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ABSTRACT. Recently, in [4] the author studied some rational identities and inequalities involv-
ing Fibonacci and Lucas numbers. In this paper we generalize these rational identities and in-
equalities to involve a wide class of sequences.
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1. I NTRODUCTION

The Fibonacci and Lucas sequences are a source of many interesting identities and inequali-
ties. For example, Benjamin and Quinn [1], and Vajda [5] gave combinatorial proofs for many
such identities and inequalities. Recently, Díaz-Barrero [4] (see also [2, 3]) introduced some ra-
tional identities and inequalities involving Fibonacci and Lucas numbers. A sequence(an)n≥0

is said to bepositive increasingif 0 < an < an+1 for all n ≥ 1, andcomplex increasingif
0 < |an| ≤ |an+1| for all n ≥ 1. In this paper, we generalize the identities and inequalities
which are given in [4] to obtain several rational identities and inequalities involving positive
increasing sequences or complex sequences.

2. I DENTITIES

In this section we present several rational identities and inequalities by using results on con-
tour integrals.

Theorem 2.1.Let (an)n≥0 be any complex increasing sequence such thatap 6= aq for all p 6= q.
For all positive integersr,

n∑
k=1

(
1 + a`

r+k

ar+k

n∏
j=1, j 6=k

(ar+k − arj
)−1

)
=

(−1)n+1∏n
j=1 ar+j
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holds, with0 ≤ ` ≤ n− 1.

Proof. Let us consider the integral

I =
1

2πi

∮
γ

1 + z`

zAn(z)
dz,

whereγ = {z ∈ C : |z| < |ar+1|} andAn(z) =
∏n

j=1(z − ar+j). Evaluating the integralI in
the exterior of theγ contour, we getI1 =

∑n
k=1 Rk where

Rk = lim
z→ar+k

(
1 + z`

z

n∏
j=1, j 6=k

(z − arj
)−1

)
=

1 + a`
r+k

ar+k

n∏
j=1, j 6=k

(ar+k − arj
)−1.

On the other hand, evaluatingI in the interior of theγ contour, we obtain

I2 = lim
z→0

1 + z

An(z)
=

1

An(0)
=

(−1)n∏n
j=1 ar+j

.

Using Cauchy’s theorem on contour integrals we get thatI1 + I2 = 0, as claimed. �

Theorem 2.1 foran = Fn then Fibonacci number (F0 = 0, F1 = 1, andFn+2 = Fn+1 + Fn

for all n ≥ 0) gives [4, Theorem 2.1], and foran = Ln then Lucas number (L0 = 2, L1 = 1,
andLn+2 = Ln+1+Ln for all n ≥ 0) gives [4, Theorem 2.2]. As another example, Theorem 2.1
for an = Pn thenth Pell number (P0 = 0, P1 = 1, andPn+2 = Pn+1 + Pn for all n ≥ 0) we get
that

n∑
k=1

(
1 + P `

r+k

Pr+k

n∏
j=1, j 6=k

(Pr+k − Prj
)−1

)
=

(−1)n+1∏n
j=1 Pr+j

holds, with0 ≤ ` ≤ n− 1. In particular, we obtain

Corollary 2.2. For all n ≥ 2,

(P 2
n + 1)Pn+1Pn+2

(Pn+1 − Pn)(Pn+2 − Pn)
+

Pn(P 2
n+1 + 1)Pn+2

(Pn − Pn+1)(Pn+2 − Pn+1)
+

PnPn+1(P
2
n+2 + 1)

(Pn − Pn+2)(Pn+1 − Pn+2)
= 1.

Theorem 2.3.Let (an)n≥0 be any complex increasing sequence such thatap 6= aq for all p 6= q.
For all n ≥ 2,

n∑
k=1

1

an−2
k

n∏
j=1, j 6=k

(
1− aj

ak

)
= 0.

Proof. Let us consider the integral

I =
1

2πi

∮
γ

z

An(z)
dz,

whereγ = {z ∈ C : |z| < |an+1|} andAn(z) =
∏n

j=1(z − ar+j). Evaluating the integralI in
the exterior of theγ contour, we getI1 = 0. EvaluatingI in the interior of theγ contour, we
obtain

I2 =
n∑

k=1

Res(z/An(z); z = ak) =
n∑

k=1

n∏
j=1, j 6=k

ak

ak − aj

=
n∑

k=1

1

an−2
k

n∏
j=1, j 6=k

(
1− aj

ak

)
.

Using Cauchy’s theorem on contour integrals we get thatI1 + I2 = 0, as claimed. �
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For example, Theorem 2.3 foran = Ln thenth Lucas number gives [4, Theorem 2.5]. As
another example, Theorem 2.3 foran = Pn thenth Pell number obtains, for alln ≥ 2,

n∑
k=1

1

P n−2
k

n∏
j=1, j 6=k

(
1− Pj

Pk

)
= 0.

3. I NEQUALITIES

In this section we suggest some inequalities on positive increasing sequences.

Theorem 3.1.Let(an)n≥0 be any positive increasing sequence such thata1 ≥ 1. For all n ≥ 1,

(3.1) aan+1
n + aan

n+1 < aan
n + a

an+1

n+1 .

and

(3.2) a
an+2

n+1 − aan
n+1 < a

an+2

n+2 − aan
n+2.

Proof. To prove (3.1) we consider the integral

I =

∫ an+1

an

(ax
n+1 log an+1 − ax

n log an)dx.

Sincean satisfies1 ≤ an < an+1 for all n ≥ 1, so for allx, an ≤ x ≤ an+1 we have that

ax
n log an < ax

n+1 log an < ax
n+1logan+1,

henceI > 0. On the other hand, evaluating the integralI directly, we get that

I = (a
an+1

n+1 − aan+1
n )− (aan

n+1 − awn
n ),

hence
aan+1

n + aan
n+1 < aan

n + a
an+1

n+1

as claimed in (3.1). To prove (3.2) we consider the integral

J =

∫ an+2

an

(ax
n+2 log an+2 − ax

n+1 log an+1)dx.

Sincean satisfies1 ≤ an+1 < an+2 for all n ≥ 0, so for allx, an+1 ≤ x ≤ an+2 we have that

ax
n+1 log an+1 < ax

n+2 log an+2,

henceJ > 0. On the other hand, evaluating the integralJ directly, we get that

I = (a
an+2

n+2 − aan
n+2)− (a

an+2

n+1 − aan
n+1),

hence
a

an+2

n+1 − aan
n+1 < a

an+2

n+2 − aan
n+2

as claimed in (3.2). �

For example, Theorem 3.1 foran = Ln thenth Lucas number gives [4, Theorem 3.1]. As
another example, Theorem 3.1 foran = Pn thenth Pell number obtains, for alln ≥ 1,

P Pn+1
n + P Pn

n+1 < P Pn
n + P

Pn+1

n+1 ,

wherePn is thenth Pell number.

Theorem 3.2. Let (an)n≥0 be any positive increasing sequence such thata1 ≥ 1. For all
n,m ≥ 1,

aan
n+m

m−1∏
j=0

a
an+j+1

n+j <
m∏

j=0

a
an+j

n+j .
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Proof. Let us prove this theorem by induction onm. Since1 ≤ an < an+1 for all n ≥ 1 then
aan+1−an

n < a
an+1−an

n+1 , equivalently,aan+1
n aan

n+1 < aan
n a

an+1

n+1 , so the theorem holds form = 1.
Now, assume for alln ≥ 1

aan
n+m−1

m−2∏
j=0

a
an+j+1

n+j <

m−1∏
j=0

a
an+j

n+j .

On the other hand, similarly as in the casem = 1, for all n ≥ 1,

a
an+m−an

n+m−1 < a
an+m−an

n+m .

Hence,

a
an+m−an

n+m−1 aan
n+m−1

m−2∏
j=0

a
an+j+1

n+j < a
an+m−an

n+m

m−1∏
j=0

a
an+j

n+j ,

equivalently,

aan
n+m

m−1∏
j=0

a
an+j+1

n+j <
m∏

j=0

a
an+j

n+j ,

as claimed. �

Theorem 3.2 foran = Ln thenth Lucas number andm = 3 gives [4, Theorem 3.3].

Theorem 3.3. Let (an)n≥0 and (bn)n≥0 be any two sequences such that0 < an < bn for all
n ≥ 1. Then for alln ≥ 1,

n∑
i=1

(bj + aj) ≥
2nn+1

(n + 1)n

n∏
i=1

b
1+1/n
j − a

1+1/n
j

bj − aj

.

Proof. Using the AM-GM inequality, namely

1

n

n∑
i=1

xi ≥
n∏

i=1

x
1/n
i ,

wherexi > 0 for all i = 1, 2, . . . , n, we get that∫ a1

b1

· · ·
∫ an

bn

1

n

n∑
i=1

xidx1 · · · dxn ≥
∫ a1

b1

· · ·
∫ an

bn

n∏
i=1

x
1/n
i dx1 · · · dxn,

equivalently,

1

2n

n∑
i=1

(b2
i − a2

i )
n∏

j=1, j 6=i

(bj − aj) ≥
n∏

i=1

(
n

n + 1
(b

1+1/n
i − a

1+1/n
i )

)
,

hence, on simplifying the above inequality we get the desired result. �

Theorem 3.3 foran = L−1
n whereLn is thenth Lucas number andbn = F−1

n whereFn is the
nth Fibonacci number gives [4, Theorem 3.4].

J. Inequal. Pure and Appl. Math., 5(3) Art. 75, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


RATIONAL IDENTITIES AND INEQUALITIES 5

REFERENCES

[1] A.T. BENJAMIN AND J.J. QUINN, Recounting Fibonacci and Lucas identities,College Math. J.,
30(5) (1999), 359–366.

[2] J.L. DíAZ-BARRERO, Problem B-905,The Fibonacci Quarterly, 38(4) (2000), 373.

[3] J.L. DíAZ-BARRERO, Advanced problem H-581,The Fibonacci Quarterly, 40(1) (2002), 91.

[4] J.L. DíAZ-BARRERO, Rational identities and inequalities involving Fibonacci and Lucas numbers,
J. Inequal. in Pure and Appl. Math., 4(5) (2003), Art. 83. [ONLINEhttp://jipam.vu.edu.
au/article.php?sid=324 ]

[5] S. VAJDA, Fibonacci and Lucas numbers and the Golden Section, New York, Wiley, 1989.

J. Inequal. Pure and Appl. Math., 5(3) Art. 75, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/article.php?sid=324
http://jipam.vu.edu.au/article.php?sid=324
http://jipam.vu.edu.au/

	1. Introduction
	2. Identities
	3. Inequalities
	References

