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Exact analytical solutions of boundary layer flows along a vertical porous plate with uniform
suction are derived and presented in this paper. The solutions concern the Blasius, Sakiadis,
and Blasius-Sakiadis flows with buoyancy forces combined with either MHD Lorentz or EMHD
Lorentz forces. In addition, some exact solutions are presented specifically for water in the
temperature range of 0◦C ≤ T ≤ 8◦C, where water density is nearly parabolic. Except for their
use as benchmarking means for testing the numerical solution of the Navier-Stokes equations, the
presented exact solutions with EMHD forces have use in flow separation control in aeronautics
and hydronautics, whereas the MHD results have applications in process metallurgy and fusion
technology. These analytical solutions are valid for flows with strong suction.
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1. Introduction

Free convection along a vertical plate with mass transfer at the wall has been studied by
many authors in the past. Eichhorn [1] was the first to study the effect of suction and
injection on free convective flow. He considered power-law variation of plate temperature
and transpiration velocity under which self-similar solutions of the governing equations
are possible. For the case of isothermal plate with uniform blowing or suction, similarity
does not exist. For the latter problem, Sparrow and Cess [2] provided approximate series
solutions valid near the plate leading edge for Pr = 0.72. This problem was considered
in more detail by Merkin [3] who obtained asymptotic solutions, valid at large distances
from the leading edge. The next-order corrections to the boundary layer solution for this
problem, concerning gases, were obtained by Clarke [4] who did not invoke the usual
Boussinesq approximation. The solutions for strong suction and blowing on general body
shapes which admit a similarity solution have been given by Merkin [5]. Parikh et al. [6]
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studied both numerically and experimentally the problem of air (Pr = 0.7) free convection
over an isothermal porous vertical plate with uniform transpiration taking into account the
air variable physical properties. Minkowycz and Sparrow [7] using the local nonsimilarity
method presented solutions for a wide range of Pr numbers. Vedhanayagam et al. [8]
presented a transformation of the equations for general blowing and wall temperature
variations, as well as results for the isothermal plate with uniform blowing. A solution to
the constant plate temperature with uniform air blowing, based on the film model, has been
derived by Brouwers [9]. In a subsequent paper, Brouwers [10], using the film model, derived
a thermal correction factor and a novel friction correction factor which were applied to free
convection along a vertical porous plate. The problem of blowing and suction on the free
convection over a vertical plate with a given wall heat flux has been considered by Chaudhary
and Merkin [11] who presented results valid for Pr = 1. Merkin [12] considered again
the problem of free convection flow over a vertical plate with prescribed temperature, and
presented results for variable transpiration velocities for Pr 1 and 7.

In all of the above works, the buoyant force is produced by the temperature difference
between the plate and the ambient fluid. Another kind of vertical force which resembles the
buoyant force is the electromagnetohydrodynamic (EMHD) Lorentz force which acts parallel
to the plate either assisting or opposing the flow. The EMHD Lorentz force can be generated
by a stripwise arrangement of flush mounted electrodes and permanent magnets. Gailitis
and Lielausis [13] were probably the first to propose the use of the EMHD Lorentz force
for flow control over a plate. The idea of using the EMHD Lorentz force for flow control by
Gailitis and Lielausis was later abandoned and only recently attracted new attention [14–17].
In addition, in last years much investigation on flow control using the EMHD Lorentz force
was conducted at the Rossendorf Institute and the Institute for Aerospace Engineering in
Dresden, Germany [18–22].

Magnetohydrodynamics (MHD) is the field of fluid mechanics that encompasses the
phenomena arising when a magnetic field is applied to an electrically conducting fluid. Air,
water, and especially liquid metals (lithium, mercury, and sodium) are electrically conducting
fluids. The effect of an applied magnetic field on heat transfer in external flows has been
investigated mainly for the cases of flat plate boundary layer and blunt body stagnation
point flows. The works published in these areas appeared in the late 1950’s and early 1960’s
with application to space-vehicle surface heating upon reentry. MHD is also applied to fusion
technology [23].

The problem of flow along a vertical, stationary, isothermal plate of an electrically
conducting fluid under a horizontal magnetic field is a classical problem in magnetohy-
drodynamics and has been treated for the first time by Sparrow and Cess [24]. Riley [25]
and Kuiken [26] have reexamined the problem in order to give exact solutions, but their
attempts to use the method of matched asymptotic expansions encountered difficulties.
The first complete exact results for this problem have been given by Wilks [27] for
Pr = 0.72.

In all of the above works, the vertical plate and the ambient fluid were motionless; that
is, the problem treated was pure free convection. The problem of fluid flow along a stationary,
impermeable, horizontal plate situated in a fluid stream moving with constant velocity is a
classical problem of fluid mechanics that has been solved for the first time in 1908 by Blasius
[28]. In this problem, the fluid motion is produced by the free stream. A similar problem
occurs when the plate moves with constant velocity in a calm fluid. This problem has been
treated for the first time by Sakiadis [29]. MHD flows along a moving plate in viscoelastic and
micropolar fluids are treated in [30–34]. The combination of a moving vertical plate within
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Figure 1: The flow configuration and coordinate system.

a vertical free stream with the existence of a vertical buoyancy force is called here Sakiadis-
Blasius-buoyant flow.

The purpose of the present paper is to present some new exact analytical solutions
for the Sakiadis-Blasius-buoyant flow over a vertical plate with uniform suction with either
EMHD Lorentz or MHD Lorentz forces. Exact solutions of the Navier-Stokes equations
are important for two reasons [35]. Owing to their uniform validity, the basic phenomena
described by them can be more closely studied. In addition, the exact solutions serve as
standards for checking the accuracies of the many approximate methods, whether they
are numerical, asymptotic, or empirical. Current computer technology makes the complete
numerical integration of the Navier-Stoles equations feasible. However, the accuracy of the
results can only be ascertained by comparison with an exact solution.

2. The mathematical model

Consider the flow along a vertical plate with u and v denoting, respectively, the velocity
components in the x and y directions, where x is the coordinate along the plate and y is the
coordinate perpendicular to x (see Figure 1). For steady two-dimensional flow, the boundary
layer equations with constant fluid properties and linear relationship between density and
temperature are as follows:

continuity equation:

∂u

∂x
+
∂v

∂y
= 0, (2.1)

momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβ

(
T − T∞

)
, (2.2)
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energy equation:

u
∂T

∂x
+ v

∂T

∂y
= λ

∂2T

∂y2
, (2.3)

where ν is the fluid kinematic viscosity, g is the gravitational acceleration, β is the volumetric
expansion coefficient, T is the fluid temperature, and λ is the fluid thermal diffusivity.

When the suction velocity is very strong, (2.1)–(2.3) take the following forms [36, page
297]:

continuity equation:

∂v

∂y
= 0, (2.4)

momentum equation:

v
∂u

∂y
= ν

∂2u

∂y2
+ gβ

(
T − T∞

)
, (2.5)

energy equation:

v
∂T

∂y
= λ

∂2T

∂y2
. (2.6)

It follows from (2.4) that v = vw = constant and the momentum and energy equations take
the following forms:

momentum equation:

ν
∂2u

∂y2
− vw

∂u

∂y
= −gβ

(
T − T∞

)
, (2.7)

energy equation:

λ
∂2T

∂y2
− vw

∂T

∂y
= 0. (2.8)

For combined Sakiadis-Blasius flow, the boundary conditions are as follows:

at y = 0: u = uw, v = vw, T = Tw,

as y −→ ∞, u = u∞, T = T∞.
(2.9)

In the present work, the suction velocity vw is always negative.
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Figure 2: Arrangement of electrodes and magnets for the creation of an EMHD Lorentz force F in the flow
along a flat plate [20].

The energy equation (2.8) is independent of the momentum equation, and its solution
[36, page 207] is

T − T∞
Tw − T∞

= exp
(
vwy

λ

)
. (2.10)

3. Results and discussion

3.1. Sakiadis-Blasius flow with buoyancy forces and EMHD Lorentz forces

It is assumed that, except for the buoyancy force, an EMHD Lorentz force acts parallel to
the plate. The EMHD Lorentz force can be generated by a stripwise arrangement of flush
mounted electrodes and permanent magnets as sketched in Figure 2. For more information
see Weier [20]. Then, the momentum equation (2.7) takes the following form:

ν
∂2u

∂y2
− vw

∂u

∂y
= −gβ

(
T − T∞

)
−
πj0M0

8ρ∞
exp

(
− π
a
y

)
, (3.1)

where j0 is the applied current density, M0 is the magnetization of the permanent magnets, α
is the width of magnets and electrodes, and ρ∞ is the ambient fluid density. It should be noted
here that the EMHD Lorentz force can either assist or oppose the flow and is independent of
the flow field. The last term in the momentum equation is the EMHD Lorentz force which
assists the flow and decreases exponentially with y. Substituting the temperature difference
from (2.10) into (3.1), we have

ν
∂2u

∂y2
− vw

∂u

∂y
= −gβ

(
Tw − T∞

)
exp

(
vw
λ
y

)
−
πj0M0

8ρ∞
exp

(
− π
a
y

)
. (3.2)
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Equation (3.2) is a linear differential equation of second order and has the following exact
analytical solution for the Sakiadis-Blasius-buoyant-EMHD flow:

u − u∞
uw − u∞

= (1 +G + Z) exp
(
vw
ν
y

)
−G exp

(
vw
λ
y

)
− Z exp

(
− π
a
y

)
, (3.3)

where G is the buoyancy parameter:

G =
λgβ(Tw − T∞)

(uw − u∞)v2
w(Pr−1)

(3.4)

and Z is the Lorentz parameter:

Z =
j0M0a

2

8ρ∞(uw − u∞)(πν + avw)
. (3.5)

The Prandtl number is

Pr =
ν

λ
. (3.6)

Both parameters G and Z are dimensionless. The absolute wall shear stress is

τw = ρ∞
(
uw − u∞

)
vw −

μgβ(Tw − T∞)
vw Pr

+
j0M0a

8
, (3.7)

while the dimensionless skin-friction coefficient is

cf =
τw

ρ∞(uw − u∞)vw
= 1 +G(1 − Pr) + Z

(
π

Re
+ 1

)
, (3.8)

where Re is the suction Reynolds number:

Re =
avw
ν

. (3.9)

It should be noted here that this is the first work on fluid mechanics which uses both EMHD
Lorentz forces and suction simultaneously, and therefore the above Reynolds number, using
as characteristic length the distance between the magnets, appears for the first time in the
literature.

When

Z = −1 −G(1 − Pr)
(
π

Re
+ 1

)−1

, (3.10)
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Figure 3: Dimensionless velocity distribution for different kinds of flow with buoyancy forces and Lorentz
forces. In cases (a) and (b), the wall shear stress is zero.

the wall shear stress is zero. In Figure 3(a), two velocity profiles are shown for which the wall
shear stress is zero ((3.10) is valid). The transverse coordinate η is

η = −vw
ν
y, (3.11)

and the two curves meet the vertical axis orthogonally.
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When the free-stream velocity is zero, we have the Sakiadis-buoyant-EMHD flow:

u

uw
=
(
1 +Gs + Zs

)
exp

(
vw
ν
y

)
−Gs exp

(
vw
λ
y

)
− Zs exp

(
− π
a
y

)
, (3.12)

where

Gs =
λgβ(Tw − T∞)
uwv

2
w(Pr−1)

,

Zs =
j0M0a

2

8ρ∞uw(πν + avw)
.

(3.13)

The absolute wall shear stress is

τw = ρ∞uwvw −
μgβ(Tw − T∞)

vw Pr
+
j0M0a

8
, (3.14)

while the dimensionless skin-friction coefficient is

cf =
τw

ρuwvw
= 1 +Gs(1 − Pr) + Zs

(
π

Re
+ 1

)
. (3.15)

When

Zs = −1 −Gs(1 − Pr)
(
π

Re
+ 1

)−1

, (3.16)

the wall shear stress is zero.
When the plate is motionless, we have the Blasius-buoyant-EMHD flow:

u

u∞
= 1 −

(
1 −Gb − Zb

)
exp

(
vw
ν
y

)
−Gb exp

(
vw
λ
y

)
− Zb exp

(
− π
a
y

)
, (3.17)

where

Gb =
λgβ(Tw − T∞)
u∞v

2
w(Pr−1)

,

Zb =
j0M0a

2

8ρ∞u∞(πν + avw)
.

(3.18)

The absolute wall shear stress is

τw = −ρ∞u∞vw −
μgβ(Tw − T∞)

vw Pr
+
j0M0a

8
, (3.19)
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while the dimensionless skin-friction coefficient is

cf =
τw

ρ∞u∞vw
= −1 +Gb(1 − Pr) + Zb

(
π

Re
+ 1

)
. (3.20)

When

Zb = 1 −Gb(1 − Pr)
(
π

Re
+ 1

)−1

, (3.21)

the wall shear stress is zero.
When the plate is motionless and the free-stream velocity is zero, we have pure free

convection and the analytical solution becomes

u

vw
=
(
G0 + Z0

)
exp

(
vw
ν
y

)
−G0 exp

(
vw
λ
y

)
− Z0 exp

(
− π
a
y

)
, (3.22)

where

G0 =
λgβ(Tw − T∞)
v3
w(Pr−1)

,

Z0 =
j0M0a

2

8ρ∞vw(πν + avw)
.

(3.23)

In (3.22), the longitudinal velocity u is nondimensionalized with suction velocity vw because
in the above problem the suction velocity is the apparent characteristic velocity of the flow.

The absolute wall shear stress is

τw = −
μgβ(Tw − T∞)

vw Pr
+
j0M0a

8
, (3.24)

while the dimensionless skin-friction coefficient is

cf =
τw

ρv2
w

= G0(1 − Pr) + Z0

(
π

Re
+ 1

)
. (3.25)

When

Z0 = G0(Pr−1)
(
π

Re
+ 1

)−1

, (3.26)

the wall shear stress is zero. In Figure 3(b), two velocity profiles are shown for which the
wall shear stress is zero. The velocity profiles near the plate for cases (a) and (b) are shown
in Figure 4.
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Figure 4: The velocity profiles near the plate for cases (a) and (b) where it is clearly shown that the wall
shear stress is zero.

When there is no Lorentz force, we have convection due to buoyancy force only and
velocity is given by

u

vw
= G0 exp

(
vw
ν
y

)
−G0 exp

(
vw
λ
y

)
. (3.27)

The absolute wall shear stress is

τw = −
μgβ(Tw − T∞)

vw Pr
, (3.28)

while the dimensionless skin-friction coefficient is

cf =
τw

ρv2
w

= G0(1 − Pr). (3.29)

When there is no buoyancy force, we have convection due to EMHD Lorentz force only and
velocity is given by

u

vw
= Z0 exp

(
vw
ν
y

)
− Z0 exp

(
− π
a
y

)
. (3.30)

This is a new “strange” kind of convection caused by the EMHD Lorentz force only. The
physical meaning of the above equation is as follows. Let us suppose that we have a porous
plate where fluid is removed with uniform suction. Although the plate is motionless and the
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ambient fluid is at rest, a boundary layer forms along the plate due to the act of the Lorentz
force which is independent of the flow.

The absolute value of wall shear stress is

τw =
j0M0a

8
, (3.31)

while the dimensionless skin-friction coefficient is

cf =
τw

ρv2
w

= Z0

(
π

Re
+ 1

)
. (3.32)

It is surprising that the absolute wall shear stress is independent of viscosity and suction
velocity.

3.2. Sakiadis-Blasius flow with buoyancy forces and
EMHD Lorentz forces in water near 4◦C

The momentum equation with EMHD Lorentz force and the buoyancy force expressed in
density is

ν
∂2u

∂y2
− vw

∂u

∂y
= −g

ρ∞ − ρ
ρ∞

−
πj0M0

8ρ∞
exp

(
− π
a
y

)
. (3.33)

The buoyancy term can be calculated from the following equation [37]:

ρ∞ − ρ
ρ∞

= γ
(
T − T∞

)2
, (3.34)

where γ = 0.8×10−5(◦C)−2. Equation (3.34) is valid for the temperature range of 0◦C ≤ T ≤ 8◦C,
and T∞ = 4◦C where the variation of water density is nearly parabolic. Therefore, (3.33)
becomes

ν
∂2u

∂y2
− vw

∂u

∂y
= −gγ

(
T − T∞

)2 −
πj0M0

8ρ
exp

(
− π
a
y

)
. (3.35)

Substituting the temperature difference from (2.10) into (3.35), we have

ν
∂2u

∂y2
− vw

∂u

∂y
= −gγ

(
Tw − T∞

)2 exp
(

2vw
λ

y

)
−
πj0M0

8ρ
exp

(
− π
a
y

)
. (3.36)

The exact solution of this equation is

u − u∞
uw − u∞

= (1 +W + Z) exp
(
vw
ν
y

)
−W exp

(
2vw
λ

y

)
− Z exp

(
− π
a
y

)
, (3.37)
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where

W =
λgγ(Tw − T∞)2

2(uw − u∞)v2
w(2 Pr−1)

. (3.38)

The absolute wall shear stress is

τw = ρ∞
(
uw − u∞

)
vw −

μgγ(Tw − T∞)2

2vw Pr
+
j0M0a

8
, (3.39)

while the dimensionless skin-friction coefficient is

cf =
τw

ρ∞(uw − u∞)vw
= 1 +W(1 − 2 Pr) + Z

(
π

Re
+ 1

)
. (3.40)

The wall shear stress becomes zero when

Z = −1 +W(2 Pr−1)
(
π

Re
+ 1

)−1

. (3.41)

When the free-stream velocity is zero, we have the Sakiadis-buoyant-EMHD flow:

u

uw
= (1 +Ws + Zs) exp

(
vw
ν
y

)
−Ws exp

(
2vw
λ

y

)
− Zs exp

(
− π
a
y

)
, (3.42)

where

Ws =
λgγ(Tw − T∞)2

2uwv2
w(2 Pr−1)

. (3.43)

The absolute wall shear stress is

τw = ρ∞uwvw −
μgγ(Tw − T∞)2

2vw Pr
+
j0M0a

8
, (3.44)

while the dimensionless skin-friction coefficient is

cf =
τw

ρ∞uwvw
= 1 +Ws(1 − 2 Pr) + Zs

(
π

Re
+ 1

)
. (3.45)

The wall shear stress becomes zero when

Zs = −1 +Ws(2 Pr−1)
(
π

Re
+ 1

)−1

. (3.46)



Asterios Pantokratoras 13

When the plate is motionless, we have the Blasius-buoyant-EMHD flow:

u

u∞
= 1 −

(
1 −Wb − Zb

)
exp

(
vw
ν
y

)
−Wb exp

(
2vw
λ

y

)
− Zb exp

(
− π
a
y

)
, (3.47)

where

Wb =
λgγ(Tw − T∞)2

2u∞v2
w(2 Pr−1)

. (3.48)

The absolute wall shear stress is

τw = −ρ∞u∞vw −
μgγ(Tw − T∞)2

2vw Pr
+
j0M0a

8
, (3.49)

while the dimensionless skin-friction coefficient is

cf =
τw

ρu∞vw
= −1 +Wb(1 − 2 Pr) + Zb

(
π

Re
+ 1

)
. (3.50)

The wall shear stress becomes zero when

Zb = 1 +Wb(2 Pr−1)
(
π

Re
+ 1

)−1

. (3.51)

When the plate is motionless and the free-stream velocity is zero, we have pure free
convection and the analytical solution becomes

u

vw
=
(
W0 + Z0

)
exp

(
vw
ν
y

)
−W0 exp

(
2vw
λ

y

)
− Z0 exp

(
− π
a
y

)
, (3.52)

where

W0 =
λgγ(Tw − T∞)2

2v3
w(2 Pr−1)

. (3.53)

The absolute wall shear stress is

τw = −
μgγ(Tw − T∞)2

2vw Pr
+
j0M0a

8
, (3.54)

while the dimensionless skin-friction coefficient is

cf =
τw

ρv2
w

=W0(1 − 2 Pr) + Z0

(
π

Re
+ 1

)
. (3.55)
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The wall shear stress becomes zero when

Z0 =W0(2 Pr−1)
(
π

Re
+ 1

)−1

. (3.56)

When there is no EMHD Lorentz force, we have convection due to buoyancy force only and
velocity is given by

u

vw
=W0 exp

(
vw
ν
y

)
−W0 exp

(
2vw
λ

y

)
. (3.57)

The absolute wall shear stress is

τw = −
μgγ(Tw − T∞)2

2vw Pr
, (3.58)

while the dimensionless skin-friction coefficient is

cf =
τw

ρv2
w

=W0(1 − 2 Pr). (3.59)

3.3. Magnetohydrodynamic free convection with uniform suction

The momentum equation for this problem is [24]

ν
∂2u

∂y2
− vw

∂u

∂y
− σB

2

ρ∞
u = −gβ

(
Tw − T∞

)
exp

(
vw
λ
y

)
, (3.60)

where σ is the fluid electrical conductivity and B is the strength of magnetic field which is
applied transversely to the flow (see Figure 1). The MHD Lorentz force σB2u/ρ∞ always
opposes the flow.

The analytical solution of the Sakiadis-buoyant-MHD flow for a moving plate has been
produced by Vajravelu [38]. Here we will give the analytical solution for a motionless plate
and motionless ambient fluid (pure free convection). The exact solution is

u

vw
= Gm

(
exp

(
A
vw
ν
y

)
− exp

(
vw
λ
y

))
, (3.61)

Where A = 0.5(1 + (1 + 4M)1/2), M is the Hartmann number:

M =
σB2ν

ρ∞v
2
w

, (3.62)

and Gm is the buoyancy parameter:

Gm =
νgβ(Tw − T∞)

v3
w(Pr2 − Pr−M)

. (3.63)
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The absolute wall shear stress is

τw =
μgβ(Tw − T∞)(A − Pr)

vw(Pr2 − Pr−M)
, (3.64)

while the dimensionless skin-friction coefficient is

cf =
τw

ρ∞v
2
w

= Gm(A − Pr). (3.65)

3.4. Magnetohydrodynamic Sakiadis flow in water near 4◦C

The momentum equation with magnetic field and buoyancy force expressed in density is

ν
∂2u

∂y2
− vw

∂u

∂y
− σB

2

ρ∞
u = −g

ρ∞ − ρ
ρ∞

. (3.66)

Taking into account (3.34), we have

ν
∂2u

∂y2
− vw

∂u

∂y
− σB

2

ρ∞
u = −gγ

(
T − T∞

)2
. (3.67)

Substituting the temperature difference from (2.10) into (3.67), we have

ν
∂2u

∂y2
− vw

∂u

∂y
− σB

2

ρ∞
u = −gγ

(
Tw − T∞

)2 exp
(

2vw
λ

y

)
. (3.68)

Equation (3.68) has the following analytical solution for Sakiadis-buoyant-MHD flow:

u

uw
=
(
1 +Gsw

)
exp

(
A
vw
ν
y

)
−Gsw exp

(
2vw
λ

y

)
, (3.69)

where

Gsw =
νgγ(Tw − T∞)2

uwv
2
w(4 Pr2 − 2 Pr−M)

. (3.70)

The absolute wall shear stress is

τw = ρ∞uwvwA +
μgγ(Tw − T∞)2(A − 2 Pr)

vw(4 Pr2 − 2 Pr−M)
, (3.71)

while the dimensionless skin-friction coefficient is

cf =
τw

ρ∞uwvw
= A +Gsw(A − 2 Pr). (3.72)



16 Mathematical Problems in Engineering

When the plate is motionless, we have pure free convection and velocity is given by

u

vw
= G0w exp

(
A
vw
ν
y

)
−G0w exp

(
2vw
λ

y

)
, (3.73)

where

G0w =
νgγ(Tw − T∞)2

v3
w(4 Pr2 − 2 Pr−M)

. (3.74)

The absolute wall shear stress is

τw =
μgγ(Tw − T∞)2(A − 2 Pr)

vw(4 Pr2 − 2 Pr−M)
, (3.75)

while the dimensionless skin-friction coefficient is

cf =
τw

ρ∞v
2
w

= Gsw(A − 2 Pr). (3.76)

4. Conclusions

In this paper, the boundary layer buoyant flow along a vertical porous plate with uniform
suction has been treated. Exact analytical solutions have been found for Blasius, Sakiadis,
and combined Blasius-Sakiadis flows with MHD and EMHD Lorentz forces. A series of new
dimensionless parameters (G, Z, W, Re) are introduced for the presentation of the results in
elegant form. The author believes that the results of the present work will enrich the list with
the existing exact solutions of the Navier-Stokes equations and may help the investigation
of flow separation control in aeronautics and hydronautics as well as the application of
magnetohydrodynamics in industry.
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