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Abstract

In the article, some integral inequalities are presented by analytic approach and
mathematical induction. An open problem is proposed.
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1. Several Integral Inequalities
In this article, we establish some integral inequalities by analytic method and
induction.

Proposition 1.1. Let f(x) be differentiable on(a, b) and f(a) = 0. If 0 6
f ′(x) 6 1, then

(1.1)
∫ b

a

[
f(x)

]3
dx 6

(∫ b

a

f(x) dx

)2

.

If f ′(x) > 1, then inequality(1.1) reverses. The equality in(1.1) holds only if
f(x) ≡ 0 or f(x) = x− a.

Proof. Fora 6 t 6 b, set

F (t) =

(∫ t

a

f(x) dx

)2

−
∫ t

a

[
f(x)

]3
dx.

Simple computation yields

F ′(t) =

{
2

∫ t

a

f(x) dx−
[
f(t)

]2
}

f(t) , G(t)f(t),

G′(t) = 2
[
1− f ′(t)

]
f(t).

Sincef ′(t) > 0 andf(a) = 0, thusf(t) is increasing andf(t) > 0.

(1) When0 6 f ′(t) 6 1, we haveG′(t) > 0, G(t) increases andG(t) > 0 be-
cause ofG(a) = 0, henceF ′(t) = G(t)f(t) > 0, F (t) is increasing. Since
F (a) = 0, we haveF (t) > 0, andF (b) > 0. Therefore, the inequality
(1.1) holds.
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(2) Whenf ′(t) > 1, we haveG′(t) 6 0, G(t) decreases,G(t) 6 0, F ′(t) 6 0,
andF (t) is decreasing, thenF (t) 6 0, the inequality (1.1) reverses.

(3) Since the equality in (1.1) holds only iff ′(t) = 1 or f(t) = 0, substitution
of f(t) = t + c into (1.1) and standard argument leads toc = −a.

The proof is completed.

Corollary 1.2. [3, p. 624] Letf(x) be a continuous function on the closed
interval [0, 1] andf(0) = 0, its derivative of the first order is bounded by0 6
f ′(x) 6 1 for x ∈ (0, 1). Then

(1.2)
∫ 1

0

[
f(x)

]3
dx 6

(∫ 1

0

f(x) dx

)2

.

Equality in(1.2) holds if and only iff(x) = 0 or f(x) = x.

Proposition 1.3. Supposef(x) has continuous derivative of then-th order on
the interval[a, b], f (i)(a) > 0 andf (n)(x) > n!, where0 6 i 6 n− 1, then

(1.3)
∫ b

a

[
f(x)

]n+2
dx >

(∫ b

a

f(x) dx

)n+1

.

Proof. Let

(1.4) H(t) =

∫ t

a

[
f(x)

]n+2
dx−

[∫ t

a

f(x) dx

]n+1

, t ∈ [a, b].
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Direct calculation produces

H ′(t) =

{[
f(x)

]n+1 − (n + 1)

[∫ t

a

f(x) dx

]n}
f(t) , h1(t)f(t),

h′1(t) =(n + 1)

{[
f(x)

]n−1
f ′(t)− n

[∫ t

a

f(x) dx

]n−1}
f(t) , (n + 1)h2(t)f(t),

h′2(t) =

{[
f(x)

]n−2
f ′′(t) + (n− 1)

[
f(t)

]n−3[
f ′(t)

]2

− n(n− 1)

[∫ t

a

f(x) dx

]n−2}
f(t) , h3(t)f(t).

By induction, we obtain
(1.5)

h′i(t) =

{
f (i)(t)

[
f(t)

]n−i
+pi(t)−

n!

(n− i)!

[∫ t

a

f(x) dx

]n−i}
f(t) , hi+1(t)f(t),

where2 6 i 6 n and

p2(t) = (n− 1)
[
f(t)

]n−3[
f ′(t)

]2
,

pi+1(t)f(t) = p′i(t) + (n− i)f (i)(t)
[
f(t)

]n−i−1
f ′(t).

(1.6)

From f (n)(t) > n! and f (i)(a) > 0 for 0 6 i 6 n − 1, it follows that
f (i)(t) > 0 and are increasing for0 6 i 6 n− 1.

Using mathematical induction, it is easy to see that

pi(t) =
∑

j0+
i−1∑
k=1

k·jk=n−1

C(j0, j1, . . . , ji−1)
i−1∏
k=0

[
f (k)(t)

]jk ,
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wherejk andC(j0, j1, . . . , ji−1) are nonnegative integers,0 6 k 6 i− 1.
Therefore, we obtainp′k(t) > 0 andpk+1(t) > 0, thenp′k−1(t) andpk(t) are

increasing for2 6 k 6 n. Straightforward computation yields

hn+1(t) = f (n)(t) + pn(t)− n!.

Consideringf (n)(t) > n!, we gethn+1(t) > 0, andh′n(t) > 0, thenhn(t)
increases.

By our definitions ofhi(t), we have, for1 6 i 6 n− 1,

hi+1(a) = f (i)(a)
[
f(a)

]n−i
+ pi(a) > 0.

Therefore, using induction oni, we obtainh′i(t) > 0, hi(t) > 0, andhi(t) are
increasing for1 6 i 6 n. ThenH ′(t) > 0 and increases, andH(t) > 0. The
inequality (1.3) follows fromH(b) > 0. Thus, Proposition1.3 is proved.

Corollary 1.4. Let f(x) be n-times differentiable on[a, b], f (i)(a) > 0 and
f (n)(x) > n! for 0 6 i 6 n − 1. Then the functionsH(t), hj(t) and pk(t)
defined by the formulae(1.4), (1.5) and (1.6) are increasing and convex, where
1 6 j 6 n− 1 and2 6 k 6 n− 2.

Remark 1.1. The inequality (1.3) is not found in [1, 2, 4, 5]. So maybe it is a
new inequality.

Lastly, we propose the following open problem:

Theorem 1.5 (Open Problem).Under what conditions does the inequality

(1.7)
∫ b

a

[
f(x)

]t
dx >

(∫ b

a

f(x) dx

)t−1

hold for t > 1 ?
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