣∣ < α = σ.

Therefore, by Definition 2.1,

f(y1)− f(y0)

‖y1 − y0‖
<

f(yλ)− f(y1)

‖yλ − y1‖
for all yλ ∈ [y0, y1]. It follows thatf(yλ) < (1− λ)f(y0) + λf(y1). Hence,f is strictly convex
on [x0, x1].

(b) Sufficiency: Assume that there is anα > 0 such thatf is strictly convex on every segment
[x0, x1] satisfying (3.4). Chooseσ = α. We have to show that for|δ| < σ, x0, x1 ∈ D,
xλ = (1− λ)x0 + λx1 andλ ∈ ]0, 1[ , (2.1) is satisfied. Assume the contrary that

(3.5)
f(x0)− f(x1)

‖x0 − x1‖
≤ δ but

f(xλ)− f(x1)

‖xλ − x1‖
≥ δ.

In analogy to the proof of Theorem 2.2 [4], we consider the function

g(t) : = f

(
x1 + t

x0 − x1

‖x0 − x1‖

)
− δt, 0 ≤ t ≤ ‖x1 − x0‖.

Sinceg is continuous, the setA : = argmax0≤t≤‖x0−x1‖g(t) is nonempty and closed. Moreover,
(3.5) implies that

g(‖x0 − x1‖) ≤ g(0) ≤ g(‖xλ − x1‖).
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If either0 or ‖x0−x1‖ belongs toA so does‖xλ−x1‖. This implies thatA∩ ]0, ‖x0−x1‖[ 6= ∅.
Takez ∈ A∩ ]0, ‖x0 − x1‖[ . Theng′(z) = 0. It follows that∣∣∣∣(x1 − x0)

T

‖x1 − x0‖
∇f

(
x1 + z

x1 − x0

‖x0 − x1‖

)∣∣∣∣ = |δ| < σ = α.

Since∇f is continuous andz ∈ ]0, ‖x0 − x1‖[ , there existsω > 0 such that∣∣∣∣(x1 − x0)
T

‖x1 − x0‖
∇f

(
x1 + t

x1 − x0

‖x0 − x1‖

)∣∣∣∣ < α

holds true fort ∈ [z − ω, z + ω] ⊂ ]0, ‖x0 − x1‖[ . This implies by our assumption thatg is
strictly convex on[z − ω, z + ω]. Sinceg′(z) = 0, we conclude thatz is a minimizer ofg on
[z − ω, z + ω]. It follows from z ∈ A thatg is constant on[z − ω, z + ω], in contradiction with
the strict convexity ofg. This completes our proof. �

The following corollary is a direct result of Theorem 3.2.

Corollary 3.3. A continuously differentiable functionf on ]a, b[⊂ R is strictly s-quasiconvex
iff there existsα > 0 such thatf is strictly convex on the level set

L(|f ′|, α) : = {x ∈ ]a, b[ : |f ′(x)| < α}.

Example 3.1.The functions

f1(x) =
√
|x|, x ∈ [−1, 1],

f2(x) = − cos x, x ∈ [−2, 2],

f3(x) = ln x, x ∈ [1, 2]

given in [4] are not onlys-quasiconvex but also strictlys-quasiconvex. Since a strictlys-
quasiconvex function is strictly quasiconvex, a convex function which is constant on some in-
terval is not strictlys-quasiconvex.

4. CONCLUDING REMARKS

Based on the results in the above sections and [4] – [5], Fig. 4 gives a complete description of
the relations existing between stricts-quasiconvexity (SS-QC), s-quasiconvexity (S-QC), strict
quasiconvexity (SQC), quasiconvexity (QC), strict pseudoconvexity (SPC), pseudoconvexity
(PC), strict convexity (SC), and convexity (C) of continuously differentiable functions. This
figure consists of 11 disjoint regions, numbered from 1 to 11. Here all abbreviations refer to
circular regions, apart from SPC which refers to the intersection of the circles defined by PC
and SQC. QC refers to the entire interior of the largest circle,S-QCrefers to the union of the
regions 3-9, andSS-QCrefers to the union of the regions 6-8.

In [1], we introduced the notion ofs-quasimonotone maps which are stable with respect to
their characterizations. In analogy to this paper, we can generate a new type of generalized
monotonicity, namely stricts-quasimonotonicity and show that in the case of a differentiable
map, stricts-quasimonotonicity of the gradient is equivalent to stricts-quasiconvexity of the
underlying function. This will be a subject of another paper. Also, an application of this trend
in the theory of general economic equilibrium was presented in [2].
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