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1. Introduction

In the study of entire functions it is natural to ask whether simple conditions on the
Taylor coefficients of a function can be used to determine the location of its zeros.
For example, letζ(s) =

∑∞
n=1 n−s for Re(s) > 1 be the Riemann zeta function. The

meromorphic continuation ofζ(s) to C has a simple pole ats = 1 and has simple
zeros at the negative even integers. The Riemannξ-function is defined by

ξ(s) =
1

2
s(s− 1)π−s/2Γ(s/2)ζ(s).

Note thatΓ(s/2) has simple poles at the non-positive even integers. It is relatively
straightforward to show thatξ(s) is an entire function satisfyingξ(s) = ξ(1− s) for
all complexs and that the zeros ofξ(s) satisfy0 ≤ Re(s) ≤ 1. The prime number
theorem is equivalent to the fact that the zeros ofξ(s) satisfy the strict inequality
0 < Re(s) < 1, and the Riemann hypothesis is the conjecture that all of the zeros of
ξ(s) are on the lineRe(s) = 1/2. Theξ-function has a Taylor series representation

ξ(1/2 + iz) =
∞∑

k=0

(−1)kak
z2k

(2k)!
,

whereak > 0 for all k, and it is possible to state inequality conditions on the coeffi-
cientsak in this representation ofξ(s) that are equivalent to the Riemann hypothesis
(see for example [5], [6], [7]). However, to date, the verification of such strong
conditions has been intractable. Instead, it is reasonable to consider weaker condi-
tions on theak that would be necessary should the Riemann hypothesis be true. It is
known that a necessary condition for the zeros ofξ(s) to satisfyRe(s) = 1/2 is

(1.1) Dk ≡ (2k + 1)a2
k − (2k − 1)ak−1ak+1 ≥ 0, k ≥ 1.
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The set of inequalities in (1.1) is an example of a class of inequalities called Turán-
type inequalities which we will explain in more detail in §3 and §4.

The Turán inequalities forξ(s) have been studied by several authors. Matiya-
sevitch [10] outlined a proof of the positivity ofDk. In [3], Csordas, Norfolk, and
Varga gave a complete proof thatDk > 0 for all k ≥ 1. Csordas and Varga improved
their earlier proof in [4]. Conrey and Ghosh [1] studied Turán inequalities for cer-
tain families of cusp forms. The argument of Csordas and Varga in [4] is based on
an integral representation ofDk as

(1.2) Dk =
1

2

∫ ∞

−∞

∫ ∞

−∞
u2kv2kΦ(u)Φ(v)

{
(v2 − u2)

∫ v

u

(
− Φ′(t)

t Φ(t)

)′

dt

}
du dv,

where

(1.3) Φ(u) =
∞∑

n=1

(
4n4π2e9u/2 − 6n2πe5u/2

)
e−n2πe2u

.

A long, detailed argument shows that the integrand of the innermost integral in (1.2)
is positive, proving the Turán inequalities forξ(s). This important result relies heav-
ily on the representation ofΦ(u) in (1.3), making the generalization to otherξ-
functions from number theory difficult.

In this paper, we study the Turán inequalities from a different point of view. Our
main result is to represent the Turán inequalities in terms ofsubtraction-freeexpres-
sions. This allows us to derive, as corollaries, several previously known results. Our
method of proof is more combinatorial and algebraic in nature than the previously
used analytic method which relied on the Gauss-Lucas theorem about the location
of the zeros of the derivative of a polynomial.
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2. Statement of Main Results

Let G(z) be a real entire function of genus0 of the form

G(z) =
∏

k

(1 + ρkz) =
∞∑

n=0

an
zn

n!
,

where the numbersρk are the negative reciprocal roots ofG(z). It is notationally
simpler to work with the negative reciprocal roots rather than with the roots them-
selves. Denote the set of these negative reciprocal roots (with repetitions allowed)
asR. The setR may be either infinite or finite, and we are interested in both cases.
SinceG(z) is a real entire function, ifρ ∈ R, eitherρ is real or the complex conju-
gateρ̄ is also inR. If 0 ≤ | Im(ρk)| < Re(ρk) for all k, we will show in Theorem2.2
that the strict Turán inequalities hold forG(z), i.e.,

a2
n − an−1an+1 > 0

for 1 ≤ n ≤ |R|.
The Taylor coefficientan, expressed in terms of the negative reciprocal roots, is

an = n!sR(n)

wheresR(n) is thenth elementary symmetric function formed from the elements of
R. That is,

sR(n) =
∑

i1<···<in

ρi1 · · · ρin

where the summation is over all possible strictly increasing lists of indices of lengthn.
The expressiona2

n − an−1an+1 becomes

a2
n − an−1an+1 = n!(n− 1)!

[
nsR(n)2 − (n + 1)sR(n− 1)sR(n + 1)

]
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which we wish to be positive. It will be convenient to define a symmetric function
sR(n, k) related to the elementary symmetric functionssR(n) that naturally arises
when forming products of elementary symmetric functions. Let

(2.1) sR(n, k) =
∑

i1≤···≤in
k repetitions

ρi1 · · · ρin

where the summation is taken over all lists of indices of the form

(2.2) i1 ≤ i2 ≤ · · · ≤ in

such thatk of the values are repeated exactly twice. In other words,k of the relations
in (2.2) are equal signs, the remainingn− 1− k relations are strict inequalities, and
no two consecutive relations are equal signs. Note that

sR(n) = sR(n, 0).

We follow the convention thatsR(m, k) = 0 whenever its defining summation (2.1)
is empty.

Example2.1. If A = {ρ1, ρ2, ρ3}, then

sA(3, 1) = ρ2
1ρ2 + ρ2

1ρ3 + ρ1ρ
2
2 + ρ2

2ρ3 + ρ1ρ
2
3 + ρ2ρ

2
3

since the list of all possible ways to write ascending lists of the indices{1, 2, 3} with
exactly one repetition is

1 = 1 < 2, 1 = 1 < 3, 1 < 2 = 2, 2 = 2 < 3, 1 < 3 = 3, 2 < 3 = 3.

The following theorem represents the Turán expressiona2
n−an−1an+1 as a linear

combination of the symmetric functionssR(n, k) in which all the coefficients are
nonnegative. We refer to such a sum as asubtraction-freeexpression.
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Theorem 2.1 (Subtraction-Free Expressions).The Turán expressiona2
n−an−1an+1

may be written in terms of the symmetric functionssR(m, k) as

(2.3) a2
n − an−1an+1 = n!(n− 1)!

n∑
k=1

k

n + 1− k

(
2n− 2k

n− k

)
sR(2n, k).

As a consequence of Theorem2.1, we are able to obtain a new proof of the
following previously known result without appealing to the Gauss-Lucas theorem
on the location of the roots of the derivative of a polynomial.

Theorem 2.2. Let G(z) be a real entire function with product and series represen-
tations

G(z) =
∏

k

(1 + ρkz) =
∞∑

n=0

an
zn

n!

and suppose that0 ≤ | Im(ρk)| < Re(ρk) for all k. Then, the Turán inequalities

a2
n − an−1an+1 > 0

hold for all n ≥ 1 if G(z) has infinitely many roots and for1 ≤ n ≤ d if G(z) is a
polynomial of degreed.

Notice that the hypothesis of Theorem2.2 requiresG to have a genus0 Weier-
strass product which is equivalent to saying that

∑
k |ρk| converges. Since the coef-

ficientsan are real, the non-real zeros ofG occur in complex conjugate pairs. The
condition0 ≤ | Im(ρk)| < Re(ρk) on the negative reciprocal roots ofG(z) is the
same as saying that all of the zeros ofG belong to the wedge shaped region

{z ∈ C | z 6= 0 and3π/4 < arg(z) < 5π/4}.

Our main interest is to apply Theorem2.2to the entire functionξK(s) associated
with the Dedekind zeta functionζK(s), whereK is a number field. It is known
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that the functionξK(s) is entire, has all zeros in the critical strip0 ≤ Re(s) ≤ 1,
and satisfies the functional equationξK(s) = ξK(1 − s). For the general theory
of the Dedekindζ-functions andξ-functions, see [8, Ch.13] or [11, Ch.7]. As a
consequence of Theorem2.2we are able to deduce the following result aboutξK(s):

Corollary 2.3. Lets = 1/2 + iz and write

ξK(s) = ξK(1/2 + iz) =
∞∑

k=0

(−1)kak
z2k

(2k)!
.

If ξK(s) has no zeros in the closed triangular region determined by the three points

1/2, 1, 1 +
(

1+
√

2
2

)
i,

then the(strict) Turán inequalities

(2k + 1)a2
k − (2k − 1)ak−1ak+1 > 0

hold fork ≥ 1.

The organization of the remainder of this paper is as follows: In §3 we recall
several relevant facts about the Turán inequalities. In §4 we discuss how these in-
equalities are applicable to even real entire functions and to the study of Dedekind
zeta functions. Proofs of Theorems2.1 and2.2 and Corollary2.3 are given in §5.
For the interested reader, in §6, we outline the original proof of Theorem2.2based
on the Gauss-Lucas theorem. Finally, in §7 we state several questions for further
study.
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3. The Laguerre-Pólya class and Turán inequalities

In this section we will review a few facts about the Laguerre-Pólya class and the
Turán inequalities.

In the study of real entire functions having only real zeros, it is natural to begin
with the simplest case: real polynomials with only real zeros. The set of func-
tions obtained as uniform limits on compact sets of such polynomials is called the
Laguerre-Pólya class, denotedLP. It is known (see [9, Ch.8,Thm.3]) that a real en-
tire functionf(z) =

∑∞
n=0 cn

zn

n!
is in LP if and only if it has a Weierstrass product

representation of the form

f(z) = czneαz−βz2
∏

k

(
1− z

αk

)
ez/αk

wherec, α, β, αk ∈ R, n ∈ Z, n ≥ 0, β ≥ 0, andαk 6= 0. Note that, ifβ = 0, the
genus off(z) is 0 or 1. The subset ofLP such that all the Taylor coefficients satisfy
cn ≥ 0 is denoted byLP+. The derivative of the logarithmic derivative off(z) is(

f ′(z)

f(z)

)′

=
f ′′(z)f(z)− f ′2

f(z)2
= − n

z2
− 2β −

∑
k

1

(z − αk)2
.

Consequently, for realz,
f ′2 − f(z)f ′′(z) ≥ 0.

Since the derivative of a function inLP is also inLP,

(3.1) f (k)(z)− f (k−1)(z)f (k+1)(z) ≥ 0

for all realz and allk = 1, 2, 3, . . .. The inequalities in (3.1) are sometimes called
the Laguerre inequalities.
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As a consequence of (3.1), if f(z) =
∑∞

k=0 ak
zk

k!
is a real entire function of genus

0 or 1, anecessarycondition forf(z) to belong toLP is that

(3.2) a2
k − ak−1ak+1 ≥ 0 (k ≥ 1).

Definition 3.1. The inequalities in(3.2) are called the Turán inequalities. We say
thatf(z) satisfies the strict Turán inequalities if

a2
k − ak−1ak+1 > 0

for all k ≥ 1 whenf(z) is a transcendental function or for1 ≤ k ≤ n if f(z) is a
polynomial of degreen.
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4. Turán Inequalities for Even Real Entire Functions

Consider a real entire function of genus0 or 1 of the form

F (z) =
∞∑

k=0

(−1)kak
z2k

(2k)!

whereak > 0 for k ≥ 0. The Turán inequalities (3.2) are trivially true forF (z). We
wish to find a nontrivial application of the Turán inequalities to the functionF (z).
We define a companion functionG(w) by making the substitution−z2 7→ w.

(4.1) F (z) =
∞∑

k=0

ak
(−z2)k

(2k)!
←→ G(w) =

∞∑
k=0

k!ak

(2k)!︸ ︷︷ ︸
bk

wk

k!

The seriesF (z) in powers ofz2 has alternating coefficients while the associated
seriesG(w) in powers ofw has positive coefficients. Observe thatF (z) has only
real zeros if and only ifG(w) has only negative real zeros. Thus we consider the
Turán inequalities for the companion functionG(w):

b2
k − bk−1bk+1 ≥ 0 (k ≥ 1)

which hold if and only if

(4.2) (2k + 1)a2
k − (2k − 1)ak−1ak+1 ≥ 0 (k ≥ 1).

This explains condition (1.1) as a necessary condition for the Riemann hypothesis
sinceξ(1/2 + iz) is an even entire function of genus 1 with alternating coefficients.

Definition 4.1. For an even entire functionF (z) with alternating coefficients, as
in (4.1), we will refer to the inequalities(4.2) as the Turán inequalities forF (z).
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The following fundamental example helped us to discover our proof of Theo-
rem2.2.

Example4.1. Let F (z) be the monic polynomial with roots±α±βi whereα, β ≥ 0.
Then

F (z) = (α2 + β2)2︸ ︷︷ ︸
a0

− 4(α2 − β2)︸ ︷︷ ︸
a1

z2

2!
+ 24︸︷︷︸

a2

z4

4!
.

The coefficients alternate signs provided thatα > β, which we assume to be the
case. What additional hypothesis ensures thatF (z) satisfies the Turán inequalities?
The only interesting inequality would be(2k + 1)a2

k − (2k − 1)ak−1ak+1 ≥ 0 with
k = 1 (if this is possible). A short computation gives

3a2
1 − a0a2 = 24

[(√
2 + 1

)
α2 −

(√
2− 1

)
β2

] [(√
2− 1

)
α2 −

(√
2 + 1

)
β2

]
.

Sinceα > β, the quantity
(√

2 + 1
)
α2 −

(√
2− 1

)
β2 is strictly positive. Then(√

2− 1
)

α2 −
(√

2 + 1
)

β2 > 0 ⇔ α >
(
1 +
√

2
)

β.

Thus, the strict Turán inequalities hold forF (z) if and only if α > (1 +
√

2)β.
Sincetan(π/8) = −1 +

√
2 = (1 +

√
2)−1, the strict Turán inequalities hold for

F (z) if and only if the four roots ofF (z) lie in the region

{z ∈ C | z 6= 0 and−π/8 < arg(z) < π/8 or 7π/8 < arg(z) < 9π/8}

if and only if the two roots of the companion polynomialG(w), defined in (4.1), lie
in the region

{w ∈ C |w 6= 0 and3π/4 < arg(w) < 5π/4}.

http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au


Turán Inequalities

David A. Cardon and Adam Rich

vol. 9, iss. 4, art. 91, 2008

Title Page

Contents

JJ II

J I

Page 13 of 25

Go Back

Full Screen

Close

5. Proofs of Theorems2.1and 2.2and Corollary 2.3

In this section we will prove Theorems2.1and2.2and Corollary2.3. Let G(z) be a
real entire function of genus0 of the form

G(z) =
∏

k

(1 + ρkz) =
∞∑

n=0

an
zn

n!
,

where the numbersρk are the negative reciprocal roots ofG(z). The set of these
negative reciprocal roots (with repetitions allowed) is denoted asR. The Taylor
coefficientan, expressed in terms of the negative reciprocal roots, is

an = n!sR(n)

wheresR(n) is thenth elementary symmetric function formed from the elements of
R. Recall from equation (2.1) that we define the symmetric functionsR(n, k) as

sR(n, k) =
∑

i1≤···≤in
k repetitions

ρi1 · · · ρin

where the summation is taken over all lists of indices of the form

(5.1) i1 ≤ i2 ≤ · · · ≤ in

such thatk of the values are repeated exactly twice. In (5.1), k of the relations
are equal signs, the remainingn − 1 − k relations are strict inequalities, and no
two consecutive relations are equal signs. We considersR(m, k) = 0 whenever
its defining summation (2.1) is empty. Several of these trivial cases are listed in
Lemma5.1.

Lemma 5.1. sR(m, k) = 0 in all of the following cases:
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(i) if m < 1 or k < 0,

(ii) if k > m/2 since there can be at mostm/2 repeated values in an ascending list
of lengthm,

(iii) if m− k > |R| since the length of an ascending list can be at most|R|.
Thus, necessary conditions forsR(m, k) to be nonzero are

m ≥ 1 and 0 ≤ 2k ≤ m ≤ |R|+ k.

The next lemma shows how to express the product of two elementary symmetric
functions in terms of the functionssR(m, k).

Lemma 5.2. Let0 ≤ m ≤ n. Then

sR(m)sR(n) =
m∑

k=0

(
m + n− 2k

m− k

)
sR(m + n, k).

Proof. Each term in the product of the sumssR(m) andsR(n) is a term in the sum
sR(m+n, k) for somek with 0 ≤ k ≤ m. Conversely, each term in the sumsR(m+
n, k) with 0 ≤ k ≤ m is obtainable as a product of terms from the sumssR(m)
andsR(n). We need to count how often this happens. A given termρ`1 · · · ρ`m+n

containing exactlyk repeated indices can be obtained as the product ofρi1 · · · ρim

andρj1 · · · ρjn each of which sharesk indices. The terms in the productρi1 · · · ρim

contain thek repeated terms as well asm−k terms chosen from among them+n−2k
non-repeated terms ofρ`1 · · · ρ`m+n. The choice ofρi1 · · · ρim determines the choice
of ρj1 · · · ρjn. So, there are

(
m+n−2k

m−k

)
ways to obtain the productρ`1 · · · ρ`m+n.

We will now prove Theorem2.1 by representing the Turán expressiona2
n −

an−1an+1 as a linear combination of the symmetric functionssR(m, k) having non-
negative coefficients. In other words,a2

n− an−1an+1 can be written as a subtraction-
free expression.
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Proof of Theorem2.1. Sinceam = m!sR(m),

a2
n − an−1an+1 = n!(n− 1)!

[
nsR(n)2 − (n + 1)sR(n− 1)sR(n + 1)

]
.

Applying Lemma5.2to the expression on the right gives

nsR(n)2 − (n + 1)sR(n− 1)sR(n + 1)

= n
n∑

k=0

(
2n− 2k

n− k

)
sR(2n, k)− (n + 1)

n−1∑
k=0

(
2n− 2k

n + 1− k

)
sR(2n, k)

= nsR(2n, n) +
n−1∑
k=0

[
n

(
2n− 2k

n− k

)
− (n + 1)

(
2n− 2k

n + 1− k

)]
sR(2n, k)

=
n∑

k=1

k

n + 1− k

(
2n− 2k

n− k

)
sR(2n, k).

Lemma5.3, below, will provide conditions under whichsR(n, k) is positive when
its defining sum is not empty as in Lemma5.1. Then the subtraction-free expression
in Theorem2.1 is also positive.

Lemma 5.3. LetA be a nonempty set (finite or countable) of nonzero complex num-
bers (with repetitions allowed) such that

1. if ρ ∈ A, thenρ̄ ∈ A with the same multiplicity,

2. if ρ ∈ A, then0 ≤ | Im(ρ)| < Re(ρ), and

3.
∑

ρ∈A |ρ| <∞.
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Then,sA(m, k) > 0 wheneverm > 0 and0 ≤ 2k ≤ m ≤ |A|+ k.

Note that the condition on the negative reciprocal roots in Lemma5.3 coincides
with the condition in the statement of Theorem2.2. The third condition,

∑
ρ∈A |ρ| <

∞, guarantees convergence of the product
∏

ρ∈A(1 + ρz) and convergence of the
sumSA(m, k) whenA is an infinite set.

Proof. If A is a finite set, we will prove the lemma by induction on the cardinality
of A. The case in whichA is an infinite set will follow immediately from the finite
case.

First, supposeA = {ρ} consists of a single positive number. Since|A| = 1, the
set of possible choices for(m, k) is {(1, 0), (2, 1)}. Then

sA(1, 0) = ρ > 0,

sA(2, 1) = ρ2 > 0.

The lemma holds in this case. Next, supposeA = {ρ, ρ̄} and0 ≤ | Im(ρ)| < Re(ρ).
Since|A| = 2, the set of all possible choices for(m, k) is

{(1, 0), (2, 0), (2, 1), (3, 1), (4, 2)}.

Then

sA(1, 0) = ρ + ρ̄ = 2 Re(ρ) > 0,

sA(2, 0) = ρρ̄ = |ρ|2 > 0,

sA(2, 1) = ρ2 + ρ̄2 = 2[Re(ρ)2 − Im(ρ)2] > 0,

sA(3, 1) = ρ2ρ̄ + ρρ̄2 = 2|ρ|2 Re(ρ) > 0,

sA(4, 2) = ρ2ρ̄2 = |ρ|4 > 0.
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The lemma also holds in this case.
Let A be a finite set (with repetitions allowed) as in the statement of the lemma.

Assume, by way of induction, that the lemma holds for the setA. Thus,sA(n, `) > 0
whenevern > 1 and0 ≤ 2` ≤ n ≤ |A| + `. Let ρ be a positive number and let
B = A ∪ {ρ}. From the definition ofsB(m, k), it follows that

(5.2) sB(m, k) = sA(m, k) + ρ sA(m− 1, k) + ρ2 sA(m− 2, k − 1).

Choose the pair(m, k) so thatm ≥ 1 and0 ≤ 2k ≤ m ≤ |B|+ k. By the induction
hypothesis, each term on the right hand side of equation (5.2) is either positive or
zero. Potentially, some of the terms on the right hand side of (5.2) could be zero by
Lemma5.1. It will suffice to show that at least one term is positive. Let

LA =
{
(m, k) | 0 < m and 0 ≤ 2k ≤ m ≤ |A|+ k

}
,

and letLB be similarly defined. Since|A| < |B| = |A| + 1, LA ⊂ LB. If (m, k) ∈
LA, thensA(m, k) > 0 which implies thatsB(m, k) > 0. Now, assume(m, k) ∈ LB

but (m, k) 6∈ LA. In this case,m = |A| + 1 + k where0 ≤ k ≤ |A| + 1. If
m = |A|+ 1 + k and0 ≤ k ≤ |A|, the pair(m− 1, k) = (|A|+ k, k) is in LA. Then
sA(m − 1, k) > 0 which implies, by (5.2), thatsB(m, k) > 0. If m = |A| + 1 + k
andk = |A| + 1, the pair(m − 2, k − 1) is in LA. ThensA(m − 2, k − 1) > 0 so
thatsB(m, k) > 0. This proves that the lemma holds when the setA is enlarged by
adjoining a positive real number.

Next we will enlargeA by adjoining a pair{ρ, ρ̄}. Let C = A ∪ {ρ, ρ̄} where
0 ≤ | Im(ρ)| < Re(ρ). From the definition ofsC(m, k) it follows that

(5.3) sC(m, k) = sA(m, k) + (ρ + ρ̄) sA(m− 1, k)

+ ρρ̄ sA(m− 2, k) + (ρ2 + ρ̄2) sA(m− 2, k − 1)

+ ρρ̄(ρ + ρ̄) sA(m− 3, k − 1) + ρ2ρ̄2 sA(m− 4, k − 2).
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Choose the pair(m, k) so thatm ≥ 1 and0 ≤ 2k ≤ m ≤ |C|+ k. By the induction
hypothesis, each term on the right hand side of equation (5.3) is nonnegative. It will
suffice to show that at least one term is positive. If(m, k) ∈ LA, thensA(m, k) > 0
so thatsC(m, k) > 0. If (m, k) ∈ LC , but(m, k) 6∈ LA, thenm = |A|+1+k where
0 ≤ k ≤ |A|+1 orm = |A|+2+k where0 ≤ k ≤ |A|+2. The casem = |A|+1+k
is exactly the same as in the previous paragraph. Ifm = |A|+2+k and0 ≤ k ≤ |A|,
then(m−2, k) is inLA so thatsA(m−2, k) > 0 andsB(m, k) > 0. If m = |A|+2+k
andk = |A| + 1, then(m − 2, k − 1) is in LA so thatsA(m − 2, k − 1) > 0 and
sC(m, k) > 0. If m = |A| + 2 + k andk = |A| + 2, then(m − 4, k − 2) is in LA

so thatsA(m − 4, k − 2) > 0 andsC(m, k) > 0. This proves that the lemma holds
when the setA is enlarged by adjoining a pair{ρ, ρ̄}. Thus, the lemma holds ifA is
a finite set.

Suppose now thatA is an infinite set (with repetitions allowed) as in the statement
of the lemma and suppose0 ≤ 2k ≤ m. Let

B1 ⊂ B2 ⊂ B3 ⊂ · · ·

be a sequence of finite subsets ofA satisfying the hypotheses in the lemma such that
A = ∪∞n=1Bn. Then

lim
n→∞

sBn(m, k) = sA(m, k).

The nonnegativity of each term on the right hand sides of equations (5.2) and (5.3)
implies that

sB1(m, k) ≤ sB2(m, k) ≤ sB3(m, k) ≤ · · · ≤ sA(m, k).

SincesBn(m, k) > 0 as soon as|Bn| is sufficiently large, it follows thatsA(m, k) >
0. Therefore, the lemma also holds whenA is an infinite set.

Combining Theorem2.1and Lemma5.3 immediately gives Theorem2.2.
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For Corollary2.3, we recall from analytic number theory that the Dedekindξ-
function for a finite extensionK of Q has a Taylor series representation of the form

ξK(1/2 + iz) =
∞∑

k=0

(−1)kak
z2k

(2k)!
,

whereak > 0 for all k. ThenξK(1/2 + iz) is a real entire function with alternating
coefficients to which Theorem2.2 applies. By standard facts from analytic and al-
gebraic number theory,ξK(s) has no zeros outside the closed strip0 ≤ Re(s) ≤ 1,
and the prime number theorem, generalized to number fields, is equivalent to the
fact there are no zeros outside the open strip0 < Re(s) < 1. Combining this with
Theorem2.2 shows that the strict Turán inequalities hold forξK(1/2 + iz) if there
are no roots ofξK(s) in the closed triangular region determined by the three points

1/2, 1, and1 +
(

1+
√

2
2

)
i, which completes the proof.
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6. Proof of Theorem2.2using the Gauss-Lucas Theorem

We will now briefly recall the proof of Theorem2.2 that relies on the Gauss-Lucas
theorem. This argument would have been known to researchers such as Jensen,
Laguerre, Pólya, and Turán. (See, for example, Theorem 2.4.2 and Lemma 5.4.4
in [12]).

Let f(z) be a real monic polynomial whose negative reciprocal roots lie in the
sector0 ≤ | Im(z)| < Re(z) as in Theorem2.2. If the real roots arer1, . . . , rm and
the complex roots areα1 ± iβ1, . . . , αn ± iβn, then

f(z) =
m+2n∑
k=0

ak
zk

k!
=

m∏
j=1

(z − rj)
n∏

k=1

(
(z − αk)

2 + β2
k

)
.

Taking the derivative of the logarithmic derivative off(z) results in

(6.1)
[f ′2 − f(z)]f ′′(z)

f(z)2
=

m∑
j=1

1

(z − rj)2
+ 2

n∑
k=1

(z − αk)
2 − β2

k

[(z − αk)2 + β2
k ]

2 .

The hypothesis causes the right hand side of (6.1) to be positive forz = 0 giving

a2
1 − a0a2 > 0.

The Gauss-Lucas theorem (see Theorem 2.1.1 in [12]) says that every convex set
containing the zeros off(z) also contains the zeros off ′(z). Since the negative
reciprocal roots off(z) belong to the sector0 ≤ | Im(z)| < Re(z), which is a
convex region, the negative reciprocal roots off ′(z) also belong to that sector. By
the previous argument applied tof ′(z),

a2
2 − a1a3 > 0.
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Proceeding in this manner for the remaining derivatives off(z) proves the theorem.
Note that the original proof of Theorem2.2 is not really shorter than our proof.

Including the details of the proof of the Gauss-Lucas theorem and its extension to
transcendental entire functions would make the argument as long and complicated
as our new proof.
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7. Questions for Further Study

We conclude the paper by stating several problems suggested by our studies.
In proving Theorem2.1, we actually proved thestrongerresult (Lemma5.3) that

if the negative reciprocal rootsρk of the real entire function

G(z) =
∏

k

(1 + ρkz) =
∞∑

n=0

an
zn

n!

satisfy0 ≤ | Im(ρk)| < Re(ρk), thensR(m, k) > 0 wheneverm > 0 and0 ≤
2k ≤ m ≤ |R| + k whereR is the set of negative reciprocal roots (with repetitions
allowed). In other words, we produced a stronger set of inequalities than the set
of Turán inequalities since the Turán expressions were formed as subtraction-free
expressions involving the symmetric functionssR(m, k).

Problem 1. Determine other interesting sets of inequalities related to the location of
the zeros ofG(z) that naturally result from considering subtraction-free expressions.

To be more concrete, ifφ(z) is a real entire function, set

T (1)
k

(
φ(z)

)
:=

(
φ(k)(z)

)2 − φ(k−1)(z)φ(k+1)(z) if k ≥ 1,

and forn ≥ 2, set

T (n)
k

(
φ(z)

)
:=

(
T (n−1)

k

(
φ(z)

))2 − T (n−1)
k−1

(
φ(z)

)
T (n−1)

k+1

(
φ(z)

)
if k ≥ n ≥ 2.

Forφ(z) ∈ LP+ (defined in §3) Craven and Csordas asked in [2] if it is true that

(7.1) T (n)
k

(
φ(z)

)
≥ 0

for all z ≥ 0 andk ≥ n. They refer to the inequalities in (7.1) asiterated Laguerre
inequalities. Our own studies have suggested thatT (n)

k

(
φ(z)

)∣∣
z=0

can be expressed
in terms of subtraction-free expressions. Hence we have the problem:
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Problem 2. RepresentT (n)
k

(
φ(z)

)∣∣
z=0

in terms of subtraction-free expressions and
determine sectors inC such that if the negative reciprocal roots belong to the sectors,
thenT (n)

k

(
φ(z)

)∣∣
z=0
≥ 0 for certain values ofn andk which depend on the sector.
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