Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 1, Issue 2, Article 11, 2000

OSTROWSKI TYPE INEQUALITIES FROM A LINEAR FUNCTIONAL POINT OF VIEW

B. GAVREA AND I. GAVREA
University Babeş-Bolyai Cluj-Napoca, Department of Mathematics and Computers, Str. Mihail Kogălniceanu 1, 3400 Cluj-Napoca, Romania
gavreab@yahoo.com

Technical University Cluj-Napoca, Department of Mathematics, Str. C. Daicoviciu 15, 3400
Cluj-Napoca, Romania
Ioan.Gavrea@math.utcluj.ro
Received 13 Septemer, 1999; accepted 31 January, 2000
Communicated by P. Cerone

AbStract. Inequalities are obtained using P_{0}-simple functionals. Applications to Lipschitzian mappings are given.

Key words and phrases: P_{0}-simple functionals, inequalities, Lipschitz mappings.
2000 Mathematics Subject Classification. 26D15.

1. Introduction

Let I be a bounded interval of the real axis. We denote by $B(I)$ the set of all functions which are bounded on $[a, b]$.
Let A be a positive linear functional $A: B(I) \rightarrow \mathbb{R}$, such that $A\left(e_{0}\right)=1$, where $e_{i}: I \rightarrow \mathbb{R}$, $e_{i}(x)=x^{i}, \forall x \in I, i \in \mathbb{N}$.

The following inequality is known in literature as the Grüss inequality for the functional A.
Theorem 1.1. Let $f, g: I \rightarrow \mathbb{R}$ be two bounded functions such that $m_{1} \leq f(x) \leq M_{1}$ and $m_{2} \leq g(x) \leq M_{2}$ for all $x \in I, m_{1}, M_{1}, m_{2}$ and M_{2} are constants. Then the inequality:

$$
\begin{equation*}
|A(f g)-A(f) A(g)| \leq \frac{1}{4}\left(M_{1}-m_{1}\right)\left(M_{2}-m_{2}\right) \tag{1.1}
\end{equation*}
$$

holds.
In 1938 Ostrowski (cf. for example [7, p. 468]) proved the following result:
Theorem 1.2. Let $f: I \rightarrow \mathbb{R}$ be continuous on (a, b) whose derivative $f^{\prime}:(a, b) \rightarrow \mathbb{R}$ is bounded on (a,b), i.e.

$$
\left\|f^{\prime}\right\|_{\infty}:=\sup _{t \in(a, b)}\left|f^{\prime}(t)\right|<\infty .
$$

ISSN (electronic): 1443-5756

(C) 2000 Victoria University. All rights reserved.

002-99

Then

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a)\left\|f^{\prime}\right\|_{\infty} \tag{1.2}
\end{equation*}
$$

for all $x \in[a, b]$. The constant $\frac{1}{4}$ is best.
In the recent paper [4] S.S. Dragomir and S. Wang proved the following version of Ostrowski's inequality.
Theorem 1.3. Let $f: I \rightarrow \mathbb{R}$ be a differentiable mapping in the interior of I and $a, b \in \operatorname{int}(I)$ with $a<b$. If $f^{\prime} \in L_{1}[a, b]$ and $\gamma \leq f^{\prime}(x) \leq \Gamma$ for all $x \in[a, b]$ then we have the following inequality:

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t-\frac{f(b)-f(a)}{b-a}\left(x-\frac{a+b}{2}\right)\right| \leq \frac{1}{4}(b-a)(\Gamma-\gamma) \tag{1.3}
\end{equation*}
$$

for all $x \in[a, b]$.
The following inequality for mappings with bounded variation can be found in [1]:
Theorem 1.4. Let $f: I \rightarrow \mathbb{R}$ be a mapping of bounded variation. Then for all $x \in[a, b]$ we have the inequality

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) d t-f(x)(b-a)\right| \leq\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right] \bigvee_{a}^{b} f \tag{1.4}
\end{equation*}
$$

where $\bigvee_{a}^{b} f$ denotes the total variation of f.
The constant $\frac{1}{2}$ is the best possible one.
In [2] S.S. Dragomir gave the following result for Lipschitzian mappings:
Theorem 1.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be an L-Lipschitzian mapping on $[a, b]$, i.e.

$$
|f(x)-f(y)| \leq L|x-y|, \text { for all } x, y \in[a, b]
$$

Then we have the inequality

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) d t-f(x)(b-a)\right| \leq L(b-a)^{2}\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right] \tag{1.5}
\end{equation*}
$$

for all $x \in[a, b]$.
The constant $\frac{1}{4}$ is the best possible one.
S.S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang in [3] proved the following theorem:

Theorem 1.6. Let $f, w:(a, b) \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be so that $w(s) \geq 0$ on (a, b), w is integrable on (a, b) and $\int_{a}^{b} w(s) d s>0, f$ is of r-Hölder type, i.e.

$$
\begin{equation*}
|f(x)-f(y)| \leq H|x-y|^{r}, \text { for all } x, y \in(a, b) \tag{1.6}
\end{equation*}
$$

where $H>0$ and $r \in(0,1]$ are given. If $w, f \in L_{1}(a, b)$, then we have the inequality:

$$
\begin{equation*}
\left|f(x)-\frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b} w(s) f(s) d s\right| \leq H \frac{1}{\int_{a}^{b} w(s) d s} \int_{a}^{b}|x-s|^{r} w(s) d s \tag{1.7}
\end{equation*}
$$

for all $x \in(a, b)$.
The constant factor 1 in the right hand side cannot be replaced by a smaller one.
The aim of this paper is to improve the results from Theorems 1.1 - 1.6 using an unitary method.

2. AUXILIARY RESULTS

Let $X=(X, d)$ be a compact metric space and $C(X)$ the Banach lattice of real-valued continuous functions on the compact metric space $X=(X, d)$, endowed with the max norm $\|\cdot\|_{X}$.
For a function $f \in C(X)$, the modulus of continuity (with respect to the metric d) is defined by:

$$
\omega(f ; t)=\omega_{d}(f ; t)=\sup _{d(x, y) \leq t}|f(x)-f(y)|, \quad t \geq 0
$$

The least concave majorant of this modulus with respect to the variable t is given by

$$
\widetilde{\omega}(f ; t)= \begin{cases}\sup _{0 \leq x \leq \leq \leq y} \frac{(t-x) \omega(f ; y)+(y-t) \omega(f ; x)}{y-x} & \text { for } 0 \leq t \leq d(X) ; \\ \omega(f ; d(X)) & \text { for } t>d(X)\end{cases}
$$

where $d(X)<\infty$ is the diameter of the compact space X.
We denote by $\operatorname{Lip}_{M} \alpha=\operatorname{Lip}(\alpha ; X)$ the set of all Lipschitzian functions of order $\alpha, \alpha \in$ $[0,1]$ having the same Lipschitz constant M. That is $f \in \operatorname{Lip}_{M} \alpha$ iff for all $x, y \in X$

$$
|f(x)-f(y)| \leq M d^{\alpha}(x, y)
$$

We see that

$$
\operatorname{Lip}_{M}(\alpha ; X)=\left\{g \in C(X): \omega(g ; t) \leq M t^{\alpha}\right\}
$$

Let $I=[a, b]$ be a compact interval of the real axis, S a subspace of $C(I)$, and A a linear functional defined on S. The following definition was given by T. Popoviciu in [8].
Definition 2.1. The linear functional A defined on the subspace S which contains all polynomials is P_{n}-simple $(n \geq-1)$ if
(i) $A\left(e_{n+1}\right) \neq 0$
(ii) for every $f \in S$ there are the distinct points $t_{1}, t_{2}, \ldots, t_{n+2}$ in $[a, b]$ such that

$$
A(f)=A\left(e_{n+1}\right)\left[t_{1}, t_{2}, \ldots, t_{n+2} ; f\right]
$$

where $\left[t_{1}, t_{2}, \ldots, t_{n+2} ; f\right]$ is the divided difference of the function f on the points $t_{1}, t_{2}, \ldots, t_{n+2}$.
In [5] the following result is proved. The proof is reproduced here for completeness.
Theorem 2.1. Let A be a bounded linear functional, $A: C(I) \rightarrow \mathbb{R}$. If A is P_{0}-simple then for all $f \in C(I)$ we have

$$
\begin{equation*}
|A(f)| \leq \frac{\|A\|}{2} \widetilde{\omega}\left(f ; \frac{2\left|A\left(e_{1}\right)\right|}{\|A\|}\right) \tag{2.1}
\end{equation*}
$$

Proof. For $g \in C^{1}(I)$ we have

$$
\begin{aligned}
|A(f)| & =|A(f-g)+A(g)| \leq\|A\|\|f-g\|+|A(g)| \\
& \leq\|A\|\|f-g\|+\mid A\left(e_{1}\right)\left\|g^{\prime}\right\| .
\end{aligned}
$$

From this inequality we obtain

$$
|A(f)| \leq \inf _{g \in C^{1}(I)}\left(\|A\|\|f-g\|+\left|A\left(e_{1}\right)\right|\left\|g^{\prime}\right\|\right)
$$

and using the following result (see [10])

$$
\inf _{g \in C^{1}(I)}\left(\|f-g\|+\frac{t}{2}\left\|g^{\prime}\right\|\right)=\frac{1}{2} \widetilde{\omega}(f ; t), \quad t \geq 0
$$

we obtain the relation (2.1).

The following result was proved by I. Raşa [9].
Theorem 2.2. Let k be a natural number such that $0 \leq k \leq n$ and $A: C^{(k)}[a, b] \rightarrow \mathbb{R} a$ bounded linear functional, $A \neq 0, A\left(e_{i}\right)=0$ for $i=0,1, \ldots, n$ such that for every $f \in$ $C^{(k)}[a, b] P_{n}$-nonconcave $A(f) \geq 0$. Then A is P_{n}-simple.

A function $f \in C^{(k)}[a, b]$ is called P_{0}-nonconcave if for any $n+2$ points $t_{1}, t_{2}, \ldots, t_{n+2} \in$ $[a, b]$ the inequality

$$
\left[t_{1}, t_{2}, \ldots, t_{n+2} ; f\right] \geq 0
$$

holds.
Another criterion for P_{n}-simple functionals was given by A. Lupaş in [6]. He proved that a bounded linear functional $A: C[a, b] \rightarrow \mathbb{R}$ for which $A\left(e_{k}\right)=0, k=0,1, \ldots, n$ and $A\left(e_{n+1}\right) \neq 0$ is P_{n}-simple if and only if A is P_{n}-simple on $C^{(n+1)}[a, b]$.

Now we can prove the following result (see also [5]):
Theorem 2.3. Let A be a bounded linear functional, $A: C(I) \rightarrow \mathbb{R}$. If $A\left(e_{1}\right) \neq 0$ and the inequality (2.1) holds for any $f \in C(I)$ then A is P_{0}-simple.

Proof. We can assume that $A\left(e_{1}\right)>0$. Combining the results of I. Raşa and A. Lupaş, it is sufficient, for the proof of the theorem, to show that

$$
\begin{equation*}
A(f) \geq 0 \tag{2.2}
\end{equation*}
$$

for every nondecreasing differentiable function f defined on I.
For such a function we have

$$
|A(f)| \leq A\left(e_{1}\right)\left\|f^{\prime}\right\|
$$

Let B be the linear functional defined by

$$
B(f)=\frac{A(F)}{A\left(e_{1}\right)}
$$

where

$$
F(t)=\int_{0}^{t} f(u) d u, \quad f \in C[0,1]
$$

The functional B is bounded and for any $f \in C(I)$ we have

$$
|B(f)| \leq\|f\|
$$

with $B\left(e_{0}\right)=1$.
Let f be a continuous function such that $f \geq 0, f \neq 0$.
From the inequalities

$$
0 \leq e_{0}-\frac{f}{\|f\|} \leq 1
$$

we obtain

$$
1-\frac{B(f)}{\|f\|} \leq\left|B\left(e_{0}-\frac{f}{\|f\|}\right)\right| \leq 1
$$

These inequalities imply that

$$
\begin{equation*}
B(f) \geq 0 \tag{2.3}
\end{equation*}
$$

Further, let f be a differentiable function on I such that $f^{\prime} \geq 0$, then, from (2.3) we obtain

$$
B\left(f^{\prime}\right) \geq 0
$$

Since $B\left(f^{\prime}\right)=A(f)$, the inequality 2.2 is thus proved.

3. An Integral Inequality of Ostrowski Type

The following inequality of Ostrowski type holds.
Theorem 3.1. Let f be a continuous function on $[a, b]$ and $w:(a, b) \rightarrow \mathbb{R}_{+}$an integrable function on (a, b) such that $\int_{a}^{b} \omega(s) d s=1$. Then for any continuous function f the following inequality:

$$
\begin{align*}
\left|f(x)-\int_{a}^{b} w(s) f(s) d s\right| \leq\left(\int_{a}^{x} w(t) d t\right) & \widetilde{\omega}_{[a, x]}\left(f ; \frac{\int_{a}^{x} w(t)(x-t) d t}{\int_{a}^{x} w(t)}\right) \tag{3.1}\\
& +\left(\int_{x}^{b} w(t) d t\right) \widetilde{\omega}_{[x, b]}\left(f ; \frac{\int_{x}^{b} w(t)(t-x) d t}{\int_{x}^{b} w(t) d t}\right)
\end{align*}
$$

holds, where x is a fixed point in (a, b).
Proof. From Theorem 2.3 we get that the linear functionals

$$
A_{1}: C[a, x] \rightarrow \mathbb{R}, \quad A_{2}: C[x, b] \rightarrow \mathbb{R}
$$

defined by

$$
A_{1}(f)=f(x) \int_{a}^{x} w(t) d t-\int_{a}^{x} f(t) w(t) d t
$$

and

$$
A_{2}(f)=f(x) \int_{x}^{b} w(t) d t-\int_{x}^{b} f(t) w(t) d t
$$

are P_{0}-simple.
It is easy to see that:

$$
\left\|A_{1}\right\|=2 \int_{a}^{x} w(t) d t \quad \text { and } \quad\left\|A_{2}\right\|=2 \int_{x}^{b} w(t) d t
$$

From the inequality:
$\left|f(x)-\int_{a}^{b} w(s) f(s) d s\right| \leq\left(\int_{a}^{x} w(t) d t\right) \widetilde{\omega}\left(f ; \frac{\mid A_{1}\left(e_{1}\right)}{\int_{a}^{x} w(t) d t}\right)+\left(\int_{x}^{b} w(t) d t\right) \widetilde{\omega}\left(f ; \frac{A_{2}\left(e_{1}\right)}{\int_{x}^{b} w(t) d t}\right)$
and from the results

$$
\left|A_{1}\left(e_{1}\right)\right|=\int_{a}^{x} w(t)(x-t) d t \quad \text { and } \quad\left|A_{2}\left(e_{1}\right)\right|=\int_{x}^{b} w(t)(t-x) d t
$$

(3.1) follows.

Corollary 3.2. Let f be a continuous function on $[a, b]$, such that $f \in \operatorname{Lip}_{M_{1}}(\alpha,[a, x])$ and $f \in \operatorname{Lip}_{M_{2}}(\beta ;[x, b])$. Then

$$
\begin{align*}
\left|f(x)-\int_{a}^{b} w(s) f(s) d s\right| \leq M_{1}\left(\int_{a}^{x} w(t) d t\right)^{1-\alpha} & {\left[\int_{a}^{x} w(t)(x-t) d t\right]^{\alpha} } \tag{3.2}\\
+ & M_{2}\left(\int_{x}^{b} w(t) d t\right)^{1-\beta}\left[\int_{x}^{b} w(t)(t-x) d t\right]^{\beta}
\end{align*}
$$

Proof. The proof follows from the inequality (3.1) and the fact that

$$
\widetilde{\omega}_{1}(g ; t) \leq M t^{r}
$$

for any function $g, g \in \operatorname{Lip}_{M}(\alpha,[c, d])$, where $\widetilde{\omega}_{1}$ is taken on the interval $[c, d]$.
Corollary 3.2 is an improvement of the result of Theorem 1.6 .

Remark 3.1. In the particular case when $w(t)=\frac{1}{b-a}$ the inequality (3.2) becomes:

$$
\begin{align*}
\left|f(x)-\frac{\int_{a}^{b} f(s) d s}{b-a}\right| & \leq\left[M_{1} \frac{(x-a)^{\alpha+1}}{2^{\alpha}}+M_{2} \frac{(b-x)^{\beta+1}}{2^{\beta}}\right] \frac{1}{b-a} \tag{3.3}\\
& \leq \max \left(M_{1}, M_{2}\right)\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a)
\end{align*}
$$

Inequality (3.3) improves the inequality (1.5).
Corollary 3.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on (a, b), whose derivative $f^{\prime}:(a, b) \rightarrow \mathbb{R}$ is bounded on (a, b) and w a function as in Theorem 3.1. Then we have the following inequality:

$$
\begin{equation*}
\left|f(x)-\int_{a}^{b} w(s) f(s) d s\right| \leq\left[\int_{a}^{x} w(t)(x-t) d t+\int_{x}^{b} w(t)(t-x) d t\right]\left\|f^{\prime}\right\|_{\infty} \tag{3.4}
\end{equation*}
$$

Proof. The above inequality is a consequence of the inequality (3.1) and the fact that

$$
\widetilde{\omega}(f ; t) \leq\left\|f^{\prime}\right\|_{\infty} t
$$

The inequality of Ostrowski follows from (3.4) if we consider

$$
w(t)=\frac{1}{b-a}, \quad t \in[a, b] .
$$

Corollary 3.4. Let $f: I \rightarrow \mathbb{R}$ be a mapping with bounded variation and w a function as in Theorem 3.1] Then for all $x \in[a, b]$ we have the inequalities

$$
\begin{gather*}
\left|f(x)-\int_{a}^{b} w(s) f(s) d s\right| \leq \bigvee_{a}^{x} f \int_{a}^{x} w(t) d t+\bigvee_{x}^{b} f \int_{x}^{b} w(t) d t \tag{3.5}\\
\left|f(x)-\int_{a}^{b} w(s) f(s) d s\right| \leq\left(\frac{1}{2}+\frac{\left|\int_{a}^{x} w(t) d t-\int_{x}^{b} w(t) d t\right|}{2}\right) \bigvee_{a}^{b} f \tag{3.6}
\end{gather*}
$$

Proof. It is clear that

$$
\begin{equation*}
\widetilde{\omega}[a, x](f ; t) \leq \bigvee_{a}^{x} f \quad \text { and } \quad \widetilde{\omega}[x, b](f, t) \leq \bigvee_{x}^{b} f \tag{3.7}
\end{equation*}
$$

for every positive number t.
Thus, inequality (3.5) follows from (3.7).
For the proof of the inequality (3.6) we note that, if we suppose $\int_{a}^{x} w(t) d t \leq \frac{1}{2}$ then $\int_{x}^{b} w(t) d t \geq$ $\frac{1}{2}$ and vice versa.

For definiteness we assume that

$$
\int_{a}^{x} w(t) d t \leq \frac{1}{2} \quad \text { and } \quad \int_{x}^{b} w(t) d t \geq \frac{1}{2}
$$

We then have

$$
\begin{aligned}
\bigvee_{a}^{x} f \int_{a}^{x} w(t) d t+\bigvee_{x}^{b} f \int_{x}^{b} w(t) d t & \leq \frac{1}{2} \bigvee_{a}^{x} f+\bigvee_{x}^{b} f \int_{x}^{b} w(t) d t \\
& =\frac{1}{2} \bigvee_{a}^{b} f+\bigvee_{x}^{b} f\left(\int_{x}^{b} w(t) d t-\frac{1}{2}\right)
\end{aligned}
$$

and so

$$
\begin{equation*}
\bigvee_{a}^{x} f \int_{a}^{x} w(t) d t+\bigvee_{x}^{b} f \int_{x}^{b} w(t) d t \leq\left(\frac{1}{2}+\frac{\int_{x}^{b} w(t) d t-\int_{a}^{x} w(t) d t}{2}\right) \bigvee_{a}^{b} f \tag{3.8}
\end{equation*}
$$

From the inequalities (3.5) and (3.8), the inequality (3.6) follows.
Remark 3.2. The inequality from Theorem 1.4 follows if we take in (3.6)

$$
w(t)=\frac{1}{b-a} .
$$

Theorem 3.5. Let g be a continuous differentiable function on $[a, b]$ such that $g(a)=g(b)=0$. Then the inequality

$$
\begin{equation*}
\left|\frac{g(x)}{2}-\frac{1}{b-a} \int_{a}^{b} g(t) d t\right| \leq \frac{(x-a)^{2}+(b-x)^{2}}{8(b-a)} \widetilde{\omega}\left(g^{\prime} ; \frac{2}{3} \frac{(x-a)^{3}+(y-b)^{3}}{(x-a)^{2}+(y-b)^{2}}\right) \tag{3.9}
\end{equation*}
$$

holds, where x is an arbitrary point in (a, b).
Proof. The following functional A defined on $C[a, b]$ by

$$
A(f)=\frac{1}{b-a} \int_{a}^{b}\left(t-\frac{a+b}{2}\right) f(t) d t
$$

is a linear bounded functional having its norm equal to $\frac{b-a}{4}$. For every increasing function f we have:

$$
A(f) \geq 0
$$

Using Theorem 2.3, we deduce that the functional A is P_{0}-simple with

$$
A\left(e_{1}\right)=\frac{(b-a)^{2}}{12}
$$

From Theorem 2.1, we obtain the following inequality:

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b}\left(t-\frac{a+b}{2}\right) f(t) d t\right| \leq \frac{b-a}{8} \widetilde{\omega}\left(f ; \frac{2}{3}(b-a)\right) . \tag{3.10}
\end{equation*}
$$

Inequality (3.10) holds for every continuous function f.
Let us suppose that f is differentiable on $[a, b]$. From the inequality (written for f^{\prime}) we obtain the following inequality:

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(t) d t-\frac{f(a)+f(b)}{2}\right| \leq \frac{b-a}{8} \widetilde{\omega}\left(f^{\prime} ; \frac{2}{3}(b-a)\right) . \tag{3.11}
\end{equation*}
$$

Now, we can prove the inequality (3.9). We have the following identity:

$$
\begin{align*}
-\frac{g(x)}{2}+\frac{1}{b-a} \int_{a}^{b} g(t) d t=\frac{x-a}{b-a} & \left(\frac{1}{x-a} \int_{a}^{x} g(t) d t-\frac{g(a)+g(x)}{2}\right) \tag{3.12}\\
& +\frac{b-x}{b-a}\left(\frac{1}{b-x} \int_{a}^{b} g(t) d t-\frac{g(b)+g(x)}{2}\right)
\end{align*}
$$

Using the relations (3.11) and (3.12) we obtain

$$
\begin{align*}
\left|\frac{g(x)}{2}-\frac{1}{b-a} \int_{a}^{b} g(t) d t\right| & \tag{3.13}\\
& \leq \frac{(x-a)^{2}}{8(b-a)} \widetilde{\omega}\left(g^{\prime} ; \frac{2}{3}(x-a)\right)+\frac{(b-x)^{2}}{8(b-a)} \widetilde{\omega}\left(g^{\prime} ; \frac{2}{3}(b-x)\right) .
\end{align*}
$$

As the function $\widetilde{\omega}\left(g^{\prime} ; \cdot\right)$, is concave, then from 3.13 and using Jensen's inequality, we obtain the inequality (3.9).
Corollary 3.6. Let g be a continuous differentiable function on $[a, b]$ such that $g(a)=g(b)=0$, then the following inequality

$$
\begin{equation*}
\left|\frac{g(x)}{2}-\frac{1}{b-a} \int_{a}^{b} g(t) d t\right| \leq\left[\frac{1}{8}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{2(b-a)}\right](b-a)\left\|g^{\prime}\right\|_{\infty} \tag{3.14}
\end{equation*}
$$

is valid for all $x \in[a, b]$.
Proof. It is well known that

$$
\begin{equation*}
\widetilde{\omega}\left(g^{\prime} ; t\right) \leq 2\left\|g^{\prime}\right\|_{\infty} \tag{3.15}
\end{equation*}
$$

for every positive number t.
The inequality (3.15) then readily follows from the inequality (3.14).
Remark 3.3. The result from the Theorem 1.3 can be written in terms of $\widetilde{\omega}$ using the inequality (3.13) for the function

$$
g(x)=f(x)-\frac{x-a}{b-a} f(b)-\frac{b-x}{b-a} f(a) .
$$

In [5] the following result was proved:
Let A be a linear positive functional $A: C[0,1] \rightarrow \mathbb{R}, A\left(e_{0}\right)=1$ and $\varphi, \varphi:[0,1] \rightarrow \mathbb{R}$ a continuous increasing function such that $A\left(e_{1} \varphi\right)-A\left(e_{1}\right) A(\varphi)>0$. Then the following Grüss type inequality

$$
\begin{equation*}
|A(\varphi f)-A(\varphi) A(f)| \leq \frac{A(|\varphi-A(\varphi)|)}{2} \widetilde{\omega}\left(f ; \frac{2\left(A\left(e_{1} \varphi\right)-A\left(e_{1}\right) A(\varphi)\right)}{A(|\varphi-A(\varphi)|)}\right) \tag{3.16}
\end{equation*}
$$

holds.
We are interested in the following open problem:
Open problem. Let A be a linear positive functional defined on $C[0,1]$ and f, g be two continuous functions. Do positive numbers $\delta_{1}=\delta_{1}(f)<1$ and $\delta_{2}=\delta_{2}(f)<1$ exist such that

$$
|A(f g)-A(f) A(g)| \leq \frac{1}{4} \widetilde{\omega}\left(f ; \delta_{1}\right) \widetilde{\omega}\left(f, \delta_{2}\right) ?
$$

References

[1] S.S. DRAGOMIR, On Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Inequal. Appl. (in press).
[2] S.S. DRAGOMIR, On the Ostrowski integral inequality for Lipschitzian mappings and applications, Comput. Math. Appl., 38 (1999), 33-37.
[3] S.S. DRAGOMIR, P. CERONE, J. ROUMELIOTIS and S. WANG, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sc. Math. Roumanie, 42(90)(4), (1999), 301-314.
[4] S.S. DRAGOMIR AND S. WANG, An Inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 33(11) (1997), 15-20.
[5] I. GAVREA, Preservation of Lipschitz constants by linear transformations and global smoothness preservation (submitted).
[6] A. LUPAŞ, Contribuţii la teoria aproximării prin operatori liniari, Ph. D. Thesis, Cluj-Napoca, Babeş-Bolyai University, 1975.
[7] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic Publishers.
[8] T. POPOVICIU, Sur le reste dans certains formules lineaires d'approximation de l'analyse, Mathematica, Cluj., 1(24), 95-142.
[9] I. RAŞA, Sur les fonctionnelles de la forme simple au sens de T. Popoviciu, L’Anal. Num. et la Theorie de l'Approx., 9 (1980), 261-268.
[10] E.M. SEMENOV AND B.S. MITJAGIN, Lack of interpolation of linear operators in spaces of smooth functions, Math. USSR-Izv., 11 (1977), 1229-1266.

