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1. I NTRODUCTION .

Let I be an interval inR andf : I → R a convex function onI. If ξ = (ξ1, . . . , ξm) is any
m-tuple inIm andp = (p1, . . . , pm) any nonnegativem-tuple such that

∑m
i=1 pi > 0, then the

well known Jensen’s inequality (see for example [7, p. 43])

(1.1) f

(
1

Pm

m∑
i=1

piξi

)
≤ 1

Pm

m∑
i=1

pif (ξi)

holds, wherePm =
∑m

i=1 pi.
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2 S. ABRAMOVICH , M. KLARI ČIĆ BAKULA , AND S. BANI Ć

If f is strictly convex, then(1.1) is strict unlessξi = c for all i ∈ {j : pj > 0}.
It is well known that the assumption “p is a nonnegativem-tuple” can be relaxed at the

expense of more restrictions on them-tupleξ.
If p is a realm-tuple such that

(1.2) 0 ≤ Pj ≤ Pm , j = 1, . . . ,m, Pm > 0,

wherePj =
∑j

i=1 pi , then for any monotonicm-tupleξ (increasing or decreasing) inIm we
get

ξ =
1

Pm

m∑
i=1

piξi ∈ I,

and for any functionf convex onI (1.1) still holds. Inequality(1.1) considered under condi-
tions(1.2) is known as the Jensen-Steffensen’s inequality [7, p. 57] for convex functions.

In his paper [5] A. McD. Mercer considered some monotonicity properties of power means.
He proved the following theorem:

Theorem A. Suppose that0 < a < b anda ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ b hold with at least one
of thexk satisfyinga < xk < b. If w = (w1, . . . , wn) is a positiven-tuple with

∑n
i=1 wi = 1

and−∞ < r < s < +∞, then

a < Qr (a, b; x) < Qs (a, b; x) < b ,

where

Qt (a, b; x) ≡

(
at + bt −

n∑
i=1

wix
t
i

) 1
t

for all real t 6= 0, and

Q0 (a, b; x) ≡ ab

G
, G =

n∏
i=1

xwi
i .

In his next paper [6], Mercer gave a variant of Jensen’s inequality for which Witkowski
presented in [8] a shorter proof. This is stated in the following theorem:

Theorem B. If f is a convex function on an interval containing ann-tuplex = (x1, . . . , xn)
such that0 < x1 ≤ x2 ≤ · · · ≤ xn andw = (w1, . . . , wn) is a positiven-tuple with

∑n
i=1 wi =

1, then

f

(
x1 + xn −

n∑
i=1

wixi

)
≤ f (x1) + f (xn)−

n∑
i=1

wif (xi) .

This theorem is a special case of the following theorem proved in [4] by Abramovich, Klaričić
Bakula, Matíc and Pěcaríc:

Theorem C ([4, Th. 2]). Let f : I → R, whereI is an interval inR and let[a, b] ⊆ I, a < b.
Let x = (x1, . . . , xn) be a monotonicn-tuple in [a, b]n andv = (v1, . . . , vn) a real n−tuple
such that vi 6= 0, i = 1, . . . , n, and0 ≤ Vj ≤ Vn, j = 1, . . . , n, Vn > 0, whereVj =

∑j
i=1 vi.

If f is convex onI, then

(1.3) f

(
a + b− 1

Vn

n∑
i=1

vixi

)
≤ f (a) + f (b)− 1

Vn

n∑
i=1

vif (xi) .

In casef is strictly convex, the equality holds in (1.3) iff one of the following two cases occurs:

(1) eitherx = a or x = b,
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JENSEN-STEFFENSEN’ S INEQUALITY - SUPERQUADRATIC FUNCTIONS 3

(2) there existsl ∈ {2, . . . , n− 1} such thatx = x1 + xn − xl and

(1.4)


x1 = a, xn = b or x1 = b, xn = a,

V j (xj−1 − xj) = 0, j = 2, . . . , l,

Vj (xj − xj+1) = 0, j = l, . . . , n− 1,

whereV j =
∑n

i=j vi, j = 1, . . . , n andx = (1/Vn)
∑n

i=1 vixi.

In the special case wherev > 0 and f is strictly convex, the equality holds in (1.4) iff
xi = a, i = 1, . . . , n, or xi = b, i = 1, . . . , n.

Here, as in the rest of the paper, when we say that ann-tuple ξ is increasing (decreasing)
we mean thatξ1 ≤ ξ2 ≤ · · · ≤ ξn (ξ1 ≥ ξ2 ≥ · · · ≥ ξn). Similarly, when we say that a
function f : I → R is increasing (decreasing) onI we mean that for allu, v ∈ I we have
u < v ⇒ f(u) ≤ f(v) (u < v ⇒ f(u) ≥ f(v)).

In Section 2 we refine Theorems A, B, and C. These refinements are achieved by su-
perquadratic functions which were introduced in [1] and [2].

As Jensen’s inequality for convex functions is a generalization of Hölder’s inequality for
f (x) = xp, p ≥ 1, so the inequalities satisfied by superquadratic functions are generalizations
of the inequalities satisfied by the superquadratic functionsf (x) = xp, p ≥ 2 (see [1], [2]).

First we quote some definitions and state a list of basic properties of superquadratic functions.

Definition 1.1. A function f : [0,∞) → R is superquadratic provided that for allx ≥ 0 there
exists a constantC(x) ∈ R such that

(1.5) f (y)− f (x)− f (|y − x|) ≥ C (x) (y − x)

for all y ≥ 0.

Definition 1.2. A function f : [0,∞) → R is said to be strictly superquadratic if (1.5) is strict
for all x 6= y wherexy 6= 0.

Lemma A ([2, Lemma 2.3]). Suppose thatf is superquadratic. Letξi ≥ 0, i = 1, . . . ,m, and
let ξ =

∑m
i=1 piξi, wherepi ≥ 0, i = 1, . . . ,m, and

∑m
i=1 pi = 1. Then

m∑
i=1

pif (ξi)− f
(
ξ
)
≥

m∑
i=1

pif
(∣∣ξi − ξ

∣∣) .

Lemma B ([1, Lemma 2.2]). Let f be superquadratic function withC(x) as in Definition 1.1.
Then:

(i) f(0) ≤ 0,
(ii) if f(0) = f ′(0) = 0 thenC(x) = f ′(x) wheneverf is differentiable atx > 0,

(iii) if f ≥ 0, thenf is convex andf(0) = f ′(0) = 0.

In [3] the following refinement of Jensen’s Steffensen’s type inequality for nonnegative su-
perquadratic functions was proved:

Theorem D ([3, Th. 1]). Let f : [0,∞) → [0,∞) be a differentiable and superquadratic
function, letξ be a nonnegative monotonicm-tuple in Rm and p a real m-tuple, m ≥ 3,
satisfying

0 ≤ Pj ≤ Pm, j = 1, . . . ,m, Pm > 0.

Let ξ be defined as

ξ =
1

Pm

m∑
i=1

piξi.
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Then
m∑

i=1

pif (ξi)− Pmf
(
ξ
)
≥

k−1∑
i=1

Pif (ξi+1 − ξi) + Pkf
(
ξ − ξk

)
(1.6)

+ P k+1f
(
ξk+1 − ξ

)
+

m∑
i=k+2

P if (ξi − ξi−1)

≥

[
k∑

i=1

Pi +
m∑

i=k+1

P i

]
f

( ∑m
i=1 pi

∣∣ξ − ξi

∣∣∑k
i=1 Pi +

∑m
i=k+1 P i

)

≥ (m− 1) Pmf

(∑m
i=1 pi

∣∣ξ − ξi

∣∣
(m− 1) Pm

)
,

whereP i =
∑m

j=i pj andk ∈ {1, . . . ,m− 1} satisfies

ξk ≤ ξ ≤ ξk+1.

In casef is also strictly superquadratic, inequality
m∑

i=1

pif (ξi)− Pmf
(
ξ
)

> (m− 1) Pmf

(∑m
i=1 pi

(∣∣ξi − ξ
∣∣)

(m− 1) Pm

)
holds forξ > 0 unless one of the following two cases occurs:

(1) eitherξ = ξ1 or ξ = ξm,
(2) there existsk ∈ {3, . . . ,m− 2} such thatξ = ξk and

(1.7)

{
Pj (ξj − ξj+1) = 0, j = 1, . . . , k − 1

P j (ξj − ξj−1) = 0, j = k + 1, . . . ,m.

In these two cases
m∑

i=1

pif (ξi)− Pmf
(
ξ
)

= 0.

In Section 2 we refine Theorem B and Theorem C for functions which are superquadratic and
positive. One of the refinements is derived easily from Theorem D.

We use in Section 3 the following theorem [7, p. 323] to give an alternative proof of Theorem
B.

Theorem E. Let I be an interval inR, andξ, η two decreasingm-tuples such thatξ, η ∈ Im.
Letp be a realm-tuple such that

(1.8)
k∑

i=1

piξi ≤
k∑

i=1

piηi

for k = 1, 2, . . . ,m− 1, and

(1.9)
m∑

i=1

piξi =
m∑

i=1

piηi .

Then for every continuous convex functionf : I → R we have

(1.10)
m∑

i=1

pif (ξi) ≤
m∑

i=1

pif (ηi) .
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2. VARIANTS OF JENSEN-STEFFENSEN’ S I NEQUALITY FOR POSITIVE

SUPERQUADRATIC FUNCTIONS

In this section we refine in two ways Theorem C for functions which are superquadratic and
positive. The refinement in Theorem 2.1 follows by showing that it is a special case of Theorem
D for specificp. The refinement in Theorem 2.2 follows the steps in the proof of Theorem B
given by Witkowski in [8]. Therefore the second refinement is confined only to the specificp
given in Theorem B, which means that what we get is a variant of Jensen’s inequality and not
of the more general Jensen-Steffensen’s inequality.

Theorem 2.1. Let f : [0,∞) → [0,∞) and let [a, b] ⊆ [0,∞) . Let x = (x1, . . . , xn) be a
monotonicn−tuple in[a, b]n andv = (v1, . . . , vn) a realn-tuple such thatvi 6= 0, i = 1, . . . , n,

0 ≤ Vj ≤ Vn, j = 1, . . . , n, and Vn > 0, whereVj =
∑j

i=1 vi. If f is differentiable and
superquadratic, then

(2.1) f (a) + f (b)− 1

Vn

n∑
i=1

vif (xi)− f

(
a + b− 1

Vn

n∑
i=1

vixi

)

≥ (n + 1) f

b− a− 1
Vn

∑n
i=1 vi

∣∣∣a + b− xi − 1
Vn

∑n
j=1 vjxj

∣∣∣
n + 1

 .

In casef is also strictly superquadratic anda > 0, inequality (2.1) is strict unless one of the
following two cases occurs:

(1) eitherx = a or x = b,
(2) there existsl ∈ {2, . . . , n− 1} such thatx = x1 + xn − xl and

(2.2)


x1 = a, xn = b or x1 = b, xn = a

V j (xj−1 − xj) = 0 , j = 2, . . . , l,

Vj (xj − xj+1) = 0 , j = l, . . . , n− 1,

whereV j =
∑n

i=j vi, j = 1, . . . , n, andx = 1
Vn

∑n
i=1 vixi.

In these two cases we have

f (a) + f (b)− 1

Vn

n∑
i=1

vif (xi)− f

(
a + b− 1

Vn

n∑
i=1

vixi

)
= 0.

In the special case wherev > 0 andf is also strictly superquadratic, the equality holds in (2.1)
iff xi = a, i = 1, . . . , n, or xi = b, i = 1, . . . , n.

Proof. Suppose thatx is an increasingn-tuple in[a, b]n . The proof of the theorem is an imme-
diate result of Theorem D, by defining the(n + 2)-tuplesξ andp as

ξ1 = a, ξi+1 = xi, i = 1, . . . , n, ξn+2 = b

p1 = 1, pi+1 = −vi/Vn, i = 1, . . . , n, pn+2 = 1.

Then we get (2.1) from the last inequality in (1.6) and from the fact that in our special case
we have

k∑
i=1

Pi +
n+2∑

i=k+1

P i ≤ n + 1,
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for Pi =
∑i

j=1 pj andP i =
∑n+2

j=i pj, and

ξ =
1

Pm

m∑
i=1

piξi = a + b− 1

Vn

n∑
i=1

vixi = a + b− x.

The proof of the equality case and the special case wherev > 0 follows also from Theorem
D.

We have

Pj =
V j

Vn

, j = 1, . . . , n, Pn+1 = 0, Pn+2 = 1,

P 1 = 1, P 2 = 0, P j =
Vj−2

Vn

, j = 3, . . . , n + 2.

Obviously, ξ = ξ1 is equivalent tox = b and ξ = ξn+2 is equivalent tox = a. Also, the
existence of somek ∈ {3, . . . ,m − 2} such thatξ = ξk and that(1.7) holds is equivalent
to the existence of somel ∈ {2, . . . , n − 1} such thatx = x1 + xn − xl = a + b − xl and
that (2.2) holds. Therefore, applying Theorem D we get the desired conclusions. In the case
whenx is decreasing we simply replacex andv with x̃ = (xn, . . . , x1) andṽ = (vn, . . . , v1),
respectively, and then argue in the same manner.

In the special case thatv > 0 also,Vi > 0 andV j > 0, i = 1, . . . , n, and therefore according
to (2.2) equality holds in(2.1) only when eitherx1 = · · · = xn = a or x1 = · · · = xn = b. �

In the following theorem we will prove a refinement of Theorem B. Without loss of generality
we assume that

∑n
i=1 vi = 1.

Theorem 2.2.Letf : [0,∞) → [0,∞) and let[a, b] ⊆ [0,∞) , a < b. Letx = (x1, . . . , xn) be
ann-tuple in [a, b]n andv = (v1, . . . , vn) a realn-tuple such thatv ≥ 0 and

∑n
i=1 vi = 1. If f

is superquadratic we have

f (a) + f (b)−
n∑

i=1

vif (xi)− f

(
a + b−

n∑
i=1

vixi

)

≥
n∑

i=1

vif

(∣∣∣∣∣
n∑

j=1

vjxj − xi

∣∣∣∣∣
)

+ 2
n∑

i=1

vi

[
xi − a

b− a
f (b− xi) +

b− xi

b− a
f (xi − a)

]

≥
n∑

i=1

vif

(∣∣∣∣∣
n∑

j=1

vjxj − xi

∣∣∣∣∣
)

+ 2
n∑

i=1

vif

(
2 (xi − a) (b− xi)

b− a

)
.(2.3)

If f is strictly superquadratic andv > 0 equality holds in (2.3) iffxi = a, i = 1, . . . , n, or
xi = b, i = 1, . . . , n.

Proof. The proof follows the technique in [8] and refines the result to positive superquadratic
functions. From Lemma A we know that for anyλ ∈ [0, 1] the following holds:

λf (a) + (1− λ) f (b)− f (λa + (1− λ) b)

≥ λf (|a− λa− (1− λ) b|) + (1− λ) f (|b− λa− (1− λ) b|)
= λf (|(1− λ) (a− b)|) + (1− λ) f (|λ (b− a)|)
= λf ((1− λ) (b− a)) + (1− λ) f (λ (b− a)) .(2.4)

Also, for anyxi ∈ [a, b] there exists a uniqueλi ∈ [0, 1] such thatxi = λia + (1− λi) b. We
have

(2.5) f (a) + f (b)−
n∑

i=1

vif (xi) = f (a) + f (b)−
n∑

i=1

vif (λia + (1− λi) b) .
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Applying (2.4) on everyxi = λia + (1− λi) b in (2.5) we obtain

f (a) +f (b)−
n∑

i=1

vif (xi)

≥ f (a) + f (b) +
n∑

i=1

vi

[
− λif (a)− (1− λi) f (b)

+ λif ((1− λi) (b− a)) + (1− λi) f (λi (b− a))
]

=
n∑

i=1

vi [(1− λi) f (a) + λif (b)](2.6)

+
n∑

i=1

vi [λif ((1− λi) (b− a)) + (1− λi) f (λi (b− a))] .

Applying again(2.4) on (2.6) we get

(2.7) f (a) + f (b)−
n∑

i=1

vif (xi) ≥
n∑

i=1

vif ((1− λi) a + λib)

+ 2
n∑

i=1

vi [λif ((1− λi) (b− a)) + (1− λi) f (λi (b− a))] .

Applying again Lemma A on(2.7) we obtain

f (a) +f (b)−
n∑

i=1

vif (xi)

≥ f

(
n∑

i=1

vi [(1− λi) a + λib]

)

+
n∑

i=1

vif

(∣∣∣∣∣(1− λi) a + λib−
n∑

j=1

vj [(1− λj) a + λjb]

∣∣∣∣∣
)

+ 2
n∑

i=1

vi [(1− λi) f (λi (b− a)) + λif ((1− λi) (b− a))]

= f

(
a + b−

n∑
i=1

vixi

)
+

n∑
i=1

vif

(∣∣∣∣∣
n∑

j=1

vjxj − xi

∣∣∣∣∣
)

+ 2
n∑

i=1

vi

[
xi − a

b− a
f (b− xi) +

b− xi

b− a
f (xi − a)

]
,(2.8)

and this is the first inequality in(2.3).
Sincef is a nonnegative superquadratic function, from Lemma B we know that it is also

convex, so from(2.8) we have

n∑
i=1

vi

[
xi − a

b− a
f (b− xi) +

b− xi

b− a
f (xi − a)

]
≥

n∑
i=1

vif

(
2 (b− xi) (xi − a)

b− a

)
,

hence, the second inequality in (2.3) is proved.

J. Inequal. Pure and Appl. Math., 7(2) Art. 70, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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For the case whenf is strictly superquadratic andv > 0 we may deduce that inequalities
(2.6) and(2.7) become equalities iff each of theλi, i = 1, . . . , n, is either equal to 1 or equal to
0, which means thatxi ∈ {a, b} , i = 1, . . . , n. However, since we also have

n∑
j=1

vjxj − xi = 0, i = 1, . . . , n,

we deduce thatxi = a, i = 1, . . . , n, or xi = b, i = 1, . . . , n.
This completes the proof of the theorem. �

Corollary 2.3. Let v = (v1, . . . , vn)be a realn-tuple such thatv ≥ 0,
∑n

i=1 vi = 1 and let
x = (x1, . . . , xn) be ann-tuple in [a, b]n , 0 < a < b. Then for any real numbersr ands such
that s

r
≥ 2 we have(
Qs (a, b; x)

Qr (a, b; x)

)s

− 1

≥ 1

Qr (a, b; x)s

 n∑
i=1

vi

∣∣∣∣∣
n∑

j=1

vjx
r
j − xr

i

∣∣∣∣∣
s
r

+2
n∑

i=1

vi

(
xr

i − ar

br − ar
(br − xr

i )
s
r +

br − xr
i

br − ar
(xr

i − ar)
s
r

)]
(2.9)

≥ 1

Qr (a, b; x)s

 n∑
i=1

vi

∣∣∣∣∣
n∑

j=1

vjx
r
j − xr

i

∣∣∣∣∣
s
r

+ 2
n∑

i=1

vi

(
2 (xr

i − ar) (br − xr
i )

br − ar

) s
r

 ,

whereQp (a, b; x) = (ap + bp −
∑n

i=1 vixi)
1
p , p ∈ R \ {0} .

If s
r

> 2 andv > 0, the equalities hold in(2.9) iff xi = a, i = 1, . . . , n or xi = b, i = 1, . . . , n.

Proof. We define a functionf : (0,∞) → (0,∞) asf (x) = x
s
r . It can be easily checked that

for any real numbersr ands such thats
r
≥ 2 the functionf is superquadratic. We define a new

positiven-tupleξ in [ar, br] asξi = xr
i , i = 1, . . . , n. From Theorem 2.2 we have

as + bs−
n∑

i=1

vix
s
i −

(
ar + br −

n∑
i=1

vix
r
i

) s
r

≥
n∑

i=1

vi

∣∣∣∣∣
n∑

j=1

vjx
r
j − xr

i

∣∣∣∣∣
s
r

+ 2
n∑

i=1

vi

[
xr

i − ar

br − ar
(br − xr

i )
s
r +

br − xr
i

br − ar
(xr

i − ar)
s
r

]

≥
n∑

i=1

vi

∣∣∣∣∣
n∑

j=1

vjx
r
j − xr

i

∣∣∣∣∣
s
r

+ 2
n∑

i=1

vi

(
2 (xr

i − ar) (br − xr
i )

br − ar

) s
r

≥ 0.(2.10)

We have

as + bs −
n∑

i=1

vix
s
i −

(
ar + br −

n∑
i=1

vix
r
i

) s
r

= Qs (a, b; x)s −Qr (a, b; x)s

so from(2.10) the inequalities in(2.9) follow.
The equality case follows from the equality case in Theorem 2.2, as the functionf (x) = x

s
r

is strictly superquadratic fors
r

> 2. �
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Remark 2.4. It is an immediate result of Corollary 2.3 that ifs
r

> 2 and there is at least one
j ∈ {1, . . . , n} such that

vj

(
xr

j − ar
) (

br − xr
j

)
> 0,

then for thisj we have(
Qs (a, b; x)

Qr (a, b; x)

)s

− 1 >
2vj

Qr (a, b; x)s

(
2
(
xr

j − ar
) (

br − xr
j

)
br − ar

) s
r

> 0.

3. AN ALTERNATIVE PROOF OF THEOREM B

In this section we give an interesting alternative proof of Theorem B based on Theorem E.
To carry out that proof we need the following technical lemma.

Lemma 3.1. Let y = (y1, . . . , ym) be a decreasing realm-tuple andp = (p1, . . . , pm) a
nonnegative realm-tuple with

∑m
i=1 pi = 1 . We define

y =
m∑

i=1

piyi

and them-tuple
y = (y, y, . . . , y) .

Then them-tuplesη = y, ξ = y andp satisfy conditions(1.8) and(1.9).

Proof. Note thaty is a convex combination ofy1, y2, . . . , ym, so we know that

ym ≤ y ≤ y1.

From the definitions of them-tuplesξ andη we have
m∑

i=1

piξi = y
m∑

i=1

pi = y =
m∑

i=1

piyi =
m∑

i=1

piηi.

Hence, condition(1.9) is satisfied. Furthermore, fork = 1, 2, . . . ,m− 1 we have
k∑

i=1

piηi −
k∑

i=1

piξi =
k∑

i=1

piyi − y
k∑

i=1

pi

=
k∑

i=1

piyi −
m∑

j=1

pjyj

k∑
i=1

pi .

Since
∑m

i=1 pi = 1 , we can write
k∑

i=1

piηi −
k∑

i=1

piξi =

(
k∑

j=1

pj +
m∑

j=k+1

pj

)
k∑

i=1

piyi −

(
k∑

j=1

pjyj +
m∑

j=k+1

pjyj

)
k∑

i=1

pi

=
m∑

j=k+1

pj

k∑
i=1

piyi −
k∑

i=1

pi

m∑
j=k+1

pjyj

=
k∑

i=1

pi

(
m∑

j=k+1

pjyi −
m∑

j=k+1

pjyj

)

=
k∑

i=1

pi

m∑
j=k+1

pj (yi − yj) .
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Sincep is nonnegative andy is decreasing, we obtain
k∑

i=1

piηi −
k∑

i=1

piξi ≥ 0, k = 1, 2, . . . ,m− 1,

which means that condition(1.8) is satisfied as well. �

Now we can give an alternative proof of Theorem B which is mainly based on Theorem E.

Proof of Theorem B.Sincex =
∑n

i=1 wixi is a convex combination ofx1, x2, . . . , xn it is clear
that there is ans ∈ {1, 2, . . . , n− 1} such that

x1 ≤ · · · ≤ xs ≤ x ≤ xs+1 ≤ · · · ≤ xn,

that is,

(3.1) −x1 ≥ · · · ≥ −xs ≥ −x ≥ −xs+1 ≥ · · · ≥ −xn.

Addingx1 + xn to all the inequalities in(3.1) we obtain

xn ≥ · · · ≥ x1 + xn − xs ≥ x1 + xn − x ≥ x1 + xn − xs+1 ≥ · · · ≥ x1,

which gives us

(3.2) x1 + xn − x = x1 + xn −
n∑

i=1

wixi ∈ [x1, xn] .

We use(1.10) to prove the theorem. For this, we define the(n + 2)-tuplesξ, η andp as
follows:

η1 = xn, η2 = xn, η3 = xn−1, . . . , ηn = x2, ηn+1 = x1, ηn+2 = x1,

p1 = 1, p2 = −wn, p3 = −wn−1, . . . , pn = −w2, pn+1 = −w1, pn+2 = 1,

ξ1 = ξ2 = · · · = ξn+2 = η, η =
n+2∑
i=1

piηi = x1 + xn −
n∑

j=1

wjxj.

It is easily verified thatξ andη are decreasing and that
∑n+2

i=1 pi = 1. It remains to see thatξ,
η andp satisfy conditions(1.8) and(1.9).

Condition(1.9) is trivially fulfilled since
n+2∑
i=1

piξi = η

n+2∑
i=1

pi = η =
n+2∑
i=1

piηi.

Further, we haveξi = η, i = 1, 2, . . . , n + 2 . To prove(1.8) , we need to demonstrate that

(3.3) η

k∑
i=1

pi ≤
k∑

i=1

piηi, k = 1, 2, . . . , n + 1.

For k = 1, (3.3) becomesη ≤ xn, and this holds because of(3.2) . On the other hand, for
k = n + 1, (3.3) becomes

η

(
1−

n∑
i=1

wi

)
≤ xn −

n∑
i=1

wixi,

that is,
0 ≤ xn − x,

and this holds because of(3.2) .
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If k ∈ {2, . . . , n} , (3.3) can be rewritten and in its stead we have to prove that

(3.4) η

(
1−

n∑
i=n+2−k

wi

)
≤ xn −

n∑
i=n+2−k

wixi.

Let us consider the decreasingn-tupley, where

yi = x1 + xn − xi, i = 1, 2, . . . , n.

We have

y =
n∑

i=1

wiyi

=
n∑

i=1

wi (x1 + xn − xi)

= x1 + xn −
n∑

i=1

wixi = x1 + xn − x = η.

If we apply Lemma 3.1 to then-tuple y and to the weightsw, thenm = n and for all l ∈
{1, 2, . . . , n− 1} the inequality

y
l∑

i=1

wi ≤
l∑

i=1

wi (x1 + xn − xi)

holds. Taking into consideration thaty = η,
∑l

i=1 wi = 1−
∑n

i=l+1 wi and changing indices as
l = n + 1− k, we deduce that

(3.5) η

(
1−

n∑
i=n+2−k

wi

)
≤

n+1−k∑
i=1

wi (x1 + xn − xi) ,

for all k ∈ {2, . . . , n}. The difference between the right side of(3.4) and the right side of(3.5)
is

xn −
n∑

i=n+2−k

wixi −
n+1−k∑

i=1

wi (x1 + xn − xi)

= xn −
n∑

i=n+2−k

wixi − xn

n+1−k∑
i=1

wi −
n+1−k∑

i=1

wi (x1 − xi)

= xn

(
1−

n+1−k∑
i=1

wi

)
−

n∑
i=n+2−k

wixi −
n+1−k∑

i=1

wi (x1 − xi)

= xn

n∑
i=n+2−k

wi −
n∑

i=n+2−k

wixi −
n+1−k∑

i=1

wi (x1 − xi)

=
n∑

i=n+2−k

wi (xn − xi) +
n+1−k∑

i=1

wi (xi − x1) ≥ 0,

sincew is nonnegative andx is increasing. Therefore, the inequality

(3.6)
n+1−k∑

i=1

wi (x1 + xn − xi) ≤ xn −
n∑

i=n+2−k

wixi
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holds for allk ∈ {2, . . . , n}. From(3.5) and(3.6) we obtain(3.4) . This completes the proof
that them-tuplesξ, η andp satisfy conditions(1.8) and(1.9) and we can apply Theorem E to
obtain

n+2∑
i=1

pif (η) ≤ f (xn)−
n∑

i=1

wif (xi) + f (x1) .

Taking into consideration that
∑n+2

i=1 pi = 1 andη = x1 + xn −
∑n

j=1 wjxj we finally get

f

(
x1 + xn −

n∑
i=1

wixi

)
≤ f (x1) + f (xn)−

n∑
i=1

wif (xi) .

�
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