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1. INTRODUCTION .

Let / be an interval ilR andf : I — R a convex function od. If £ = (&, ..

-, &m) is any

m-tuple inI™ andp = (p1, ..., pn,) any nonnegativen-tuple such thap """ | p; > 0, then the

well known Jensen’s inequality (see for example [7, p. 43])

1 & 1 —
1.1 — &< — (&
@ (3 30e) <5 Snste
holds, whereP,, = >~ | p;.
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2 S. ABRAMOVICH, M. KLARICIC BAKULA, AND S. BANIC

If fis strictly convex, therf1.1)) is strict unlesg; = cforalli € {j : p; > 0}.

It is well known that the assumptiorp“is a nonnegativen-tuple” can be relaxed at the
expense of more restrictions on thetuple&.

If pis arealm-tuple such that

(1.2) 0<P<Pn,j=1...m, Py,>0,

whereP; = Zlepi , then for any monotonie:-tuple £ (increasing or decreasing) iff* we

get
LS el
= 5 DiGi )
Pmizl

and for any functiory convex on/ still holds. Inequality(1.1)) considered under condi-
tions (L.2) is known as the Jensen-Steffensen’s inequality [7, p. 57] for convex functions.

In his paper/[5] A. McD. Mercer considered some monotonicity properties of power means.
He proved the following theorem:

Theorem A. Suppose thdl < a < banda < 7 < x5 < --- < x,, < b hold with at least one
of thexy, satisfyinga < z;, < b. If w = (w1, ..., w,) is a positiven-tuple with>"""  w; =1
and—oco < r < s < 400, then

a< @ (a,b;x) <Qs(a,b;x) <b,
where

1
t

Qi (a,b;x) = <at + b — Z wmf)
i=1

for all real t # 0, and
b
Qo (a,b;x) = a—, G= wa’

In his next paper[[6], Mercer gave a variant of Jensen’s inequality for which Witkowski
presented in [8] a shorter proof. This is stated in the following theorem:

Theorem B. If f is a convex function on an interval containing aftuplex = (xq,...,z,)
suchthal) < z; <y <--- <z, andw = (wy,...,w,) is a positiven-tuple with) """ | w; =
1, then

f<x1+xn szxz) <f(1171 +f In sz xz .

=1
This theorem is a special case of the following theorem proved in [4] by Abramovich¢Klari
Bakula, MatE and Péaric:

Theorem C ([4, Th. 2]). Let f : I — R, where[ is an interval inR and let[a,b] C I, a < b.
Let ¢ = (z1,...,x,) be a monotonia-tuple infa, )" andv = (vy,...,v,) a real n—tuple
suchthatv; #0,i=1,...,n,and0 < V; <V, j=1,...,n,V, > 0, whereV; = ZZ L Vi
If fis convex on, then

In casef is strictly convex, the equallty holds in (IL.3) iff one of the following two cases occurs:
(1) eitherz =aorz =1b,
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(2) there exists € {2,...,n — 1} suchthatz = z; + z,, — z; and
ri=a, r,=bo0r r1==5, z, =a,
(1.4) Vilrj g —2))=0,7=2,...,1,
Vi (xj—xj41)=0,j=1...,n—1,

whereV; = 377" v;, j =1,...,nandT = (1/V,,) 27, vis.
In the special case where > 0 and f is strictly convex, the equality holds ip (IL.4) iff
ri=a,1=1,...,n,0rz; =b,i=1,...,n.

Here, as in the rest of the paper, when we say that-tuple £ is increasing (decreasing)
we meanthat; < & < - <& (&G > & > --- > &,). Similarly, when we say that a
function f : I — R is increasing (decreasing) dnwe mean that for all.,, v € I we have
u<v= f(u) < f(v) (w<v= f(u) = f(v)).

In Section[2 we refine Theoremg A] B, andl C. These refinements are achieved by su-
perquadratic functions which were introduced.ih [1] and [2].

As Jensen’s inequality for convex functions is a generalization of Holder’s inequality for
f(z) = 2P, p > 1, so the inequalities satisfied by superquadratic functions are generalizations
of the inequalities satisfied by the superquadratic functjofxy = =7, p > 2 (seel[1], [2]).

First we quote some definitions and state a list of basic properties of superquadratic functions.

Definition 1.1. A function f : [0,00) — R is superquadratic provided that for all> 0 there
exists a constar®'(z) € R such that

(1.5) f@)—f@)—fy—=)>C(2)(y—2)
forally > 0.

Definition 1.2. A function f : [0, 00) — R is said to be strictly superquadratic|if (L.5) is strict
for all z # y wherezy # 0.

Lemma A ([2, Lemma 2.3]) Suppose thaf is superquadratic. Le¢; > 0,7 =1,...,m, and
leté =" pi&, wherep; > 0,i=1,...,m,and> " p; = 1. Then

Zpif(&) sz ‘51

Lemma B ([, Lemma 2.2]) Let f be superquadratic function with(z) as in Definitior{ 1.]L.
Then:

(i) f(0) <0,
(i) if f(0) = f'(0) = 0thenC(z) = f'(x) whenevelf is differentiable atz > 0,
(iii) if f > 0,thenf is convex and(0) = f’(0) = 0.
In [3] the following refinement of Jensen’s Steffensen’s type inequality for nonnegative su-
perquadratic functions was proved:

Theorem D ([3, Th. 1]). Let f : [0,00) — [0,00) be a differentiable and superquadratic
function, let¢ be a nonnegative monotonig-tuple in R™ and p a real m-tuple, m > 3,
satisfying

0<P <P, j=1...,m, P,>0.
Leté be defined as

_ 1 &
§= P—m;pi&
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Then

m k—1
(1.6) sz'f (&) = Pnf (§) > Z Pif (&iv1— &) + Pof (€~ &)

+ Praf (&1 — §) Z Pif (¢ 1)
i=k+2
> i1 Di E - fz‘ >
P+ S P _
Z z;—&—l (Zf:l Pl + E?;k+1 Pz

Z;lpi & — i
> (m —1) Py, i= ,
z (m=1) Fnf ( (m—1) P,
whereP; = "™ p; andk € {1,...,m — 1} satisfies

€ < €< G
In casef is also strictly superquadratic, inequality

S - > (6 —¢€))
;pzf(gz)_me(f)>(m_1)me< ( _1)Pm
holds for¢ > 0 unless one of the following two cases occurs:

(1) eitheré =& or € = ¢, ~
(2) there exists: € {3,...,m — 2} such that = ¢, and

{]Dj<§j—fj+1):0, j=1,...,k—1
Pij(&—¢-1)=0, j=k+1,....m
In these two cases

(1.7)

Zpif (fz) — P f (E) =

In Sectiorj 2 we refine Theorgnj B and Theofem C for functions which are superquadratic and
positive. One of the refinements is derived easily from The¢rém D.

We use in Section 3 the following theorem [7, p. 323] to give an alternative proof of Theorem
Bl

Theorem E. Let be an interval inR, and&, n two decreasingn-tuples such thag, n € 1.
Letp be a realm-tuple such that

k k
(1.8) Zpifi < mez‘
i=1 i=1

fork=1,2,...,m—1,and

(1.9) sz’fi = mez' .
i=1 i=1

Then for every continuous convex functipn/ — R we have

(1.10) sz-f (&) < Zpif (m:) -
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2. VARIANTS OF JENSEN-STEFFENSEN’'S INEQUALITY FOR POSITIVE
SUPERQUADRATIC FUNCTIONS

In this section we refine in two ways Theorgr C for functions which are superquadratic and
positive. The refinementin Theor¢mP.1 follows by showing that it is a special case of Theorem
[D] for specificp. The refinement in Theorem 2.2 follows the steps in the proof of Thepfem B
given by Witkowski in [8]. Therefore the second refinement is confined only to the sppcific
given in Theorem B, which means that what we get is a variant of Jensen’s inequality and not
of the more general Jensen-Steffensen’s inequality.

Theorem 2.1.Let f : [0,00) — [0,00) and let[a,b] C [0,00). Letx = (xy,...,2,) be a
monotonicn—tuple infa, b]" andv = (vy, ..., v,) arealn-tuple such that;, £ 0,i =1,...,n,

0<V; <V, j=1,....,n,andV, > 0, whereV; = >*7_ v, If f is differentiable and
superquadratic, then

(2.1) f(a)+ f(b)— Vizvzf<xz> —f (CH'b— %Z%%)

1 n 1 n
b—a— g2 vilatb—mi— g >0 0

n-+1

>(n+1)f

In casef is also strictly superquadratic and > 0, inequality [2.1) is strict unless one of the
following two cases occurs:

(1) eitherz = aorz =0,
(2) there existd € {2,...,n — 1} such thatt = z; + x,, — x; and

ri=a,x,=bor xz;=0b,,=a
(22) Vj(xj,l—xj):(],jzl...,l,
‘/}(ZE]‘—ZEJ‘_H):O,j:l,...7n—1,

_ _ o
whereV; =370 v, j=1,...,n,andz = = 30, vix;.
In these two cases we have

f(a)"‘f(b)_vinzvz‘f(%)—f<a+b—vin2wx,-> =0.

i=1 i=1
In the special case whete> 0 and f is also strictly superquadratic, the equality holds[in (2.1)

iffz;,=a,i=1,...,n,0rz;=0b,i=1,...,n.

Proof. Suppose that is an increasing-tuple in[a, b|" . The proof of the theorem is an imme-
diate result of Theorem|D, by defining the + 2)-tuples¢ andp as

Si=a, Sru=x,1=1...,n, &i2=0b

=1 pip=—v/Ve,i=1...,n ppo=1

Then we get[(2]1) from the last inequality [n ([1.6) and from the fact that in our special case
we have

k n-+2
Z R + Z ?z <n-+ 1,
=1 i=k+1
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for P, =3 pjandP; = 377 p;, and
-1 & 1 & _
&= P—mizlpi&:a—i-b—vnizlvixi:a—i—b—x.
The proof of the equality case and the special case winerd) follows also from Theorem
We have

V.
Pj:vj’ jzlv"'7n7 Pn-i-l:O’ Pn+2:1’

Vioa
Va
Obviously, ¢ = & is equivalent tax = b andé = &, is equivalent taz = a. Also, the
existence of somé € {3,...,m — 2} such thatt = ¢, and that(L.7) holds is equivalent

to the existence of somec {2,...,n — 1} such that = z; + =z, — 2, = a + b — x; and

that (2.2)) holds. Therefore, applying Theorgni D we get the desired conclusions. In the case

Pi=1, P;=0, P;= . j=3,...,n+2.

whenz is decreasing we simply replageandv with = (z,,,...,z1) andv = (v,,...,v1),
respectively, and then argue in the same manner.

In the special case that> 0 also,V; > 0 andV; > 0,i = 1,...,n, and therefore according
to equality holds in2.1)) only when either:y = --- =2, =a oraz; =--- =z, =b. O

In the following theorem we will prove a refinement of Theofem B. Without loss of generality
we assume that! | v; = 1.

Theorem 2.2.Let f : [0,00) — [0,00) and let[a,b] C [0,00), a < b. Letx = (z4,...,x,) be
ann-tuple in[a,b]" andv = (vy,...,v,) arealn-tuple such thav > 0and_; v, = 1. If f
is superquadratic we have

f(a)‘i‘f(b)—zvif(l’i) —f <G+b—zvil’i>
szif ( Zvjxj—xi ) —i-ZZUZ- lfj__aaf(b—xi)qL l;)__zif(xi—a)]

(2.3) > szf ( Zvjxj — T > + ZZUif (2(% _bC? (ab—%‘)) .

If f is strictly superquadratic an@ > 0 equality holds in[(2]3) iffc; = a,i = 1,...,n, or
xi:b,izl,...,n.

Proof. The proof follows the technique in![8] and refines the result to positive superquadratic
functions. From Lemm@a]A we know that for anye [0, 1] the following holds:

Af(@)+ (=X f () = fAa+(1=A)D)
> Af(Jla=2a—= (1 =X0]) + (1 =X f([b—Aa—(1-X)b])
=AM (=X (@=))+ A=) F(Ab=a)])
(2.4) =AM (=Nl -a)+ A=A FA(b—-a)).
Also, for anyz; € [a,b] there exists a unique; € [0, 1] such thatr; = \a + (1 — \;) b. We
have

(2.5) fa)+ f(b)— Z%’f (z:) = f(a) + [ () — Z%‘f (Aia + (1= X)D).
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Applying (2.4) on everyz; = \;a+ (1 — ;) bin we obtain

- Z v f (95@)

(2.6) = Zvi (1= X) f(a) +Aif ()]

—i—Zvl Af(L=X)(b—a)+ (1 =X)f(\(b—a))].
Applying again(2.4) on (2.6) we get
2.7) fl(a Zvl x;) ZU’ Ai) a+ Ab)

+2Zvi[)\if((1—)\i)(b—a))+(1—)\Z-)f()\i(b—a))].

Applying again Lemma A or2.7) we obtain

n

fla)+f(b) — Zvif (@)

i=1

>f<2vl [(1— X a+)\b])

Sl |

+zzvz A £ O (b= @)+ 2 (1= 2) (- )]
:f<a+b_zvixi>+zvif<‘ >

(2.8) +2Z [b_a x.)ﬁé__zif(xi—a)},

A)a+Nb—=> v [(1=X)a+ \b]

7=1

'.CL’J' — T

and this is the first inequality if2.3)).
Since f is a nonnegative superquadratic function, from Lemima B we know that it is also
convex, so from(2.8)) we have

Zn:w [xbi__jf(b—xi)JrZ;)__:Zif(x,-—a)] _zn: Zf< b Zf(f_a)>,

i=1 i1

hence, the second inequality [n (2.3) is proved.
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For the case whelf is strictly superquadratic ana > 0 we may deduce that inequalities
(2.6) and(2.7) become equalities iff each of the, i = 1, ..., n, is either equal to 1 or equal to
0, which means that; € {a,b}, i = 1,...,n. However, since we also have

n

g vir;—x; =0, 1=1,...,n,

7=1
we deduce that; =a,i=1,...,n,0rx; =b,i=1,...,n
This completes the proof of the theorem. O

Corollary 2.3. Letv = (vy,...,v,)be a realn-tuple such thav > 0, > ,v; = 1 and let
x = (r1,...,x,) be ann-tuple infa, )", 0 < a < b. Then for any real numbersands such
that* > 2 we have

(Lletm)
@ (a,b;x)
1
EQ(T ZU’L Zv]x —x;
e ey u(frre-mis zji: e

1 = = xl —a)(b"—x{) v
> G lahar |2 ey ()

D vy~
i=1 j=1
whereQ, (a,b; ) = (a? + b — S0 v;z;)7, p € R\ {0}
If 2> 2andv > 0, the equalities hold if2.9)) iff 2; = a, i =1,... ,norz; =b,i=1,...,n

S w

Proof. We define a functiorf : (0,00) — (0,00) asf () = zr. It can be easily checked that
for any real numbers ands such that® > 2 the functionf is superquadratic. We define a new
positiven-tuple in [a",b"] as¢; = %, i = 1,...,n. From Theorem 2|2 we have

- i 2(af —a) (0" — )\
(2.10) 2;2@ Zvjxj—xi +2;Ui( ar > 0.

We have

a’®+b° — Zv,xf — (ar +0 — vaf) = Qs (a,b;x)" — Q, (a,b; )’

=1 =1

so from([2.10) the inequalities ir2.9) follow.
The equality case follows from the equality case in Thedrem 2.2, as the furfctign= «+
is strictly superquadratic foy > 2. 0
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Remark 2.4. It is an immediate result of Corolla.3 thatif> 2 and there is at least one
j €{1,...,n} such that

o (@ —a) (= 27) >0,
then for thisj we have

Qs (a,b;2)\° 2w, (20 —a) (P —a3) )
( ) b o >S< >>0'

Qr (a,b;x) a,b;x b — ar

3. AN ALTERNATIVE PROOF OF THEOREM

In this section we give an interesting alternative proof of Thedr¢m B based on Thgprem E.
To carry out that proof we need the following technical lemma.

Lemma 3.1. Lety = (y1,...,yn) be a decreasing reai-tuple andp = (p1,...,pm) @
nonnegative reain-tuple with " | p; = 1. We define

Y= sz’yi
i=1

and them-tuple

y=0U" 7).
Then then-tuplesn = y, &€ = gy andp satisfy condition$1.8|) and (1.9).
Proof. Note thaty is a convex combination af;, s, . . . , ¥, SO We know that

From the definitions of the:-tuples¢ andn we have

sz‘fz‘ = ?Zpi =y= sz‘,%‘ = mez'-
=1 =1 =1 =1

Hence, conditior1.9) is satisfied. Furthermore, fér=1,2,...,m — 1 we have
k k k k
S pimi =Y pi&i=> pivi -7y _pi
=1 i=1 i=1 =1
k m k
= Zpiyi - ijyj Zpi .
i=1 j=1 i=1

Since} " p; = 1, we can write

m

k k k k k m k
> pmi— > pi&i = (ij + ) pj> > piyi— (ijyj + ) pjyj> > i
i=1 i=1 j=1 i=1 j=1

j=k+1 j=k+1 =1

m k k m
= Z ijpz‘yi—Zpi Z bjY;

j=k+1 =1 i=1  j=k+1

k m m
= sz‘ ( Z DiYyi — Z Pjyj>

i=1 j=k+1 j=k+1

k m
= pi Y by

i=1  j=k+1

J. Inequal. Pure and Appl. Math?(2) Art. 70, 2006 http://jipam.vu.edu.au/
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Sincep is honnegative ang is decreasing, we obtain

k k
D opmi—Y p&i>0, k=12 m—-1,
=1 =1

which means that conditiofi.g)) is satisfied as well. O
Now we can give an alternative proof of Theore B which is mainly based on Th¢grem E.

Proof of Theorerh BSincez = > " | w;z; is a convex combination af, zs, . .., z,, itis clear
that there isanr € {1,2,...,n — 1} such that

1 < S 2 ST S Tgqy <00 S Ty,
that is,
(3.1) —T > > =Ly > =T > — Ty > > — .
Adding x; + z,, to all the inequalities ir§3.1)) we obtain
Tp 22X+ Ty —Ts 201+ Ty —T 2T+ Ty — T =70 2 T,

which gives us

n
(3.2) x1+xn—fzx1+xn—2wixie (1, 2] .

=1

We use(1.10) to prove the theorem. For this, we define {he+ 2)-tuplesg, n andp as
follows:

M = Tn, T2 = Tn, N3 = Tn-1, ey Nn = T2, Nn+1 = 21, Nn42 = T1,
pr=1 py=-w, p3=-—Wu_1, ..., Pp=—W2, Ppy1= —Wi, Ppi2=1,
n+2 n
Si=8 ==& =T1, WZE pmi=m+l’n—§:wﬁj.
i=1 j=1

It is easily verified that andn are decreasing and th@?jf p; = 1. It remains to see thj,

n andp satisfy conditiong1.8) and(|1.9)).
Condition([1.9)) is trivially fulfilled since

n—+2 n—+2 n+2

D_p& =Ty pi=T=) v
=1 =1 =1
Further, we have; =7, i = 1,2,...,n+ 2. To prove(1.8)) , we need to demonstrate that
k k
=1 i=1

Fork = 1, (3.3) becomes;] < z,, and this holds because @§.2) . On the other hand, for
k=n+1,(3.3) becomes

n <1 — sz> <zp— Zwil’z‘,
i=1 i=1
that is,
0<x, —7,

and this holds because :

J. Inequal. Pure and Appl. Math?(2) Art. 70, 2006 http://jipam.vu.edu.au/
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If £ €{2,...,n}, (3.3) can be rewritten and in its stead we have to prove that

(3.4) n (1— Z wi> <z, — Z W;T;.

i=n+2—k i=n+2—k
Let us consider the decreasingupley, where
Yyi=r1+x,—x;, 1=12....n
We have

3

w;Y;
1

<
I

)

I

w; (T + xp — x3)

=1

:m1+xn—2wixi =1 +T,—T=T.
=1
If we apply Lemmg 3]1 to the-tuple y and to the weightsv, thenm = n and for alll €
{1,2,...,n — 1} the inequality

l l
7Y wi <Y wi(ry +a, — x5)
=1 i=1

holds. Taking into consideration that= 7, Zizl w; =1—3"" . w; and changing indices as
l =n+1—k, we deduce that

n n+1—k
(3.5) ﬁ(l— 3 w,-) <D wiwa,— @),

i=n+2—k i=1
forall k € {2,...,n}. The difference between the right side and the right side of3.5])
is

n n+l1—k
Z w;T; — Z w; (T + zp — x3)
i=n+2—k i=1
n+1—k n+1—k
Z W;T; — T, Z w; — Z w; (1 — x;)
i=n+2—k =1
n+1-—k n n+l1—k
:xn<1—Zwi>— Z wix; — Zwi(:cl—xi)
i=1 i=n+2—k i=1
n n n+l—k
=z, Y wi— > wmi— Yy wi(r — 1)
i=n+2—k i=n+2—k i=1
n n+l—k
= Z wz(xn—xz)—i— Z wi(ZL’Z‘—I1>ZO,
i=n+2—k =1
sincew is honnegative ana is increasing. Therefore, the inequality
n+l1—k
(3.6) Z w; (r1 + xp — ;) < 2y — Z W;T;
i=1 i=n+2—k
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holds for allk € {2,...,n}. From(3.5) and(3.6) we obtain(3.4)) . This completes the proof
that them-tuples¢, n andp satisfy conditiong{1.8) and(1.9) and we can apply Theoren E to

obtain
n+2

sz S sz xz +f .’131)

Taking into con5|derat|on th@"*l2 pi =1 andn =21+ T, — Z;?:l w;x; we finally get

f(Il—i-% ZM%) < f(x) + f(zn) Zw, T;) .

=1
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