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ABSTRACT. In this paper, we obtain the general solution and the generalized Hyers-Ulam sta-
bility for quadratic functional equationsf(2x+ y)+ f(2x− y) = f(x+ y)+ f(x− y)+6f(x)
andf(2x + y) + f(x + 2y) = 4f(x + y) + f(x) + f(y).
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1. I NTRODUCTION

In 1940, S.M. Ulam [20] gave a wide ranging talk before the mathematics club of the Uni-
versity of Wisconsin in which he discussed a number of important unsolved problems. Among
those was the question concerning the stability of homomorphisms:

LetG1 be a group and letG2 be a metric group with the metricd(·, ·). Givenε > 0, does there
exist aδ > 0 such that if a functionh : G1 → G2 satisfies the inequalityd(h(xy), h(x)h(y)) < δ
for all x, y ∈ G1, then there exists a homomorphismH : G1 → G2 with d(h(x), H(x)) < ε for
all x ∈ G1?

In other words, we are looking for situations when the homomorphisms are stable, i.e., if a
mapping is almost a homomorphism, then there exists a true homomorphism near it. If we turn
our attention to the case of functional equations, we can ask the question: When the solutions
of an equation differing slightly from a given one must be close to the true solution of the given
equation.

The case of approximately additive functions was solved by D. H. Hyers [9] under the as-
sumption thatG1 andG2 are Banach spaces. In 1978, a generalized version of the theorem of
Hyers for approximately linear mappings was given by Th. M. Rassias [17]. During the last
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2 ICK-SOON CHANG AND HARK-MAHN K IM

decades, the stability problems of several functional equations have been extensively investi-
gated by a number of authors [2, 6, 11, 15]. The terminology generalized Hyers-Ulam stability
originates from these historical backgrounds. These terminologies are also applied to the case
of other functional equations. For more detailed definitions of such terminologies, we can refer
to [10, 12, 18].

The functional equation

(1.1) f(x + y) + f(x− y) = 2f(x) + 2f(y)

is related to a symmetric biadditive function ([1], [16]). It is natural that each equation is
called a quadratic functional equation. In particular, every solution of the quadratic equation
(1.1) is said to be a quadratic function. It is well known that a functionf between real vector
spaces is quadratic if and only if there exists a unique symmetric biadditive functionB such
thatf(x) = B(x, x) for all x (see [1], [16]). The biadditive functionB is given by

(1.2) B(x, y) =
1

4
(f(x + y)− f(x− y)).

A Hyers-Ulam stability problem for the quadratic functional equation (1.1) was proved by
F. Skof for functionsf : E1 → E2 , whereE1 is a normed space andE2 a Banach space (see
[19]). P. W. Cholewa [3] noticed that the theorem of Skof is still true if the relevant domainE1

is replaced by an abelian group. In the paper [4], S. Czerwik proved the Hyers-Ulam-Rassias
stability of the quadratic functional equation (1.1). A. Grabiec [8] has generalized these results
mentioned above. K. W. Jun and Y. H. Lee [13] proved the Hyers-Ulam-Rassias stability of the
pexiderized quadratic equation (1.1).

Now, we introduce the following functional equations, which are somewhat different from
(1.1),

f(2x + y) + f(2x− y) = f(x + y) + f(x− y) + 6f(x),(1.3)

f(2x + y) + f(x + 2y) = 4f(x + y) + f(x) + f(y).(1.4)

In this paper, we establish the general solution and the generalized Hyers-Ulam stability
problem for the equations (1.3), (1.4), which are equivalent to (1.1). It is significant for us
to decrease the possible estimator of the stability problem for the functional equations. This
work is possible if we consider the stability problem in the sense of Hyers-Ulam-Rassias for the
functional equations (1.3), (1.4). As a result, we have much better possible upper bounds for
the equations (1.3), (1.4) than those of Czerwik [4] and Skof-Cholewa [3].

2. SOLUTION OF (1.3), (1.4)

Let R+ denote the set of all nonnegative real numbers and let bothE1 andE2 be real vector
spaces. We here present the general solution of (1.3), (1.4).

Theorem 2.1. A functionf : E1 → E2 satisfies the functional equation (1.1) if and only if
f : E1 → E2 satisfies the functional equation (1.4) if and only iff : E1 → E2 satisfies the
functional equation (1.3). Therefore, every solution of functional equations (1.3) and (1.4) is
also a quadratic function.

Proof. Let f : E1 → E2 satisfy the functional equation (1.1). Puttingx = 0 = y in (1.1), we
get f(0) = 0. Setx = 0 in (1.1) to getf(y) = f(−y). Letting y = x andy = 2x in (1.1),
respectively, we obtain thatf(2x) = 4f(x) andf(3x) = 9f(x) for all x ∈ E1. By induction,
we lead tof(kx) = k2f(x) for all positive integerk. Replacingx andy by 2x + y andx + 2y
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in (1.1), respectively, we have

f(2x + y) + f(x + 2y) =
1

2
[f(3x + 3y) + f(x− y)](2.1)

= 4f(x + y) +
1

2
[f(x + y) + f(x− y)]

= 4f(x + y) + f(x) + f(y)

for all x, y ∈ E1.
Let f : E1 → E2 satisfy the functional equation (1.4). Puttingx = 0 = y in (1.4), we get

f(0) = 0. Sety = 0 in (1.4) to getf(2x) = 4f(x). Letting y = x andy = −2x in (1.4), we
obtain thatf(3x) = 9f(x) andf(x) = f(−x) for all x ∈ E1. Puttingx andy by x + y and
x + y in (1.4), respectively, we obtain

f(2x + 3y) + f(x + 3y) = 4f(x + 2y) + f(x + y) + f(y),(2.2)

f(3x + y) + f(3x + 2y) = 4f(2x + y) + f(x) + f(x + y).(2.3)

Adding (2.2) to (2.3) and using (1.4), we obtain

(2.4) f(2x + 3y) + f(3x + 2y) + f(x + 3y) + f(3x + y) = 18f(x + y) + 5f(x) + 5f(y)

for all x, y ∈ E1. Replacingy by 2y andx by 2x in (1.4), respectively, we have

4f(x + y) + f(x + 4y) = 4f(x + 2y) + f(x) + 4f(y),(2.5)

4f(x + y) + f(4x + y) = 4f(2x + y) + 4f(x) + f(y)(2.6)

for all x, y ∈ E1. Adding (2.5) to (2.6) and using (1.4), we get

(2.7) f(x + 4y) + f(4x + y) = 8f(x + y) + 9f(x) + 9f(y)

for all x, y ∈ E1.
On the other hand, using (1.4), we get

f(x + 4y) + f(4x + y) = f(6x + 9y) + f(9x + 6y)− 4f(5x + 5y)(2.8)

= 9f(2x + 3y) + 9f(3x + 2y)− 100f(x + y),

which yields the relation by virtue of (2.7)

(2.9) f(2x + 3y) + f(3x + 2y) = 12f(x + y) + f(x) + f(y)

for all x, y ∈ E1. Combining the last equation with (2.4), we get

(2.10) f(x + 3y) + f(3x + y) = 6f(x + y) + 4f(x) + 4f(y).

Replacingx andy by x+y
2

and x−y
2

in (2.10), respectively, we have the desired result (1.3).
Now, letf : E1 → E2 satisfy the functional equation (1.3). Puttingx = 0 = y in (1.3), we

getf(0) = 0. Lettingy = 0 andy = x in (1.3), respectively, we obtain thatf(2x) = 4f(x) and
f(3x) = 9f(x) for all x ∈ E1. Puttingy = 2x in (1.3), we getf(x) = f(−x). Replacingx and
y by x + y andx− y, respectively, in (1.3), we have

(2.11) f(3x + y) + f(x + 3y) = 6f(x + y) + 4f(x) + 4f(y)

for all x, y ∈ E1. Replacingy by x + y in (1.3), we obtain

(2.12) f(3x + y) + f(x− y) = 6f(x) + f(2x + y) + f(y).

Interchangex with y in (2.12) to get the relation

(2.13) f(3y + x) + f(x− y) = 6f(y) + f(2y + x) + f(x).

Adding (2.12) to (2.13), we obtain

(2.14) 6f(x + y) + 2f(x− y) = f(2x + y) + f(x + 2y) + 3f(x) + 3f(y)

J. Inequal. Pure and Appl. Math., 3(3) Art. 33, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 ICK-SOON CHANG AND HARK-MAHN K IM

for all x, y ∈ E1. Setting−y instead ofy in (2.14) and using the evenness off , we get the
relation

(2.15) 6f(x− y) + 2f(x + y) = f(2x− y) + f(2y − x) + 3f(x) + 3f(y).

Adding (2.14) to (2.15), we obtain the result (1.1). �

3. STABILITY OF (1.3)

From now on, letX be a real vector space and letY be a Banach space unless we give
any specific reference. We will investigate the Hyers-Ulam-Rassias stability problem for the
functional equation (1.3). Thus we find the condition that there exists a true quadratic function
near an approximately quadratic function.

Theorem 3.1.Letφ : X2 → R+ be a function such that

(3.1)
∞∑
i=0

φ(2ix, 0)

4i

(
∞∑
i=1

4iφ(
x

2i
, 0), respectively

)
converges and

(3.2) lim
n→∞

φ(2nx, 2ny)

4n
= 0

(
lim

n→∞
4nφ

( x

2n
,

y

2n

)
= 0
)

for all x, y ∈ X. Suppose that a functionf : X → Y satisfies

(3.3) ‖f(2x + y) + f(2x− y)− f(x + y)− f(x− y)− 6f(x)‖ ≤ φ(x, y)

for all x, y ∈ X. Then there exists a unique quadratic functionT : X → Y which satisfies the
equation (1.3) and the inequality

‖f(x)− T (x)‖ ≤ 1

8

∞∑
i=0

φ(2ix, 0)

4i
(3.4) (

‖f(x)− T (x)‖ ≤ 1

8

∞∑
i=1

4iφ
( x

2i
, 0
))

for all x ∈ X. The functionT is given by

(3.5) T (x) = lim
n→∞

f(2nx)

4n

(
T (x) = lim

n→∞
4nf

( x

2n

))
for all x ∈ X.

Proof. Puttingy = 0 in (3.3) and dividing by8, we have

(3.6)

∥∥∥∥f(2x)

4
− f(x)

∥∥∥∥ ≤ 1

8
φ(x, 0)

for all x ∈ X. Replacingx by2x in (3.6) and dividing by4 and summing the resulting inequality
with (3.6), we get

(3.7)

∥∥∥∥f(22x)

42
− f(x)

∥∥∥∥ ≤ 1

8

[
φ(x, 0) +

φ(2x, 0)

4

]
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for all x ∈ X. Using the induction on a positive integern, we obtain that∥∥∥∥f(2nx)

4n
− f(x)

∥∥∥∥ ≤ 1

8

n−1∑
i=0

φ(2ix, 0)

4i
(3.8)

≤ 1

8

∞∑
i=0

φ(2ix, 0)

4i

for all x ∈ X. In order to prove convergence of the sequence
{

f(2nx)
4n

}
, we divide inequality

(3.8) by4m and also replacex by 2mx to find that forn, m > 0,∥∥∥∥f(2n2mx)

4n+m
− f(2mx)

4m

∥∥∥∥ =
1

4m

∥∥∥∥f(2n2mx)

4n
− f(2mx)

∥∥∥∥(3.9)

≤ 1

8 · 4m

n−1∑
i=0

φ(2i2mx, 0)

4i

≤ 1

8

∞∑
i=0

φ(2i2mx, 0)

4m+i
.

Since the right hand side of the inequality tends to0 as m tends to infinity, the sequence{
f(2nx)

4n

}
is a Cauchy sequence. Therefore, we may defineT (x) = limn→∞ 2−2nf(2nx) for

all x ∈ X. By letting n → ∞ in (3.8), we arrive at the formula (3.4). To show thatT satis-
fies the equation (1.3), replacex, y by 2nx, 2ny, respectively, in (3.3) and divide by4n, then it
follows that

4−n ‖f(2n(2x + y)) + f(2n(2x− y))− f(2n(x + y))

− f(2n(x− y))− 6f(2nx))‖ ≤ 4−nφ(2nx, 2ny).

Taking the limit asn →∞, we find thatT satisfies (1.3) for allx, y ∈ X.
To prove the uniqueness of the quadratic functionT subject to (3.4), let us assume that there

exists a quadratic functionS : X → Y which satisfies (1.3) and the inequality (3.4). Obviously,
we haveS(2nx) = 4nS(x) andT (2nx) = 4nT (x) for all x ∈ X andn ∈ N. Hence it follows
from (3.4) that

‖S(x)− T (x)‖ = 4−n‖S(2nx)− T (2nx)‖
≤ 4−n(‖S(2nx)− f(2nx)‖+ ‖f(2nx)− T (2nx)‖)

≤ 1

4

∞∑
i=0

φ(2i2nx, 0)

4n+i

for all x ∈ X. By letting n → ∞ in the preceding inequality, we immediately find the unique-
ness ofT. This completes the proof of the theorem. �

Throughout this paper, letB be a unital Banach algebra with norm|·|, and letBB1 and
BB2 be left BanachB-modules with norms‖·‖ and‖·‖, respectively. A quadratic mapping
Q : BB1→ BB2 is calledB-quadratic if

Q(ax) = a2Q(x), ∀a ∈ B, ∀x ∈ BB1.

Corollary 3.2. Let φ : BB1×BB1→ R+ be a function satisfying (3.1) and (3.2) for allx, y ∈
BB1. Suppose that a mappingf : BB1 → BB2 satisfies∥∥f(2αx + αy) + f(2αx− αy)− α2f(x + y)− α2f(x− y)− 6α2f(x)

∥∥ ≤ φ(x, y)
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for all α ∈ B (|α| = 1) and for all x, y ∈ BB1, andf is measurable orf(tx) is continuous in
t ∈ R for each fixedx ∈ BB1. Then there exists a uniqueB-quadratic mappingT : BB1 →
BB2, defined by (3.5), which satisfies the equation (1.3) and the inequality (3.4) for allx ∈ BB1.

Proof. By Theorem 3.1, it follows from the inequality of the statement forα = 1 that there
exists a unique quadratic mappingT : BB1 → BB2 satisfying the inequality (3.4) for allx ∈
BB1. Under the assumption thatf is measurable orf(tx) is continuous int ∈ R for each fixed
x ∈ BB1, by the same reasoning as the proof of [5], the quadratic mappingT : BB1 → BB2

satisfies
T (tx) = t2T (x), ∀x ∈ BB1,∀t ∈ R.

That is,T is R-quadratic. For each fixedα ∈ B (|α| = 1), replacingf by T and settingy = 0
in (1.3), we haveT (αx) = α2T (x) for all x ∈ BB1. The last relation is also true forα = 0. For
each elementa ∈ B (a 6= 0), a = |a| · a

|a| . SinceT is R-quadratic andT (αx) = α2T (x) for
each elementα ∈ B(|α| = 1),

T (ax) = T

(
|a| · a

|a|
x

)
= |a|2 · T

(
a

|a|
x

)
= |a|2 · a2

|a|2
· T (x)

= a2T (x), ∀a ∈ B(a 6= 0), ∀x ∈ BB1.

So the uniqueR-quadratic mappingT : BB1 → BB2 is alsoB-quadratic, as desired. This
completes the proof of the corollary. �

SinceC is a Banach algebra, the Banach spacesE1 andE2 are considered as Banach modules
overC. Thus we have the following corollary.

Corollary 3.3. Let E1 andE2 be Banach spaces over the complex fieldC, and letε ≥ 0 be a
real number. Suppose that a mappingf : E1 → E2 satisfies

‖f(2αx + αy) + f(2αx− αy)− α2f(x + y)− α2f(x− y)− 6α2f(x)‖ ≤ ε

for all α ∈ C (|α| = 1) and for all x, y ∈ E1, andf is measurable orf(tx) is continuous in
t ∈ R for each fixedx ∈ E1. Then there exists a uniqueC-quadratic mappingT : E1 → E2

which satisfies the equation (1.3) and the inequality

‖f(x)− T (x)‖ ≤ ε

6

for all x ∈ E1.

The S. Czerwik [4] theorem for the functional equation (1.1) states that if a functionf : G →
Y , whereG is an abelian group andY a Banach space, satisfies the inequality‖f(x + y) +
f(x− y)− 2f(x)− 2f(y)‖ ≤ ε(‖x‖p + ‖y‖p) for p 6= 2 and for allx, y ∈ G, then there exists
a unique quadratic functionq such that‖f(x) − q(x)‖ ≤ ε‖x‖p

|4−2p| +
‖f(0)‖

3
for all x ∈ G, and for

all x ∈ G− {0} and‖f(0)‖ = 0 if p < 0. From the main theorem 3.1, we obtain the following
corollary concerning the stability of the equation (1.3). We note thatp need not be equal toq.

Corollary 3.4. LetX andY be a real normed space and a Banach space, respectively, and let
ε, p, q be real numbers such thatε ≥ 0, q > 0 and eitherp, q < 2 or p, q > 2. Suppose that a
functionf : X → Y satisfies

‖f(2x + y) + f(2x− y)− f(x + y)− f(x− y)− 6f(x)‖ ≤ ε(‖x‖p + ‖y‖q)
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for all x, y ∈ X. Then there exists a unique quadratic functionT : X → Y which satisfies the
equation (1.3) and the inequality

‖f(x)− T (x)‖ ≤ ε

2|4− 2p|
‖x‖p

for all x ∈ X and for allx ∈ X − {0} if p < 0. The functionT is given by

T (x) = lim
n→∞

f(2nx)

4n
if p, q < 2

(
T (x) = lim

n→∞
4nf

( x

2n

)
if p, q > 2

)
for all x ∈ X. Further, if for each fixedx ∈ X the mappingt 7→ f(tx) from R to Y is
continuous, thenT (rx) = r2T (x) for all r ∈ R.

The proof of the last assertion in the above corollary goes through in the same way as that of
[4].

The Skof-Cholewa [3] theorem for the functional equation (1.1) states that if a functionf :
G → Y , whereG is an abelian group andY a Banach space, satisfies the inequality‖f(x +
y) + f(x − y) − 2f(x) − 2f(y)‖ ≤ ε for all x, y ∈ G, then there exists a unique quadratic
function q such that‖f(x) − q(x)‖ ≤ ε

2
for all x ∈ G. But we have a much better possible

upper bound concerning the stability theorem for the functional equation (1.3) as follows. The
following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.5. LetX andY be a real normed space and a Banach space, respectively, and let
ε ≥ 0 be a real number. Suppose that a functionf : X → Y satisfies

(3.10) ‖f(2x + y) + f(2x− y)− f(x + y)− f(x− y)− 6f(x)‖ ≤ ε

for all x, y ∈ X. Then there exists a unique quadratic functionT : X → Y defined by
T (x) = limn→∞

f(2nx)
4n which satisfies the equation (1.3) and the inequality

(3.11) ‖f(x)− T (x)‖ ≤ ε

6

for all x ∈ X. Further, if for each fixedx ∈ X the mappingt 7→ f(tx) from R to Y is
continuous, thenT (rx) = r2T (x) for all r ∈ R.

Remark 3.6. If we write y = x in the inequality of (3.3), we get

(3.12) ‖f(3x)− 5f(x)− f(2x)‖ ≤ φ(x, x) + ‖f(0)‖.

Combining (3.12) with (3.6), we have

(3.13) ‖f(3x)− 9f(x)‖ ≤ φ(x, x) +
φ(x, 0)

2
+ ‖f(0)‖.

We can easily show the following relation by induction onn together with (3.13)∥∥∥∥f(3nx)

9n
− f(x)

∥∥∥∥ ≤ 1

9

n−1∑
i=0

1

9i

[
φ(3ix, 3ix) +

φ(3ix, 0)

2
+ ‖f(0)‖

]
for all x ∈ X.

In Theorem 3.1, letφ : X2 → R+ be a function such that
∞∑
i=0

φ(3ix, 3ix) + φ(3ix, 0)

9i

(
∞∑
i=1

9i
[
φ
( x

3i
,
x

3i

)
+ φ

( x

3i
, 0
)]

, respectively

)
converges and

lim
n→∞

φ(3nx, 3ny)

9n
= 0

(
lim

n→∞
9nφ

( x

3n
,

y

3n

)
= 0
)
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for all x, y ∈ X. Note that in the second casef(0) = 0 sinceφ(0, 0) = 0. Then, using the last
inequality and the same argument of Theorem 3.1, we can find the unique quadratic functionT
defined byT (x) = limn→∞ 3−2nf(3nx) which satisfies (1.3) and the inequality

‖f(x)− T (x)‖ ≤ 1

9

∞∑
i=0

1

9i

[
φ(3ix, 3ix) +

φ(3ix, 0)

2

]
+
‖f(0)‖

8
(3.14) (

‖f(x)− T (x)‖ ≤ 1

9

∞∑
i=1

9i

[
φ
( x

3i
,
x

3i

)
+

φ
(

x
3i , 0

)
2

])
for all x ∈ X. Thus we obtain an alternative result of Theorem 3.1. In Theorem 3.1, we have
a simpler possible upper bound (3.4) than that of (3.14). The advantage of the inequality (3.4)
compared to (3.14) is that the right hand side of (3.4) has no term for‖f(0)‖.

As a consequence of the above Remark 3.6, we have the following corollary. Because of the
restricted condition0 < p, we havef(0) = 0.

Corollary 3.7. LetX andY be a real normed space and a Banach space, respectively, and let
ε ≥ 0, 0 < p 6= 2 be real numbers. Suppose that a functionf : X → Y satisfies

‖f(2x + y) + f(2x− y)− f(x + y)− f(x− y)− 6f(x)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then there exists a unique quadratic functionT : X → Y which satisfies the
equation (1.3) and the inequality

‖f(x)− T (x)‖ ≤ 5ε

2|9− 3p|
‖x‖p

for all x ∈ X. The functionT is given by

T (x) = lim
n→∞

f(3nx)

9n
if 0 < p < 2

(
T (x) = lim

n→∞
9nf

( x

3n

)
if p > 2

)
for all x ∈ X. Further, if for each fixedx ∈ X the mappingt 7→ f(tx) from R to Y is
continuous, thenT (rx) = r2T (x) for all r ∈ R.

Remark 3.8. If we put y = x = 0 in the inequality of (3.10), we get6‖f(0)‖ ≤ ε. Applying
Remark 3.6 to (3.10), we know that there exists a unique quadratic functionT : X → Y defined
by T (x) = limn→∞

f(3nx)
9n which satisfies the equation (1.3) and the inequality

‖f(x)− T (x)‖ ≤ 3ε

16
+
‖f(0)‖

8
≤ 5ε

24

for all x ∈ X. But we have a better possible upper bound (3.11) than that of the last inequality.

4. STABILITY OF (1.4)

We will investigate the Hyers-Ulam-Rassias stability problem for the functional equation
(1.4). Thus we find the condition that there exists a true quadratic function near an approxi-
mately quadratic function.

Theorem 4.1.Letφ : X2 → R+ be a function such that
∞∑
i=0

1

9i

[
φ(3ix, 3ix)

2
+ 2φ(3ix, 0)

]
(4.1) (

∞∑
i=1

9i

[
1

2
φ
( x

3i
,
x

3i

)
+ 2φ

( x

3i
, 0
)]

, respectively

)
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converges and

(4.2) lim
n→∞

φ(3nx, 3ny)

9n
= 0

(
lim

n→∞
9nφ

( x

3n
,

y

3n

)
= 0
)

for all x, y ∈ X. Suppose that a functionf : X → Y satisfies

(4.3) ‖f(2x + y) + f(x + 2y)− 4f(x + y)− f(x)− f(y)‖ ≤ φ(x, y)

for all x, y ∈ X. Then there exists a unique quadratic functionT : X → Y which satisfies the
equation (1.4) and the inequality

‖f(x)− T (x)‖ ≤ 1

9

∞∑
i=0

1

9i

[
φ(3ix, 3ix)

2
+ 2φ(3ix, 0)

]
+
‖f(0)‖

4
(4.4) (

‖f(x)− T (x)‖ ≤ 1

9

∞∑
i=1

9i

[
1

2
φ
( x

3i
,
x

3i

)
+ 2φ

( x

3i
, 0
)]

,

)
for all x ∈ X. The functionT is given by

(4.5) T (x) = lim
n→∞

f(3nx)

9n

(
T (x) = lim

n→∞
9nf

( x

3n

))
for all x ∈ X.

Proof. If we write y = x in the inequality of (4.3), we get

(4.6) ‖f(3x)− 2f(2x)− f(x)‖ ≤ 1

2
φ(x, x).

Puttingy = 0 in (4.3) and multiplying by2, we have

(4.7) ‖2f(2x)− 8f(x)‖ ≤ 2φ(x, 0) + 2‖f(0)‖
for all x ∈ X. Adding the inequality (4.6) with (4.7) and then dividing by9, we get

(4.8)

∥∥∥∥f(3x)

9
− f(x)

∥∥∥∥ ≤ 1

9

[
φ(x, x)

2
+ 2φ(x, 0) + 2‖f(0)‖

]
for all x ∈ X. Using the induction onn, we obtain that∥∥∥∥f(3nx)

9n
− f(x)

∥∥∥∥ ≤ 1

9

n−1∑
i=0

1

9i

[
φ(3ix, 3ix)

2
+ 2φ(3ix, 0) + 2‖f(0)‖

]
(4.9)

≤ 1

9

∞∑
i=0

1

9i

[
φ(3ix, 3ix)

2
+ 2φ(3ix, 0)

]
+
‖f(0)‖

4

for all x ∈ X.
Repeating the similar argument of Theorem 3.1, we obtain the desired result. The proof of

assertion indicated by parentheses in the theorem is similarly proved and we omit it. In this
case,f(0) = 0 sinceφ(0, 0) = 0 by assumption. This completes the proof of the theorem.�

The proof of the following corollary is similar to that of Corollary 3.2.

Corollary 4.2. Let φ : BB1×BB1→ R+ be a function satisfying (4.1) and (4.2) for allx, y ∈
BB1. Suppose that a mappingf : BB1 → BB2 satisfies

(4.10)
∥∥f(2αx + αy) + f(αx + 2αy)− 4α2f(x + y)− α2f(x)− α2f(y)

∥∥ ≤ φ(x, y)

for all α ∈ B (|α| = 1) and for all x, y ∈ BB1, andf is measurable orf(tx) is continuous in
t ∈ R for each fixedx ∈ BB1. Then there exists a uniqueB-quadratic mappingT : BB1 →
BB2, defined by (4.5), which satisfies the equation (1.4) and the inequality (4.4) for allx ∈ BB1.
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Corollary 4.3. Let E1 andE2 be Banach spaces over the complex fieldC, and letε ≥ 0 be a
real number. Suppose that a mappingf : E1 → E2 satisfies∥∥f(2αx + αy) + f(αx + 2αy)− 4α2f(x + y)− α2f(x)− α2f(y)

∥∥ ≤ ε

for all α ∈ C (|α| = 1) and for all x, y ∈ E1, andf is measurable orf(tx) is continuous in
t ∈ R for each fixedx ∈ E1. Then there exists a uniqueC-quadratic mappingT : E1 → E2

which satisfies the equation (1.3) and the inequality

‖f(x)− T (x)‖ ≤ 5ε

16

for all x ∈ E1.

In Theorem 4.1, we obtain the alternative result if the conditions ofφ are replaced by the
following.

Remark 4.4. Let φ : X2 → R+ be a function such that
∞∑
i=0

1

4i
φ(2ix, 0)

(
∞∑
i=1

4iφ
( x

2i
, 0
)

, respectively

)
converges and

lim
n→∞

φ(2nx, 2ny)

4n
= 0

(
lim

n→∞
4nφ

( x

2n
,

y

2n

)
= 0
)

for all x, y ∈ X. Suppose that a functionf : X → Y satisfies

‖f(2x + y) + f(x + 2y)− 4f(x + y)− f(x)− f(y)‖ ≤ φ(x, y)

for all x, y ∈ X. Then there exists a unique quadratic functionT : X → Y which satisfies the
equation (1.4) and the inequality

‖f(x)− T (x)‖ ≤ 1

4

∞∑
i=0

1

4i
φ(2ix, 0) +

‖f(0)‖
3

(4.11) (
‖f(x)− T (x)‖ ≤ 1

4

∞∑
i=1

4iφ
( x

2i
, 0
))

for all x ∈ X. The functionT is given by

T (x) = lim
n→∞

f(2nx)

4n

(
T (x) = lim

n→∞
4nf

( x

2n

))
for all x ∈ X.

From Remark 4.4, we obtain the following corollary concerning the stability of the equation
(1.4). We note thatp need not be equal toq and‖f(0)‖ = 0 if p > 0.

Corollary 4.5. LetX andY be a real normed space and a Banach space, respectively, and let
ε, p, q be real numbers such thatε ≥ 0, q > 0 and eitherp, q < 2 or p, q > 2. Suppose that a
functionf : X → Y satisfies

‖f(2x + y) + f(x + 2y)− 4f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖q)

for all x, y ∈ X. Then there exists a unique quadratic functionT : X → Y which satisfies the
equation (1.4) and the inequality

‖f(x)− T (x)‖ ≤ ε

|4− 2p|
‖x‖p +

‖f(0)‖
3
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for all x ∈ X and for allx ∈ X − {0} if p < 0. The functionT is given by

T (x) = lim
n→∞

f(2nx)

4n
if p, q < 2

(
T (x) = lim

n→∞
4nf

( x

2n

)
if p, q > 2

)
for all x ∈ X. Further, if for each fixedx ∈ X the mappingt 7→ f(tx) from R to Y is
continuous, thenT (rx) = r2T (x) for all r ∈ R.

As a consequence of the above Theorem 4.1, we have the following.
Corollary 4.6. LetX andY be a real normed space and a Banach space, respectively, and let
ε ≥ 0, 0 < p 6= 2 be real numbers. Suppose that a functionf : X → Y satisfies

‖f(2x + y) + f(x + 2y)− 4f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then there exists a unique quadratic functionT : X → Y which satisfies the
equation (1.4) and the inequality

‖f(x)− T (x)‖ ≤ 3ε

|9− 3p|
‖x‖p

for all x ∈ X. The functionT is given by

T (x) = lim
n→∞

f(3nx)

9n
if 0 < p < 2

(
T (x) = lim

n→∞
9nf

( x

3n

)
if p > 2

)
for all x ∈ X. Further, if for each fixedx ∈ X the mappingt 7→ f(tx) from R to Y is
continuous, thenT (rx) = r2T (x) for all r ∈ R.

The following corollary is an immediate consequence of Theorem 4.1.
Corollary 4.7. LetX andY be a real normed space and a Banach space, respectively, and let
ε ≥ 0 be a real number. Suppose that a functionf : X → Y satisfies

(4.12) ‖f(2x + y) + f(x + 2y)− 4f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ X. Then there exists a unique quadratic functionT : X → Y defined by
T (x) = limn→∞

f(2nx)
4n which satisfies the equation (1.4) and the inequality

(4.13) ‖f(x)− T (x)‖ ≤ 5ε

16
for all x ∈ X. Further, if for each fixedx ∈ X the mappingt 7→ f(tx) from R to Y is
continuous, thenT (rx) = r2T (x) for all r ∈ R.

Remark 4.8. If we put y = x = 0 in the inequality of (4.12), we get4‖f(0)‖ ≤ ε. Applying
Remark 4.4 to (4.12), we know that there exists a unique quadratic functionT : X → Y defined
by T (x) = limn→∞

f(2nx)
4n which satisfies the equation (1.4) and the inequality

‖f(x)− T (x)‖ ≤ ε

3
+
‖f(0)‖

3
≤ 5ε

12
for all x ∈ X. But we have a better possible upper bound (4.13) than that of the last inequality.
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