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The aim of this note is to give a general framework for Chebyshev inequalities
and other classic inequalities. Some applications to Chebyshev inequalities are
made. In addition, the relations of similar ordering, monotonicity in mean and
synchronicity of vectors are discussed.
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1. Introduction and summary

Let V' be a real vector space provided with an inner produet . For fixedz € V
andy, z € V the inequality

(1.1) (z,y) (z,2) < (y,2) (x,2)

is called aChebyshev type inequality

A general method for finding vectors satisfying the above inequality is given by
Niezgoda in f]]. The same author ir8] proved a projection inequality for tHeaton
systemgbtaining aChebyshev type inequaliég a particular case for orthoprojectors
of rank one. Furthermore, the relation of synchronicity with respect td=tten
systemis introduced there. It generalizes commonly known relations of similarly
ordered vectors (cf. for examplé§,[chap. 7.1]).

This paper is organized as follows. Sectibigontains basic notions related to
convex cones. In Sectiof a projection inequality in an abstract Hilbert space
is studied. The framework covers the projection inequality for the Eaton system,
Chebyshev sum and integral inequalities and others, see Exafples3.3. We
modify and extend the applicability of the relation of synchronicity to vector spaces
with infinite bases. The results are applied to @teebyshev sum inequality Sec-
tion 4 and theChebyshev integral inequality Sectionb.
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2. Preliminaries

In this noteV is a real Hilbert space with an inner prodyct-). A convex cone is

a nonempty seD C V such thatvD + D C D for all nonnegative scalars and

(. The closure of the convex cone of all nonnegative finite combinatiohs @ V'

is denoted byone H. Similarly, span H denotes the closure of the subspace of all
finite combinations inf. The dual cone of a subsétc V is defined as follows Chebyshev Inequalities and

Self-Dual Cones

dual C = {U eV <U, C> > 0} Zdzistaw Otachel

. . I. 10, iss. 2, art. 54, 2009
It is known, that the dual cone @ is a closed convex cone and oIS e A

dual C' = dual(cone C).

Title Page
If for a subsetG C V, a closed convex con€' is equal tocone G, then we say Contents
thatC' is generated by~ or GG is a generator of’. The inclusionA C B implies
dual B C dual A. If C'andD are convex cones, then A 44
dual(C' + D) = dual C N dual D. S ¢
The dual cone of a subspabé is equal to its orthogonal complemdiit'. If a set Page 4 of 31
C'is a closed convex cone, then Go Back
dual dualC' = C, Full Screen
(cf. [5, lemma 2.1]). The symbalualy, C' stands forV;, N dual C' and means the Close

relative dual ofC' with respect to a closed subspddeof V. If for a closed convex
cone D the identitydualy, D = D holds, thenD is called a self-dual cone w.r.t.
V1. For example, the convex cone generated by an orthogonal system of vectors is
self-dual w.r.t. the subspace spanned by this system.

In other cases the standard mathematical notation is used.
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3. Projection Inequality

From now on we make the following assumptioisis an idempotent and symmet-
ric operator (orthoprojector) defined &h V' = V| + V5, whereV; is the range ofP
andV; is its orthogonal complement, i.&; = PV andV, = (PV)*. The identity
operator is denoted byl . All subspaces and convex cones of a real Hilbert space

are assumed to be Closed- Chebyshev Inequalities and
Fory, z € V we will consider gprojection inequalitybriefly (P1)) of the form Self-Dual Cones
Zdzistaw Otachel
(y, Pz) > 0. vol. 10, iss. 2, art. 54, 2009
If y = z, then (PI) holds for any orthoprojectét taking the form|| Pz||> > 0. A
general method of solution of (PI) is established by our following theorem {¢f. [ Title Page
Theorem 3.1]).
Contents
Theorem 3.1. For vectorsy, z € V and a convex con€ C V the following state-
ments are mutually equivalent. 4« »
i) (PI) holds for ally € C' + Vs ¢ >
i) Pz¢cdualC Page 5 of 31
iii) 2z € dual PC. G0 2EEx
Proof. Since i), the inequality (PI) holds for evegye C. Thus Full Screen
cl
0<(y,Pz) =(Py,z). ose
Therefore) < (C, Pz) = (PC, z) . HencePz € dual C andz € dual PC. It proves journal of inequalities
that I) - “) III) in pure and applied
P mathematics

Conversely, ifPz € dual C then fory = ¢ + x, wherec € C and (z, V) =
0 are arbitrary havey, Pz) = (c, Pz) + (z,Pz) = (c¢,Pz) > 0. By a similar
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argument, ifz € dual PC theny € C' + V; implies thatPy € PC. It leads to
(y, Pz) = (Py, z) > 0. From this we conclude that ii),iii}> i), which completes
the proof. O

Example3.1 (Bessel inequality)For an orthoprojectoP the inequality (P1) holds
provided thaty = z. Let {f,} be an orthogonal system Ii. If P is the orthopro-

jector onto the subspace orthogonapan{ f,}, i.e. P = id — Z i H2f,,, then we

Chebyshev Inequalities and
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obtain the classic Bessel inequality
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Example3 2 (Chebyshev type inequalitied)et = € V be a fixed nonzero vector. Set Viie Fege
=id — I H%x It is clear thatP is the orthoprojector onto the subspace orthogonal Contents
to x. In the case where the inequality (P1) becom&habyshev type inequality. 1): « o
(@, 2) (y, ) < (y,2) ||=[* p R
In the spacé” = R underx = (1,...,1), inequality (L.1) transforms into the Page 6 of 31
Chebyshev sum inequalifgr (CHSI) for short): ST
n n n Go Back
Z Yi Z %sn Z Yizi- Full Screen
=1 =1 =1
Close

Consider the spadé = L? of all 2-nd power integrable functions with respect to
the Lebesgue measupeon the un_it intervg[o, 1]. Forz =1 in(?quality (L.1) takes journal of inequalities
the form of aChebeshev integral inequalipr (CHII) for short): in pure and applied

mathematics
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Example3.3 (Projection inequality for Eaton systemd)et G be a closed subgroup
of the orthogonal group acting dn dim V' < oo, andC' C V be a closed convex
cone. Let us assume:

i) for each vector, € V there exisyy € GG andb € C satisfyinga = gb,
ii) (a,gb) < {a,b) foralla,b € C'andg € G.

Chebyshev Inequalities and

If P is the orthoprojector onto a subspace orthogonatte V' : Ga = a}, then SRR
the inequality (PI) holds, provided thatz € C, (cf. [3, Theorem 2.1]). Zdzistaw Otachel
The triplet(V, G, C) fulfiling the conditions i)-ii) is said to be aBaton system vol. 10, iss. 2, art. 54, 2009

(see e.g. 3] and the references given therein). The main example of this structure is
the permutation group acting @i* and the cone of nonincreasing vectors.

Title Page
LetC' C V be a convex cone. Every cone of the fofit- V5 has the representa- Content
tion: ontents
<« >
(3.1) C+Vo=PC+Vs.
< »
Therefore, on studying the projection inequality (Pl), according to TheGrém
it is sufficient to consider convex cones of the fotn= D + V,, whereD is a Page 7 of 31
convex cone if/;. The following proposition is a simple consequence of Theorem Go Back
3.1
Full Screen
Proposition 3.2. Let D C V) be a convex cone. Fay,z € V the following condi-
tions are equivalent. Clazz
i) (PI) holds forally € D + V4 journal of inequalities
) in pure and applied
i) z € dual D. mathematics
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Let D C V; be aconvex cone. Thary C dual D. This implies thatP dual D =
Vi Ndual D. Applying (3.1) to dual D + V5 = dual D, we get

(3.2) dualy, D 4 V5 = dual D.

According to the above equation and the last proposition, we need to find for (PI)
such cone® for which D N dualy, D are as wide as possible.

Proposition 3.3. The inequality (PI) holds foy, = € D+V5, whereD is an arbitrary
self-dual cone w.r.tV;.

Proof. By assumptionD C Vi, hence §.2) givesdual D = D + V,. Proposition
3.2implies that (PI) holds foy, 2 € (D + V5) Ndual D = D + V4. N

If D is a self-dual cone w.r.tV; thenD + V5 is a maximal cone for (PI) in the
following sense.

Proposition 3.4. Let D be a self-dual cone w.r.t/; with D+V, c C, whereC C V
IS a convex cone.
If (P1) holds fory, z € C'thenC = D + V5.

Proof. SinceV, C C, (3.1) yieldsC = PC + V,. By Proposition3.2, (PI) holds
fory,z € (PC + V,) N dual PC. The assumption that (Pl) holds fgrz € C gives
PC +V, C dual PC. SinceD + V, ¢ C, D = P(D + V) € PC. From this we
havedual PC' C dual D = D + V5, by (3.2), becauselualy, D = D. Combining
these inclusions we can see that= PC +V, C D + V5.
The converse inclusion holds by the hypothesis, and thus the proof is complete.
O

Let Gp denote the set of all unitary operators actinglowith g1, = V5. Notice
thatG p is a group of operators. The inequality (PI) is invariant with respe€io
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Theorem 3.5. For fixedg € G p the following statements are equivalent.

i) (PI) holds fory, z
i) (PI) holds forgy, gz.

Proof. Assume thay is a unitary operator satisfying’s = V5. This is equivalent to
g*Vo = V5, whereg* is the adjoint operator af. We first show thayV; C V.

Suppose, contrary to our claim, that there exists & V; with the property
qu = v1 + Vg, V; € ‘/Z‘, 1= 1,2, V2 7é0 We have:

lul* = llgull® = lvr +va|* = [lus|* + [Jva]|* (g — unitary, vi L va),

lu = g™ va|1* = llg(u — g"va)|”
= llgu = va|®

= [|v1]|* (since g — unitary, g*g = id),

lu — g*va|* = J|ull® + [|g vz
= Jlull® + llv2l*  (u L g*ve, g* — unitary).
Hence:
Jull® = flvdll* + [|va1?
= ”U2||2 =0= Vo = 0,
[oa]1? = [Jull® 4 [|vz)?

a contradiction. This completes the proofgf, C V;.
Note thatg*V; C V4, too. This implies that; C ¢gV;. Therefore

(3.3) gV = V1.
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Now, letz € V be arbitrary. We have = z; + 23, wherez; € V;, i = 1,2. For
an orthoprojecto’ onto1; we get:

gPz = gP(z1 + 29) = gz1 = P(921 + 922) = Pyz,
becausgz;, € V; by (3.3) andgz, € V, by assumption. Thus
(3.4) Pg=gP.

By (3.4),
{9y, Pgz) = {9y, gPz) = (g"gy, Pz) = (y, Pz) .
This proves required equivalence. O
A simple consequence of the above theorem is:

Remarkl. For a convex con€' C V andg, € Gp the following statements are
equivalent.

i) (PI) holds fory, z € C
i) (P1) holds fory, z € goC.

In the remainder of this section we assume iha a real separable Hilbert space.

Let {f,} be an orthogonal basis &f, i.e.
>0, n=v
e fo) { =0, n#v,

for integersy, v.
Under the above assumption, the projectidntakes the form:

(3.5) Pz=Y" %f

v
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From this, fory, z € V we have

(y, Pz) = Z W

v

Therefore the following remark is evident.

Remarlk2. Let{f,} be an orthogonal basis of.
Fory, z € V the inequality (PI) holds if and only if

) TR

v

Set

(3.6) D:{xGV:x:Za,,f,,,a,,z()}.

Clearly, D is a closed convex cone generated by the syqtérh. The scalarsy, =
(z,fv)

7 are the Fourier coefficients afw.r.t. the orthogonal systeqy, }. Moreover,

D is a self-dual cone w.r.t/;. By Proposition3.3we get

Corollary 3.6. If { f, } is an orthogonal basis df;, then (PI) holds foy, = € D+V5,
whereD is defined by{.6).

Let = denote the set of all sequendes: (£1,&,...)withé2 =1, v=1,2,....
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This operator is an isometry, because

SR
= [lzl* = [[Pz]* + [ Pz||* = ||=]*,

2 _ 2 P 2 2<'rafl/>2
lgex® = ll«l|* — || P[* + ¢

by (3.5) and obvious orthogonality

Y 1

If 2 € V3, then(z, f,) = 0 for all v. HencePx = 0 = Y&, =2 f,. For this
reason Y

(3.7) gex =z, x€ Vs

We write
(3.8) G={ge: €€}

We will show thatG is a group of operators. It is evident that:
(3.9) ge=1d, for{=(1,1,...).
Let(, &, v € =. We have:

gfo=fo—Ph+ Y <<|J|Cf—i’|c>f — i,
n
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because’f, = f,, v =1,2,.... From this, byx — Pz € V;, and (3.7) we get:

=gl = Pr) +Z§” 7, IP Gelv

Chebyshev Inequalities and

fy> Self-Dual Cones
=z — Pr+ Z C’/g’/ Hf HQ f Zdzistaw Otachel
vol. 10, iss. 2, art. 54, 2009
Thus
(3.10) 9c9s = Gee = 9e9e, Title Page
where( - € = (¢1&1, (&, .. .). This clearly gives: Contents
< >
(3.11) 9¢(9¢9v) = 9een = (9e9¢) 9
< >
and
gggg:gg-gzid, Page 13 of 31
which is equivalent to Go Back
(3.12) (gg)_l = ge. Full Screen
Sinceg, is an isometry and invertible, Close
i journal of inequalities
(3.13) g¢ —unitary,  Vees in pure and applied
By (3.13, (3.7), (3.9 — (3.129 we can assert that is an Abelian group of unitary rpqthemohcs
operators that are identities 3. As a consequencé; C Gp. U
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Given anyz € V, we definet, = (£,1,&:2,...) by

)L & f) 20
(3.14) fw—{ L et <0
It is clear thatt, , (z, f.,) = |(, f,)|. Hence
9 x‘x‘PfC*Z'nf S

wherez — Px € V, and) 'fﬁ;ﬁg‘fy € D. Therefore

(3.15) ge,x € D+ V.
Assertion .15 is simply the statement that

(3.16) (Gz)NC #0, Vaev

with C = D + V5. This condition ensures that the sum of the com@s whereg
runs overG, covers the whole spadé. Now, we show that¥.16) holds forG p and

for every cone”’ = PC + V,, PC # {0}.

Fix v € V. Clearly,v = v; + vy, v; € V3, i = 1,2.
Gpv C Vo C C,i.e. (3.16 holds. Assume that # v; and note that there exists
0 # uy; € PC. Let us construct the two orthogonal bages} and{f, } of V; with

ey = v, andf; = u;. Setu = Hv1||HZ—1” -+ vy and

(3.17) g=id—P+ Z ||eu||||fu||

If V1 = 0 thenv €

Chebyshev Inequalities and
Self-Dual Cones

Zdzistaw Otachel

vol. 10, iss. 2, art. 54, 2009

Title Page
Contents
44 44
< >
Page 14 of 31
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:zdzislaw.otachel@up.lublin.pl
http://jipam.vu.edu.au

Observe that, € C', gv = u andg is the identity operator ol;. Now, we prove that
g is unitary. Firstly, we note that for any e

lgz])* = [l]* — [|1P=]*

= [l

because| Pz|* = ‘Tee“ Our next goal is to show thatl” = V. To do this, fix
y € V. We have ’

y fz/ l/
“Z 20 T
Set

(y, ) e
r=y— Py+ )
Z I Tenl
It is easily seen thajx = y. So,g¢ Is unitary.
Finally, g is a unitary operator oy with V5, =

Vo andgv = u. It givesu €
GpvNC, as desired.

We are now in a position to introduce a notion of synchronicity of vectors for (PI).

For an orthoprojectoP let C' be a convex cone which admits the representation
C =PC+Vy,

wherePC' is nontrivial. LetG be a subgroup aff» with the property §.16).
The two vectorgy, z € V are said to b&r-synchronous (with respect 0) if
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there exists @ € G such thayy, gz € C. If G = G p, then we simply say thatand
z are synchronous.

The definition is motivated by3| sec. 2]. It generalizes the notion of synchronic- ,
ity with respect to Eaton systems. ObviousHtsynchronicity forces synchronicity tssnt LHHITSTEE
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under fixedC'. In the sequel, for special cones we show that synchronicity is equiv-

alent to (PI) butG-synchronicity is a sufficient condition for (P1).

According to Theoren3.5, by the notion of synchronicity, it is possible to extend

(PI) beyond a coné€’ if only (PI) holds for vectors irC'.

Proposition 3.7. LetC' C V be a convex cone with = PC' + V5, PC # {0} and
let G be a subgroup of/» with property ¢.16).
The following statements are equivalent.

i) (PI) holds fory,z € C
i) (PI) holds for the vectorg and = which are(G-synchronous w.r.tC.

Proof. i) = ii). Assumey andz are G-synchronous w.r.tC'. There existy € G
with gy, gz € C. Since i), (PI) holds fogy, gz. By Theorem3.5we conclude that
(PI) holds fory andz=.

The converse implication is evident becayse € C are of coursé -synchronous.

]

Now, we are able to give an equivalent condition é&isynchronicity. Simulta-
neously, the condition is sufficient for synchronicity w.ix.+ V5.

Proposition 3.8. Let G be the group defined by @) and let D be the cone defined
by (3.6).
The vectorg, z € V are G-synchronous w.r.tD + V5 if and only if

(W, fu) (=, f,) >0, V..

Proof. If y, z areG-synchronous, then there existg auch thaty.y, g.z € D + Va.
Hencet, (y, f,) > 0 and¢, (z, f,) > 0 for all v. Multiplying the above inequalities
side by side we obtait < &2 (y, f,) (z, f.) = (y, f.,) (2, f.,) for everyv.
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Conversely, suppose thés, f,) (z, f,) > 0 for everyv. In this situation, the
sequences defined fgrandz by (3.14) are equal. Hencgandz are(G-synchronous
by (3.15. O

Summarizing the above considerations we give sufficient and necessary condi-
tions for (PI) to hold.

Theorem 3.9.Let{f,} be an orthogonal basis df;. SetC' = D + V;, whereD is
defined by §.6). The following statements are equivalent.

i) y andz are synchronous w.r.C'
i) (PI) holds fory andz.

In particular, if

(318) <y7 gOfV> <Z7 gOfV) Z Oa VI/,
then (PI) holds, wherg, € Gp is fixed.

Proof. The first part, i}=ii). It is a consequence of Corollary.6 and Proposition
3.7.

Conversely, if ii), then( Py, Pz) > 0. Firstly, suppose thaPz = aPy. Clearly,
a > 0. By (3.16, which holds forGp and C, there exists @ € Gp such that
gy € C. HencePgy € PC = D. By (3.4), gPy € D. Sincea > 0, agPy € D.
Sincez — Pz € V,, g(z — Pz) € V,, becausgV, = V5. Hence

gz =gPz+g(z — Pz) = agPy + g(z — Pz) € C.

Thereforegy, gz € C, i.e.y andz are synchronous.
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Next, assume thaPy and Pz are linearly independent. Let us construct an or-
thogonal basige, } of V; with

(Pz, Py)
| Py]|?

and letg € G p be defined by{.17). There is no difficulty to showing that

eg =Py, ey=Pz—

Py
R Py+ |:|f1||Hf1 <¢
€V2 N——
eD

gz =z—Pz+
W—/
eVa

H61|H H

| P22 Py|2~ (P=.Py)*
h+ e - €0

—~—
>0, by (PI) >0, by Cauchy—Schwarz ineq.
N

s

g

eD
Thereforey andz are synchronous as required.
Now, let us note that¥ 19 is equivalent to

<géya fu> <gSZ, fl/> Z 0, 2

By Proposition3.8, gjy andgjz are G-synchronous w.r.tC'. Hence there exists a
g € G such thatygjy, gg5 € C. Sincegg; € Gp, y andz are synchronous w.r.t.

C. For this reason (Pl) holds, by the first part of this proposition. The proof is
complete. m
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4. Applications to the Chebyshev Sum Inequality

Throughout this sectionly = R™ with the standard inner produ¢t -). Let {s;}
be the basis oR", wheres; = (1,...,1,0,...,0), ¢ = 1,...,n. The symbols

V1 andV; stand for the subspace orthogonalktoand its orthogonal complement,
respectiVEly, i.e. Chebyshev Inequalities and

Self-Dual Cones

Zdzistaw Otachel

Vi= {(xl’ Sy Tn) ZIZ - 0} , Vo =span{s,}. vol. 10, iss. 2, art. 54, 2009
K

Let P be the orthoprojector ontd], i.e. P = id—%sn. In this situation, by

Title Page
Example3.2, (Pl) becomes th€hebyshev sum inequal¢HSI). ?
It is known that the convex cone of nonincreasing vectors Contents
C:{$:($177$n)$12$222$n} “ >
< 4

is generated bysy, .. ., s,, —s,}. On the other side,

f
{(1,-1,0,...,0), (0,1,-1,0,...,0), (0,...,0,1,—1)} Page 19 of 31

. Go Back
is a generator of
Full Screen
n k
dual C = {x: ($1,...,xn):2xi:0, inzo, kzl,...,n—l}. Close
i=1 i=1
, journal of inequalities
. . . . . mathematics

4.1) e =ns; —is, = (n—z,.‘.,.,n—g,\—z,.‘.,.,—z), i=1,....,n—1. e Tuua-creL

A n—i
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Write
D = cone{e; }.
Clearly, PC = D andV; C C'. Hence by £.1),

C=D+V,.

Applying Propositior3.2, we conclude that (PI) holds fgr z € (D+V32)Ndual D =
C N dual D. With the aid of generators we can check tlhiatC dual C. Hence
C = dual dualC' C dual D.

By the above considerations, for arbitrary: € C, the inequality (CHSI) holds.

This is a classic Chebyshev result.
The system{e;, i = 1,...,n — 1} constitutes a basis df;. Observe that

(ei,ej) =in—j)n, i<j,i,7=1,...,n—1

Hence, easy computations lead to
—k—1
<ek+1 —n—ek,ei> =0, 1=1,....k;k=1,....,n—2.
n—=k

From this, the Gram-Schmidt orthogonalization gives the orthogonal sygtérfor
the basige;} as follows:

4.2) {(h:el, . N
Qo1 = (ekﬂ — "nfklek) , k=1,...,n—2.
According to ¢.1) and ¢.2) we obtain the explicit form of the orthogonal basis
{ai}
(4.3) a=0,....,.00n—Fk,—1,....,—-1), k=1,...,n—1.
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Let us denote B
K =D+,

whereD stands for theone{q }. The convex con® is self-dual w.r.t.V;.
According to Propositio®.3we can assert that (CHSI) holds fgrz € K.
Let go(z1,...,2,) = (—xy,...,—x1). Clearly,go € Gp. By Remarkl, (CHSI)
holds fory, z € goK. Have:

90K = go(D + Vo) = goD + Vi = cone{gogi} + Va.

Definef, = gogn_i, k=1,...,n— 1. Sincegy € Gp, go IS Unitary andyyV; = V4,
by (3.9). Hence{ fi} is an orthogonal basis 6f,. Observe

(4.4) fo=01,...,1,—k,0,...,0), k=1,...,n—1
k

Write
M = cone{fi} + Va.

By Remarkl, it is evident that (CHSI) holds fay, z € M.
Proposition 4.1. For x = (1, ...,2,) € R"

1 n
€ K < thesequencg ——— E i IS nhonincreasing,
’ ; {n —k+1 i—k ‘ } )

n
k=1
n

k
1 . : ,
r €M < the sequenCé{E E xl} IS nonincreasing.
=1

k=1

Proof. We prove only the first equivalence. The second one uses a similar procedure.
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By (3.9, K = dual D, because is self-dual w.r.t.V;. Hence by 4.3) we can
assert that € K is equivalent to

(n—k)xg > Z x, k=1,...,n—1

i=k+1

Adding to both of side¢n — k) >, .| z; and dividing by(n — k)(n — k 4 1), we

obtain
! En > ! En k=1 1
R m— T; | = z; |, =1,...,n—1
n—k+1 p n—=k

i i=k+1

This is equivalent to our claim. ]

By the above proposition, we can see thatt K andC C M. The coneM is
said to be a cone of vectors nonincreasing in mean. Itis easily seen that (CHSI) holds
fory,z € —K and fory, = € —M (for e.g., by takingC' = K, M and substituting
—1id into go in Remarkl). The statement that (CHSI) holds for vectors monotonic
in mean is due to Biernacki, sef|

The remainder of this section will be devoted to (CHSI) for synchronous vectors.
We will consider relations between synchronicity and similar ordering.

HereGp is the group of all orthogonal matrices such that the sum of the entries of
each row and column is equalt@r —1. The group of alh x n permutation matrices
is a subgroup of7 p, which together with the con€ fulfil (3.16). The permutation
group synchronicity w.r.t.C' is simply the relation "to be similarly ordered". It
implies synchronicity w.r.t. every cone which conta(rise.g. M or K.

The two vectors: = (z1,...,2,), y = (y1,- .., yn) € R™ are said to be similarly
ordered if

(4.5) (i —2;)(yi —yj) =0, Vi
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The assertion that (CHSI) holds for similarly ordered vectors is a consequence of
Proposition3.7.

Theorens.9states that (CHSI) is equivalent to synchronicity wdotae{ fi. } + V5
where{ f;. } is an arbitrarily chosen orthogonal basidf Moreover,G-synchronicity
gives (CHSI), wheré- is the group £.8) acting onR™. For this reason, the specifi-
cation of Theoren®.9 can be as follows.

Let { fx} be defined by4.4) andG by (3.8) in compliance with the basis.

Corollary 4.2. (CHSI) holds fory, z if and only ify and z are synchronous w.r.t.
M.
In particular, (CHSI) is satisfied by and z such that

<y7Ufk><Zank>207 k=1,....,n—1,

whereU is a fixed unitary operation witl/s,, = s, or Us,, = —s,, i.e. U Is
represented by an orthogonal matrix whose rows and columns sumiugr to —1.
By Proposition3.8 we have:

Remark3. The vectorsy = (vyi,...,y,) andz = (zy,..., z,) areG-synchronous
w.r.t. M if and only if

k k
lzyz_kyk+1] [Zzl—kzkﬂl 20, kzl,,n—l
=1 =1

Relations of similar ordering an@d-synchronicity w.r.t. M/ are not comparable,
i.e. there exist similarly ordered vectors which are not synchronous and there exist
synchronous vectors that are not similarly ordered. On the other hand, both relations
imply synchronicity w.r.t.\/ and as a consequence, (CHSI) holds.

Example4.1 ConsideR™, n > 3.
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For0<a<l<f<n-—1sety=(0,...,0,1—n,—«), z=(0,...,0,1 —
n, —3). According to ¢.5 and Remark3 the vectorsy andz are similarly ordered
and are not;-synchronous, but they are synchronous wit.so (CHSI) holds.

Now, sety’ = f1 + fo, 2’ = fo + f3, wheref; are defined by4.4). The vectors/
andz’ areG-synchronous w.r.tM/, because/, 2’ € M, so (CHSI) holds.

On the other hang’ = (2,0,-2,0,...,0), 2’ = (2,2,—1,-3,0,...,0) are not
similarly ordered by4.5), becauséy;, — v})(z5 — z;) = —2(—1+3) < 0.
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5. Applications to the Chebyshev Integral Inequality

SetV = L? as in Example3.2. The characteristic function of the measurable set
A C [0,1] is denoted byl 4. Additionally we will write e, = Ijpq, 0 < s < 1.
The symbolV; stands for the subspace orthogonallfo= span{e;}, i.e. V; =
{z € L?: [zdp=0}.By Example3.2 it is known that for the orthoprojecta?

onto V; (PI) transforms into th€hebyshev integral inequaliCHIl). Let C C L2 Chebyshev Inequalities and
be the closed convex cone of all nonincreasinge. functions. It is known (seé5| Sillriel Sz
Theorem 3.1 and 3.3]) that: AR CEEE]
vol. 10, iss. 2, art. 54, 2009
(5.1) C =cone({e;: 0<s<1}U{—e1}),
dual C' = cone{lyy — Iy : € > 0,11, 11+ ¢ C [0, 1]}, Title Page
wherell stands for an interval. Contents
The Haar system:
<« >
(5.2) XS =€ < >
2 R <t< B
Page 25 of 31
k — n/2 2k—1 2k
Xn(t) = —2m/ e ST < g Go Back
0, otherwise Full Screen
n=0,1,..., k=12...2"

Close
forms an orthonormal basis d@f. In particular, H = {x* : n = 0,1,..., k = , lof | "
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The coneD is self-dual w.r.t.V;, so by (3.2) we have:
(5.3) dual D = D + V5.

By (5.1), observe thati C dualC, henceC = dual dualC C dualH =
dual D. Combining this with §.3), we obtain

(5.4) Cc D+ Vi

From (5.4) and Corollary3.6 it follows that

Corollary 5.1. (CHIl) holds fory, z € D + V5.
The coneD + V; contains the cone of all nonincreasipg:.e. functions inL?.

It is easily seen that the corde+ V5 contains functions which are not nonincreas-
ing u a.e.

Let G be the group {.6) acting onL? with the Haar system. Employing the
G-synchronicity relation w.r.tD + V5, by TheorenB.9we get:

Corollary 5.2. (CHII) holds fory, z € L? if only

(5.5) (¥, x) (z,x) =0,  Vyen

We next discuss the relation between the conditiof) @nd the known sufficient
conditions for (CHII). One of these is the condition thandz are similarly ordered,
i.e.

(5.6) [y(s) —y(t)] [z(s) — z(t)]] =0, forall0<s,t<1

(see e.g. §, pp. 198-199]). Now, we show by an example that¢hsynchronicity
condition 6.5) is not stronger than the condition of similar orderifgd in L.
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Example5.1 In L2 lety = x4 + x%, 2z = x3 + x3, wherey/ are defined by.2).
The vectorg; andz areG-synchronous w.r.tD + V5, because they are ib.
On the other hand

y(s) =2, 0<s<gz 2(s)=0, 0<s<3z
y(t)=0, 4<t<i’ at)=2, E<t<P
Chebyshev Inequalities and
From this,[y(s) — y(t)] [2(s) — z(t)]] = [2—0][0 — 2] < 0 forany0 < s < { and Sef-Dual Cones
% <t< g Thusy andz are not similarly ordered. Zdzistaw Otachel

Now, we recall that a functiop € L? is nonincreasing (nondecreasing, mono- vol. 10, ss. 2, art. 54, 2009

tone) in mean if the function — < [~ ydy, is nonincreasing (nondecreasing, mono-
tone)- Title Page
Differentiating % fos ydu we can easy obtain thatis nonincreasing in mean if
and only if2 [ ydu > y(s), pa.e.
Itis known that (CHII) holds foy andz which are monotone in mean in the same <« Y
direction (see 1], cf. also B, pp. 198-199]). Johnson ir2] gave a more general

Contents

condition. Namely, if S ¢
1 /8 1 /3 Page 27 of 31
61 |3 [ |5 [t s0)] 200 oo
S Jo S Jo Go Back
then (CHII) holds fory andz. Full Screen
Remark4.
Close

1. There exist functions inone H which are not nonincreasing in mean. . ; -~
journal of inequalities

2. There exist functions nonincreasing in mean which are nodie 7. in pure and applied
mathematics

3. There exist functions inone H for which (5.7) does not hold, i.e. the condition ,
issn: 1443-5756

(5.5 is not stronger thari( 7).

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:zdzislaw.otachel@up.lublin.pl
http://jipam.vu.edu.au

Proof. An easy verification shows that:

Ad. 1) x* € H, k > 1 are not nonincreasing in mean.

Ad. 2) Setf = Ijy1/2) — 2112,3/4)- f IS nonincreasing in mean and is not in
cone H becauséf, xi) < 0.

Ad. 3) Sety = x}, z = x3. For2 < s < ¢ have:

1 [° 1 /° 2/2 3/2 —
|:—/ yd,u — y(s):| |:—/ zdlu — Z(S):| — _ﬂ . L < 0. Cheby;f;ﬁilljl:;qul:;s and
S Jo S Jo S S

Zdzistaw Otachel
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The set of allL2-functions nonincreasing in mean constitutes a convex cone. It
will be denoted byV. Let M, be the class of all step functions of the form

Title Page
gst = Ljo,s) — ; > Iy, O0<s<t<l. Contents
— S

Proposition 5.3. A "
M = dual My, < d
PM = dualy, M, = cone My, Page 28 of 31

M = cone My + V5. Go Back

Proof. By definition, f € M if and only if Full Screen
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This is simply f € dual My, so the first equation holds.
To show the second equation, note thdt € M N V;. Hence

dual(M N'Vy) C dual My = M,
by the first equation. It follows that; N dual(M NV;) C M NV, i.e.
(5.8) dualy, (M NVy) C M N V.

Fix f € M NV, and letg € M N Vi be arbitrary. For suchi andg (CHII) holds
and takes the form:

1 1 1
/fgd/LZ/fdu-/gdu:O-O:O,
0 0 0

i.e. f € dualy, (M NVy). Therefore
(5.9) M NVy C dualy, (M NWy).

SinceM = dual M, dual M = cone M,. Now, observe that, C M. This
implies by 3.1) thatM = PM + V5. Furthermore, in this situatioRM = M N V.
The above gives

dual M = dual(M NV} + V5)
= Vi Ndual(M N V;) = dualy, (M N V).

Hence
(5.10) dualy, (M N'V}) = cone M.
Combining £.9), (5.9 and .10 we obtain the required equations.

The third equation is a consequence of the second one. The proof is complete.

]
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The second equation of the above propositions immediately gives:

Remarks. The convex cone of all?>-functions nonincreasing in mean with integral
equal to0 is self-dual w.r.t.V;.

TakingC = M in Theorem3.1, by Propositiorc.3we easily obtain:

Corollary 5.4. If [ fdu [ gdu < [ fgdp holds for all functionsf € L? monotone
in mean, thery € L? is also monotone in mean.
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