Journal of Inequalities in Pure and Applied Mathematics

SEVERAL INTEGRAL INEQUALITIES

FENG QI

Department of Mathematics Jiaozuo Institute of Technology Jiaozuo City, Henan 454000 THE PEOPLE'S REPUBLIC OF CHINA *EMail*: qifeng@jzit.edu.cn *URL*: http://rgmia.vu.edu.au/qi.html

volume 1, issue 2, article 19, 2000.

Received 27 January, 2000; accepted 12 April, 2000. Communicated by: J. Sandor

©2000 Victoria University ISSN (electronic): 1443-5756 001-00

Abstract

In the article, some integral inequalities are presented by analytic approach and mathematical induction. An open problem is proposed.

2000 Mathematics Subject Classification: 26D15 Key words: Integral inequality, mathematical induction.

The author was supported in part by NSF of Henan Province, SF of the Education Committee of Henan Province (No. 1999110004), and Doctor Fund of Jiaozuo Institute of Technology, The People's Republic of China

Contents

J. Ineq. Pure and Appl. Math. 1(2) Art. 19, 2000 http://jipam.vu.edu.au

1. Several Integral Inequalities

In this article, we establish some integral inequalities by analytic method and induction.

Proposition 1.1. Let f(x) be differentiable on (a,b) and f(a) = 0. If $0 \leq f'(x) \leq 1$, then

(1.1)
$$\int_{a}^{b} \left[f(x)\right]^{3} \mathrm{d}x \leqslant \left(\int_{a}^{b} f(x) \,\mathrm{d}x\right)^{2}.$$

If $f'(x) \ge 1$, then inequality (1.1) reverses. The equality in (1.1) holds only if $f(x) \equiv 0$ or f(x) = x - a.

Proof. For $a \leq t \leq b$, set

$$F(t) = \left(\int_a^t f(x) \,\mathrm{d}x\right)^2 - \int_a^t \left[f(x)\right]^3 \mathrm{d}x$$

Simple computation yields

$$F'(t) = \left\{ 2 \int_{a}^{t} f(x) \, \mathrm{d}x - \left[f(t) \right]^{2} \right\} f(t) \triangleq G(t) f(t),$$

$$G'(t) = 2 \left[1 - f'(t) \right] f(t).$$

Since $f'(t) \ge 0$ and f(a) = 0, thus f(t) is increasing and $f(t) \ge 0$.

(1) When $0 \leq f'(t) \leq 1$, we have $G'(t) \geq 0$, G(t) increases and $G(t) \geq 0$ because of G(a) = 0, hence $F'(t) = G(t)f(t) \geq 0$, F(t) is increasing. Since F(a) = 0, we have $F(t) \geq 0$, and $F(b) \geq 0$. Therefore, the inequality (1.1) holds.

J. Ineq. Pure and Appl. Math. 1(2) Art. 19, 2000 http://jipam.vu.edu.au

- (2) When $f'(t) \ge 1$, we have $G'(t) \le 0$, G(t) decreases, $G(t) \le 0$, $F'(t) \le 0$, and F(t) is decreasing, then $F(t) \le 0$, the inequality (1.1) reverses.
- (3) Since the equality in (1.1) holds only if f'(t) = 1 or f(t) = 0, substitution of f(t) = t + c into (1.1) and standard argument leads to c = -a.

The proof is completed.

Corollary 1.2. [3, p. 624] Let f(x) be a continuous function on the closed interval [0, 1] and f(0) = 0, its derivative of the first order is bounded by $0 \le f'(x) \le 1$ for $x \in (0, 1)$. Then

(1.2)
$$\int_0^1 \left[f(x) \right]^3 \mathrm{d}x \leqslant \left(\int_0^1 f(x) \, \mathrm{d}x \right)^2.$$

Equality in (1.2) holds if and only if f(x) = 0 or f(x) = x.

Proposition 1.3. Suppose f(x) has continuous derivative of the *n*-th order on the interval [a, b], $f^{(i)}(a) \ge 0$ and $f^{(n)}(x) \ge n!$, where $0 \le i \le n-1$, then

(1.3)
$$\int_{a}^{b} \left[f(x)\right]^{n+2} \mathrm{d}x \ge \left(\int_{a}^{b} f(x) \,\mathrm{d}x\right)^{n+2}$$

Proof. Let

(1.4)
$$H(t) = \int_{a}^{t} \left[f(x) \right]^{n+2} \mathrm{d}x - \left[\int_{a}^{t} f(x) \, \mathrm{d}x \right]^{n+1}, \quad t \in [a, b].$$

J. Ineq. Pure and Appl. Math. 1(2) Art. 19, 2000 http://jipam.vu.edu.au

Direct calculation produces

$$H'(t) = \left\{ \left[f(x) \right]^{n+1} - (n+1) \left[\int_{a}^{t} f(x) \, \mathrm{d}x \right]^{n} \right\} f(t) \triangleq h_{1}(t) f(t),$$

$$h'_{1}(t) = (n+1) \left\{ \left[f(x) \right]^{n-1} f'(t) - n \left[\int_{a}^{t} f(x) \, \mathrm{d}x \right]^{n-1} \right\} f(t) \triangleq (n+1) h_{2}(t) f(t),$$

$$h'_{2}(t) = \left\{ \left[f(x) \right]^{n-2} f''(t) + (n-1) \left[f(t) \right]^{n-3} \left[f'(t) \right]^{2} - n(n-1) \left[\int_{a}^{t} f(x) \, \mathrm{d}x \right]^{n-2} \right\} f(t) \triangleq h_{3}(t) f(t).$$

By induction, we obtain

(1.5)
$$h'_{i}(t) = \left\{ f^{(i)}(t) \left[f(t) \right]^{n-i} + p_{i}(t) - \frac{n!}{(n-i)!} \left[\int_{a}^{t} f(x) \, \mathrm{d}x \right]^{n-i} \right\} f(t) \triangleq h_{i+1}(t) f(t),$$

where $2 \leqslant i \leqslant n$ and

(1.6)
$$p_2(t) = (n-1) [f(t)]^{n-3} [f'(t)]^2,$$
$$p_{i+1}(t) f(t) = p'_i(t) + (n-i) f^{(i)}(t) [f(t)]^{n-i-1} f'(t).$$

From $f^{(n)}(t) \ge n!$ and $f^{(i)}(a) \ge 0$ for $0 \le i \le n-1$, it follows that $f^{(i)}(t) \ge 0$ and are increasing for $0 \le i \le n-1$.

Using mathematical induction, it is easy to see that

$$p_i(t) = \sum_{\substack{j_0 + \sum_{k=1}^{i-1} k \cdot j_k = n-1}} C(j_0, j_1, \dots, j_{i-1}) \prod_{k=0}^{i-1} [f^{(k)}(t)]^{j_k},$$

Several Integral Inequalities

Feng Qi

J. Ineq. Pure and Appl. Math. 1(2) Art. 19, 2000 http://jipam.vu.edu.au

where j_k and $C(j_0, j_1, \ldots, j_{i-1})$ are nonnegative integers, $0 \le k \le i-1$.

Therefore, we obtain $p'_k(t) \ge 0$ and $p_{k+1}(t) \ge 0$, then $p'_{k-1}(t)$ and $p_k(t)$ are increasing for $2 \le k \le n$. Straightforward computation yields

$$h_{n+1}(t) = f^{(n)}(t) + p_n(t) - n!.$$

Considering $f^{(n)}(t) \ge n!$, we get $h_{n+1}(t) \ge 0$, and $h'_n(t) \ge 0$, then $h_n(t)$ increases.

By our definitions of $h_i(t)$, we have, for $1 \leq i \leq n-1$,

$$h_{i+1}(a) = f^{(i)}(a) [f(a)]^{n-i} + p_i(a) \ge 0.$$

Therefore, using induction on i, we obtain $h'_i(t) \ge 0$, $h_i(t) \ge 0$, and $h_i(t)$ are increasing for $1 \le i \le n$. Then $H'(t) \ge 0$ and increases, and $H(t) \ge 0$. The inequality (1.3) follows from $H(b) \ge 0$. Thus, Proposition 1.3 is proved.

Corollary 1.4. Let f(x) be *n*-times differentiable on [a,b], $f^{(i)}(a) \ge 0$ and $f^{(n)}(x) \ge n!$ for $0 \le i \le n-1$. Then the functions H(t), $h_j(t)$ and $p_k(t)$ defined by the formulae (1.4), (1.5) and (1.6) are increasing and convex, where $1 \le j \le n-1$ and $2 \le k \le n-2$.

Remark 1.1. The inequality (1.3) is not found in [1, 2, 4, 5]. So maybe it is a new inequality.

Lastly, we propose the following open problem:

Theorem 1.5 (Open Problem). Under what conditions does the inequality

(1.7)
$$\int_{a}^{b} \left[f(x)\right]^{t} \mathrm{d}x \ge \left(\int_{a}^{b} f(x) \,\mathrm{d}x\right)^{t-1}$$

hold for t > 1?

J. Ineq. Pure and Appl. Math. 1(2) Art. 19, 2000 http://jipam.vu.edu.au

References

- [1] E. F. BECKENBACH AND R. BELLMAN, *Inequalities*, Springer, Berlin, 1983.
- [2] G. H. HARDY, J. E. LITTLEWOOD AND G. PÓLYA, *Inequalities*, 2nd edition, Cambridge University Press, Cambridge, 1952.
- [3] JI-CHANG KUANG, *Applied Inequalities*, 2nd edition, Hunan Education Press, Changsha, China, 1993. (Chinese)
- [4] D.S. MITRINOVIĆ, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
- [5] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, *Classical and New Inequalities in Analysis*, Kluwer Academic Publishers, Dordrecht, 1993.

J. Ineq. Pure and Appl. Math. 1(2) Art. 19, 2000 http://jipam.vu.edu.au