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1. I NTRODUCTION

Let I be a bounded interval of the real axis. We denote byB(I) the set of all functions which
are bounded on[a, b].

Let A be a positive linear functionalA : B(I) → R, such thatA(e0) = 1, whereei : I → R,
ei(x) = xi, ∀ x ∈ I, i ∈ N.

The following inequality is known in literature as the Grüss inequality for the functionalA.
Theorem 1.1. Let f, g : I → R be two bounded functions such thatm1 ≤ f(x) ≤ M1 and
m2 ≤ g(x) ≤ M2 for all x ∈ I, m1, M1, m2 andM2 are constants. Then the inequality:

(1.1) |A(fg)− A(f)A(g)| ≤ 1

4
(M1 −m1)(M2 −m2)

holds.

In 1938 Ostrowski (cf. for example [7, p. 468]) proved the following result:
Theorem 1.2. Let f : I → R be continuous on(a, b) whose derivativef ′ : (a, b) → R is
bounded on(a, b), i.e.

‖f ′‖∞ := sup
t∈(a,b)

|f ′(t)| < ∞.
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2 B. GAVREA AND I. GAVREA

Then

(1.2)

∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a)‖f ′‖∞

for all x ∈ [a, b]. The constant1
4

is best.

In the recent paper [4] S.S. Dragomir and S. Wang proved the following version of Os-
trowski’s inequality.

Theorem 1.3.Letf : I → R be a differentiable mapping in the interior ofI anda, b ∈ int(I)
with a < b. If f ′ ∈ L1[a, b] andγ ≤ f ′(x) ≤ Γ for all x ∈ [a, b] then we have the following
inequality:

(1.3)

∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt− f(b)− f(a)

b− a

(
x− a + b

2

)∣∣∣∣ ≤ 1

4
(b− a)(Γ− γ)

for all x ∈ [a, b].

The following inequality for mappings with bounded variation can be found in [1]:

Theorem 1.4. Let f : I → R be a mapping of bounded variation. Then for allx ∈ [a, b] we
have the inequality

(1.4)

∣∣∣∣∫ b

a

f(t)dt− f(x)(b− a)

∣∣∣∣ ≤ [1

2
(b− a) +

∣∣∣∣x− a + b

2

∣∣∣∣] b∨
a

f,

where
b∨
a

f denotes the total variation off .

The constant1
2

is the best possible one.

In [2] S.S. Dragomir gave the following result for Lipschitzian mappings:

Theorem 1.5.Letf : [a, b] → R be anL-Lipschitzian mapping on[a, b], i.e.

|f(x)− f(y)| ≤ L|x− y|, for all x, y ∈ [a, b].

Then we have the inequality

(1.5)

∣∣∣∣∫ b

a

f(t)dt− f(x)(b− a)

∣∣∣∣ ≤ L(b− a)2

[
1

4
+

(
x− a+b

2

)2
(b− a)2

]
for all x ∈ [a, b].
The constant1

4
is the best possible one.

S.S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang in [3] proved the following theorem:

Theorem 1.6. Let f, w : (a, b) ⊆ R → R be so thatw(s) ≥ 0 on (a, b), w is integrable on
(a, b) and

∫ b

a
w(s)ds > 0, f is of r-Hölder type, i.e.

(1.6) |f(x)− f(y)| ≤ H|x− y|r, for all x, y ∈ (a, b)

whereH > 0 andr ∈ (0, 1] are given. Ifw, f ∈ L1(a, b), then we have the inequality:

(1.7)

∣∣∣∣∣f(x)− 1∫ b

a
w(s)ds

∫ b

a

w(s)f(s)ds

∣∣∣∣∣ ≤ H
1∫ b

a
w(s)ds

∫ b

a

|x− s|rw(s)ds

for all x ∈ (a, b).

The constant factor 1 in the right hand side cannot be replaced by a smaller one.
The aim of this paper is to improve the results from Theorems 1.1 – 1.6 using an unitary

method.
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2. AUXILIARY RESULTS

Let X = (X, d) be a compact metric space andC(X) the Banach lattice of real-valued
continuous functions on the compact metric spaceX = (X, d), endowed with the max norm
‖ · ‖X .

For a functionf ∈ C(X), the modulus of continuity (with respect to the metricd) is defined
by:

ω(f ; t) = ωd(f ; t) = sup
d(x,y)≤t

|f(x)− f(y)|, t ≥ 0.

The least concave majorant of this modulus with respect to the variablet is given by

ω̃(f ; t) =


sup

0≤x≤t≤y
x6=y

(t−x)ω(f ;y)+(y−t)ω(f ;x)
y−x

for 0 ≤ t ≤ d(X);

ω(f ; d(X)) for t > d(X),

whered(X) < ∞ is the diameter of the compact spaceX.
We denote byLipMα = LipM(α; X) the set of all Lipschitzian functions of orderα, α ∈

[0, 1] having the same Lipschitz constantM . That isf ∈ LipMα iff for all x, y ∈ X

|f(x)− f(y)| ≤ Mdα(x, y).

We see that
LipM(α; X) = {g ∈ C(X) : ω(g; t) ≤ Mtα}.

Let I = [a, b] be a compact interval of the real axis,S a subspace ofC(I), andA a linear
functional defined onS. The following definition was given by T. Popoviciu in [8].

Definition 2.1. The linear functionalA defined on the subspaceS which contains all polyno-
mials isPn-simple(n ≥ −1) if

(i) A(en+1) 6= 0
(ii) for everyf ∈ S there are the distinct pointst1, t2, . . . , tn+2 in [a, b] such that

A(f) = A(en+1)[t1, t2, . . . , tn+2; f ],

where[t1, t2, . . . , tn+2; f ] is the divided difference of the functionf on the pointst1, t2, . . . , tn+2.

In [5] the following result is proved. The proof is reproduced here for completeness.

Theorem 2.1.LetA be a bounded linear functional,A : C(I) → R. If A is P0-simple then for
all f ∈ C(I) we have

(2.1) |A(f)| ≤ ‖A‖
2

ω̃

(
f ;

2|A(e1)|
‖A‖

)
.

Proof. Forg ∈ C1(I) we have

|A(f)| = |A(f − g) + A(g)| ≤ ‖A‖‖f − g‖+ |A(g)|
≤ ‖A‖‖f − g‖+ |A(e1)|‖g′‖.

From this inequality we obtain

|A(f)| ≤ inf
g∈C1(I)

(‖A‖‖f − g‖+ |A(e1)|‖g′‖)

and using the following result (see [10])

inf
g∈C1(I)

(
‖f − g‖+

t

2
‖g′‖

)
=

1

2
ω̃(f ; t), t ≥ 0

we obtain the relation (2.1). �
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4 B. GAVREA AND I. GAVREA

The following result was proved by I. Raşa [9].

Theorem 2.2. Let k be a natural number such that0 ≤ k ≤ n and A : C(k)[a, b] → R a
bounded linear functional,A 6= 0, A(ei) = 0 for i = 0, 1, . . . , n such that for everyf ∈
C(k)[a, b] Pn-nonconcaveA(f) ≥ 0. ThenA is Pn-simple.

A function f ∈ C(k)[a, b] is calledP0-nonconcave if for anyn + 2 pointst1, t2, . . . , tn+2 ∈
[a, b] the inequality

[t1, t2, . . . , tn+2; f ] ≥ 0

holds.
Another criterion forPn-simple functionals was given by A. Lupaş in [6]. He proved that

a bounded linear functionalA : C[a, b] → R for which A(ek) = 0, k = 0, 1, . . . , n and
A(en+1) 6= 0 is Pn-simple if and only ifA is Pn-simple onC(n+1)[a, b].

Now we can prove the following result (see also [5]):

Theorem 2.3. Let A be a bounded linear functional,A : C(I) → R. If A(e1) 6= 0 and the
inequality (2.1) holds for anyf ∈ C(I) thenA is P0-simple.

Proof. We can assume thatA(e1) > 0. Combining the results of I. Raşa and A. Lupaş, it is
sufficient, for the proof of the theorem, to show that

(2.2) A(f) ≥ 0

for every nondecreasing differentiable functionf defined onI.
For such a function we have

|A(f)| ≤ A(e1)‖f ′‖.
Let B be the linear functional defined by

B(f) =
A(F )

A(e1)
,

where

F (t) =

∫ t

0

f(u)du, f ∈ C[0, 1].

The functionalB is bounded and for anyf ∈ C(I) we have

|B(f)| ≤ ‖f‖

with B(e0) = 1.
Let f be a continuous function such thatf ≥ 0, f 6= 0.
From the inequalities

0 ≤ e0 −
f

‖f‖
≤ 1

we obtain

1− B(f)

‖f‖
≤
∣∣∣∣B(e0 −

f

‖f‖

)∣∣∣∣ ≤ 1.

These inequalities imply that

(2.3) B(f) ≥ 0.

Further, letf be a differentiable function onI such thatf ′ ≥ 0, then, from (2.3) we obtain

B(f ′) ≥ 0.

SinceB(f ′) = A(f), the inequality (2.2) is thus proved. �
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3. AN I NTEGRAL I NEQUALITY OF OSTROWSKI TYPE

The following inequality of Ostrowski type holds.
Theorem 3.1. Let f be a continuous function on[a, b] and w : (a, b) → R+ an integrable
function on(a, b) such that

∫ b

a
ω(s)ds = 1. Then for any continuous functionf the following

inequality:

(3.1)

∣∣∣∣f(x)−
∫ b

a

w(s)f(s)ds

∣∣∣∣ ≤ (∫ x

a

w(t)dt

)
ω̃[a,x]

(
f ;

∫ x

a
w(t)(x− t)dt∫ x

a
w(t)

)
+

(∫ b

x

w(t)dt

)
ω̃[x,b]

(
f ;

∫ b

x
w(t)(t− x)dt∫ b

x
w(t)dt

)
holds, wherex is a fixed point in(a, b).

Proof. From Theorem 2.3 we get that the linear functionals

A1 : C[a, x] → R, A2 : C[x, b] → R
defined by

A1(f) = f(x)

∫ x

a

w(t)dt−
∫ x

a

f(t)w(t)dt

and

A2(f) = f(x)

∫ b

x

w(t)dt−
∫ b

x

f(t)w(t)dt

areP0-simple.
It is easy to see that:

‖A1‖ = 2

∫ x

a

w(t)dt and ‖A2‖ = 2

∫ b

x

w(t)dt.

From the inequality:∣∣∣∣f(x)−
∫ b

a

w(s)f(s)ds

∣∣∣∣ ≤ (∫ x

a

w(t)dt

)
ω̃

(
f ;

|A1(e1)∫ x

a
w(t)dt

)
+

(∫ b

x

w(t)dt

)
ω̃

(
f ;

A2(e1)∫ b

x
w(t)dt

)
and from the results

|A1(e1)| =
∫ x

a

w(t)(x− t)dt and |A2(e1)| =
∫ b

x

w(t)(t− x)dt,

(3.1) follows. �

Corollary 3.2. Let f be a continuous function on[a, b], such thatf ∈ LipM1(α, [a, x]) and
f ∈ LipM2(β; [x, b]). Then

(3.2)

∣∣∣∣f(x)−
∫ b

a

w(s)f(s)ds

∣∣∣∣ ≤ M1

(∫ x

a

w(t)dt

)1−α [∫ x

a

w(t)(x− t)dt

]α

+ M2

(∫ b

x

w(t)dt

)1−β [∫ b

x

w(t)(t− x)dt

]β

.

Proof. The proof follows from the inequality (3.1) and the fact that

ω̃1(g; t) ≤ Mtr

for any functiong, g ∈ LipM(α, [c, d]), whereω̃1 is taken on the interval[c, d]. �

Corollary 3.2 is an improvement of the result of Theorem 1.6.
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Remark 3.1. In the particular case whenw(t) = 1
b−a

the inequality (3.2) becomes:∣∣∣∣∣f(x)−
∫ b

a
f(s)ds

b− a

∣∣∣∣∣ ≤
[
M1

(x− a)α+1

2α
+ M2

(b− x)β+1

2β

]
1

b− a
(3.3)

≤ max(M1, M2)

[
1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a).

Inequality (3.3) improves the inequality (1.5).
Corollary 3.3. Let f : [a, b] → R be continuous on(a, b), whose derivativef ′ : (a, b) → R is
bounded on(a, b) andw a function as in Theorem 3.1. Then we have the following inequality:

(3.4)

∣∣∣∣f(x)−
∫ b

a

w(s)f(s)ds

∣∣∣∣ ≤ [∫ x

a

w(t)(x− t)dt +

∫ b

x

w(t)(t− x)dt

]
‖f ′‖∞.

Proof. The above inequality is a consequence of the inequality (3.1) and the fact that

ω̃(f ; t) ≤ ‖f ′‖∞t.

The inequality of Ostrowski follows from (3.4) if we consider

w(t) =
1

b− a
, t ∈ [a, b].

�

Corollary 3.4. Let f : I → R be a mapping with bounded variation andw a function as in
Theorem 3.1. Then for allx ∈ [a, b] we have the inequalities

(3.5)

∣∣∣∣f(x)−
∫ b

a

w(s)f(s)ds

∣∣∣∣ ≤ x∨
a

f

∫ x

a

w(t)dt +
b∨
x

f

∫ b

x

w(t)dt

(3.6)

∣∣∣∣f(x)−
∫ b

a

w(s)f(s)ds

∣∣∣∣ ≤
1

2
+

∣∣∣∫ x

a
w(t)dt−

∫ b

x
w(t)dt

∣∣∣
2

 b∨
a

f.

Proof. It is clear that

(3.7) ω̃[a, x](f ; t) ≤
x∨
a

f and ω̃[x, b](f, t) ≤
b∨
x

f

for every positive numbert.
Thus, inequality (3.5) follows from (3.7).
For the proof of the inequality (3.6) we note that, if we suppose

∫ x

a
w(t)dt ≤ 1

2
then

∫ b

x
w(t)dt ≥

1
2

and vice versa.
For definiteness we assume that∫ x

a

w(t)dt ≤ 1

2
and

∫ b

x

w(t)dt ≥ 1

2
.

We then have
x∨
a

f

∫ x

a

w(t)dt +
b∨
x

f

∫ b

x

w(t)dt ≤ 1

2

x∨
a

f +
b∨
x

f

∫ b

x

w(t)dt

=
1

2

b∨
a

f +
b∨
x

f

(∫ b

x

w(t)dt− 1

2

)
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and so

(3.8)
x∨
a

f

∫ x

a

w(t)dt +
b∨
x

f

∫ b

x

w(t)dt ≤

(
1

2
+

∫ b

x
w(t)dt−

∫ x

a
w(t)dt

2

)
b∨
a

f.

From the inequalities (3.5) and (3.8), the inequality (3.6) follows. �

Remark 3.2. The inequality from Theorem 1.4 follows if we take in (3.6)

w(t) =
1

b− a
.

Theorem 3.5.Letg be a continuous differentiable function on[a, b] such thatg(a) = g(b) = 0.
Then the inequality

(3.9)

∣∣∣∣g(x)

2
− 1

b− a

∫ b

a

g(t)dt

∣∣∣∣ ≤ (x− a)2 + (b− x)2

8(b− a)
ω̃

(
g′;

2

3

(x− a)3 + (y − b)3

(x− a)2 + (y − b)2

)
holds, wherex is an arbitrary point in(a, b).

Proof. The following functionalA defined onC[a, b] by

A(f) =
1

b− a

∫ b

a

(
t− a + b

2

)
f(t)dt

is a linear bounded functional having its norm equal tob−a
4

. For every increasing functionf we
have:

A(f) ≥ 0.

Using Theorem 2.3, we deduce that the functionalA is P0-simple with

A(e1) =
(b− a)2

12
.

From Theorem 2.1, we obtain the following inequality:

(3.10)

∣∣∣∣ 1

b− a

∫ b

a

(
t− a + b

2

)
f(t)dt

∣∣∣∣ ≤ b− a

8
ω̃

(
f ;

2

3
(b− a)

)
.

Inequality (3.10) holds for every continuous functionf .
Let us suppose thatf is differentiable on[a, b]. From the inequality (3.10) (written forf ′) we

obtain the following inequality:

(3.11)

∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− f(a) + f(b)

2

∣∣∣∣ ≤ b− a

8
ω̃

(
f ′;

2

3
(b− a)

)
.

Now, we can prove the inequality (3.9). We have the following identity:

(3.12) − g(x)

2
+

1

b− a

∫ b

a

g(t)dt =
x− a

b− a

(
1

x− a

∫ x

a

g(t)dt− g(a) + g(x)

2

)
+

b− x

b− a

(
1

b− x

∫ b

a

g(t)dt− g(b) + g(x)

2

)
.

Using the relations (3.11) and (3.12) we obtain

(3.13)

∣∣∣∣g(x)

2
− 1

b− a

∫ b

a

g(t)dt

∣∣∣∣
≤ (x− a)2

8(b− a)
ω̃

(
g′;

2

3
(x− a)

)
+

(b− x)2

8(b− a)
ω̃

(
g′;

2

3
(b− x)

)
.
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8 B. GAVREA AND I. GAVREA

As the functionω̃(g′; ·), is concave, then from (3.13) and using Jensen’s inequality, we obtain
the inequality (3.9). �

Corollary 3.6. Letg be a continuous differentiable function on[a, b] such thatg(a) = g(b) = 0,
then the following inequality

(3.14)

∣∣∣∣g(x)

2
− 1

b− a

∫ b

a

g(t)dt

∣∣∣∣ ≤
[

1

8
+

(
x− a+b

2

)2
2(b− a)

]
(b− a)‖g′‖∞

is valid for all x ∈ [a, b].

Proof. It is well known that

(3.15) ω̃(g′; t) ≤ 2‖g′‖∞,

for every positive numbert.
The inequality (3.15) then readily follows from the inequality (3.14). �

Remark 3.3. The result from the Theorem 1.3 can be written in terms ofω̃ using the inequality
(3.13) for the function

g(x) = f(x)− x− a

b− a
f(b)− b− x

b− a
f(a).

In [5] the following result was proved:
Let A be a linear positive functionalA : C[0, 1] → R, A(e0) = 1 andϕ, ϕ : [0, 1] → R a

continuous increasing function such thatA(e1ϕ)− A(e1)A(ϕ) > 0. Then the following Grüss
type inequality

(3.16) |A(ϕf)− A(ϕ)A(f)| ≤ A(|ϕ− A(ϕ)|)
2

ω̃

(
f ;

2(A(e1ϕ)− A(e1)A(ϕ))

A(|ϕ− A(ϕ)|)

)
holds.

We are interested in the following open problem:
Open problem. Let A be a linear positive functional defined onC[0, 1] andf, g be two

continuous functions. Do positive numbersδ1 = δ1(f) < 1 andδ2 = δ2(f) < 1 exist such that

|A(fg)− A(f)A(g)| ≤ 1

4
ω̃(f ; δ1)ω̃(f, δ2)?
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