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An analytical framework for analysis of a class of nonlinear systems with time varying inputs is presented. It is
shown that the trajectories of the transformed nonlinear systems are uniformly bounded with an ultimate bound
under certain conditions shown in this paper. The result obtained is useful for applications, in particular, analysis
and design of gain scheduling.
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1. INTRODUCTION

The main idea of gain scheduling is that linear design methods are applied to nonlinear
control design provided that the scheduling variable captures the plant’s nonlinearity and
varies slowly. In spite of its wideapplications [1]-[3], the analytical framework on analysis
and design of gain scheduling is still in process [4]-[8] to give the gain scheduling
approach a rigorous mathematical justification. Based on the Gronwall-Bellman inequal-
ity, a stability theorem has been presented in [4]. In [5]-[8], Liapunov functions have been
constructed to investigate the robustness and stability properties. However most of their
results are limited to slow variations in the scheduling variables. In this paper, we present
a theoretical foundation for gain scheduling without restriction to slow variations in the
scheduling variables. We use Liapunov stability to analyze a class of nonlinear systems
with time varying inputs and obtain an ultimate bound on the discrepancy between the
exact solution and the fixed operating point. Since gain scheduling is a nonlinear feedback
whose parameters evolve as functions of exogeneous variables, gain scheduling yields a
closed loop system that is nonlinear, at least in the scheduling variables. Thus the ultimate
behavior of the resulting nonlinear system with time varying inputs can be analyzed using
the Theorem formulated below.

2. MAIN RESULT

Consider the following system.
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£ =f(x, u(®) 6Y)

where x € R" and u(¢) € T" which is a bounded, open subset of R, ¥Vt = 0. Let |I-1| denote

the Euclidean norm of a time varying vector, and also the corresponding induced norm on
a matrix. Assume that

(i) fis twice continuously differentiable,
(ii) the equation fix, u(f)) = 0, Vu(f) € T" has a continuously differentiable solution
x = h(u),
(iii) Nua@)ll <y, Vt = 0,
(iv) there exist positive constants @, k;, and k, such that A\ (u(?)) + )\:(u(t)) = —20,k0o
= IN@) = kyo, Yu@) € T, i = 1,..., n where N\(u(?)) is the eigenvalue of

) *
a—f(h(u), u(t)) for each fixed t = 0 and \; (u(?)) is the complex conjugate of N\, (u()).
x

Since f is continuously differentiable, f{x, u(¢)) can be rewritten as
of
Sfix, u(®) = fih(u), u()) + P (h(w), u(D)(x — h(u))

of of
+ [ (', u(®) — — (h(w), u(®)1(x — h(u)) 2)
ox ox

where x' is a point on the line segment joining x and h(u). Let y = x — h(u), then

oh(u)
y = fix,u) — u(r) )
u
. of of oh(u) of
Using the fact that — (h(u), u(r)) = 0, we have — (h(u), u(r)) u®) + — (h(w),
at ax ou ou

u(@®))u(r) = 0. Since det [% (h(w), u(®)] # 0,Vu(r) €T, we obtain

oh ) )
a(u) ut) = —[-I (h(u), u(®)]™" ¥ (h(u), u(e))u(r) C)]
u ox ou
From (1)-(4),
y =A@y + R(®)y + B(H)u )

of of | of
where A(r) = a(h(u), u(®)), R@®) = [5 ', u@®) - a(h(u), u(®))),and B@®) =

9 0
[—f (h(), u@®)1 ™ ¥ (h(w), u(?)).
ox ou
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THeoREM: Consider the system (1) with assumptions (i)—(iv). Then there exists a positive

constant o, such that, for any o > o,

Iyl < m Iy(0)lle™ " + a,(a), Viy(0)l < as(o) (6)

where m is a positive constant and oy(+), ay(:), as(:) are class-K, class-L, class-K
functions (see [8]), respectively.
The proof of Theorem requires two auxiliary results.

Lemma 1: Under assumptions (i)—(iv), let Q(t) be a bounded matrix which is defined by

x

oM = f 0T A0 gy
0
of . L L
where A(f) = 5— (h(u), u(t)) and let o be a positive constant given in the assumption (iv).
X

_ c
Then there exist positive constants c,, c,, ¢3 such that IIA(®)Il = c,0o, IA on = 2
(o]

ol =< 2.
g

1
Proof: Let A (t) = — A(?), then there exists a nonsingular matrix P(f) such that
14

A(t) = aP7'(A JOP() @)

where A () is the Jordan form representation of A (7). Since A(#) is bounded, there exists
a positive constant k, such that IIA(D!Il = k, ollA,»ll. Note that 1A, =

max E A )} max 2 I(A,0)); . Let n, be the order of the largest Jordan block in

A\D). Then by simple algebralc manipulations, we have 1A, (#)Il = k, if n, = 1 and 1 +
k, otherwise. Thus IIA(#)!| = k,ok, if n, = 1 and k,0(1 + k,) otherwise.

1
From (7), A~'(®) = —P~'(t) A;'(?) P(t). Since A™'(¢) is also bounded, there exists a
g
k
positive constant k, such that IIA'I(t)II =2 IA; '(2)lI. Based on the same way, we obtain
o

IA; (ol = 2 k. ThuslA™'()l = =2 2 k'

Again, from (7, &7 = p~ (t)e"A’(t)'r — "7 P(y). Since ¢*®" is also a bounded
matrix, there exists a positive constant k, such that 11e*®"I| < & lle®*(f)r — ¢*®". In the

n, (O"T)l_l
A0=Dr Thus we have IQ(®)I =

same manner, we obtain lle® T = ¢

non (4= 2)
le®APdr < —= k = :
sz e 222‘*/‘2(1'—1)!(,'—1)!

lljl

QED.
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)
Since a—f (h(u), u(?)), Yu(t) € I is continuously differentiable, it follows that there exists
X

a positive constant -y, such that [IA(®)Il =< v, llu(®)ll, Vt = 0 where A(t) = —z (h(w),
ox

u(r)). Then we present the following lemma (see [6] for details) that will be used in the
proof of Theorem.

Lemma 2: Given IQ()Il = ﬁ, IA(®)Il = c,0, and [IA(f)|| < vy,v, where Q(f) and A(t) are
o]
defined in Lemma 1, then the following relationships hold: (i) AT()Q() + QA = —I,

1
(i) 3 — Iy = 37 Oy = S iR, G IO = 22y, y,-
c, o o
Proof of the Theorem: Consider V(t, y) = y"Q(2)y. Then, from (5) and Lemmas 1 & 2,

V@t y) = =y AT ()00 + 0O A®)y + ¥ Oy
+2yT Q(OR®)y + 2y" Q(1)B(H)u
= —Iyl® + 1Q@I Iyl? + 2 1Q@)I IR Iyl

+ 200 BN Iyl il

)
Since f(x, u()) is twice continuously differentiable, a—-f (x, u(?)) is Lipschitz in x on any
X

bounded region B € R". Thus there exists a positive constant L such that
0, )
Ilé{ (x, u(@®) — al(h(u), udl = Lix — k@, Vx, h(u) € B, VYu(t) €T. As it follows
X
from (5), since fih(u), u(r)), Yu(?) € T is continuously differentiable, there exists a positive
constant <y, such that [IB(®)Il < v;IlA~!(¢)ll, Yu(z) € T. Then, from Lemmas 1 & 2, it is
easy to show

. 1 2 3'Y1W’2 2 2c, 37173
Vi y) < —( — Iy Iyl Wiyl < ——
. y) (2 g ) 2 i Vil <7 3L
=-(1-0) (— 2% 200 12 Yy € D, 0< 6 < 1 ®)
0'
o 4
where D, = {y € R" d, < liyll <d,} and d, = d, = — 2303

4e, L 2 B 0(a” — 4¢3 7))

yando, = 2\/c3 YiYa + 2¢5¢5 %'y; Since o>

0y, it is easy to verify that 0 <N <5 and D, # ¢. From Lemma 2 and (8), we obtain

2c; €3 'Y1'Yz

1
LetN = (1 — 9)(5 -
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. oN
Vi,y = —?-V(t,y), Vy € D, )
3

Then, from Lemma 2 and (9),

aNt aoNt
Iy(B)IF < 2¢,0V (0, y(0)) e & = 2¢,c3y(O)* e” &, Vy € D,

oNt
Hence ly®)ll = \/2c,c; ly(0)ll e 2c;, Vy € D,. Thus, by simple algebraic manipulations,
we have

_oht 4cyC3Y1Y3
ly(O)Il = \/ 2c,¢5 ly(O)ll e 2e; + ———————, Vy(0) € D (10)
y( 163 Iy(0) ¢ 8(c? — 4C§ YY) W( 2
n dl - dz
where D, = {y(0) € R"liy(0)Il < }. Q.ED.

\ 2c¢i¢4

Note that, for the fast varying u(?), the ultimate bound in (10) can be made as small as
possible by introducing large o. If, in addition, limu(t) =0, then we can show

t—x

lim y(t) = O by repeating the steps of the proof of Theorem.
t—x
Example: Consider the following system with the desired output c(f) = 0.

%,(5) = —30x,() + x3(t) + sin 2t
%) = X308 + x,(0) + u?)
c(®) = x)(¥)

where u(f) is the control input. Since the operating condition is specified by the
exogeneous variable, sin 27, it is used as a scheduling variable. For each fixed scheduling
variable, the frozen system has a fixed operating point defined by x = h(u). In order to

sin 2t
have the desired output as fixed operating points, h(u) = [T 0]" and the gain scheduled

. sin 2¢ . . .
control law is u () = Ix,(t) — (—3’-0—)2 where [ is the constant to be chosen. Since, as it

follows from the above, A(x, u(f)) and h(u) are smooth and the eigenvalues of

J
a—f(h(u), u(t)) for each fixed ¢ = 0 have negative real parts for any value of / less than —1,
X

the conditions (i)—(ii) and (iv) are satisfied. It also follows from u(#) = sin 2t that u(¢)
satisfies the condition (iii). Thus all the conditions of Theorem are met and as it follows
from (10), the ultimate bound on y(¢) is less than 0.007 for [ = —25. Fig. 1 shows the
trajectories of x(#), y(¢) for [ = —25. It is observed from Fig. 1 that x(#) asymptotically
follows h(u) and y(f) is uniformly bounded with the ultimate bound obtained from (10).
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-dlo -0:0

Figure 1 Asymptotic tracking performance
a Trajectory of x(z) for 1 = —25 with x(0) = [0.5 0.2]7
b Trajectory of y(r) for 1 = —25 with y(0) = [0.5 0.2)7

3. CONCLUSION

In this paper, we analyze nonlinear systems with time varying inputs. In particular, we
show the effect of input variations on the trajectories of the transformed nonlinear systems
in (10). We also show that the result obtained is useful to analysis and design of gain
scheduling.
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