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In the present work, hysteresis is simulated by means of internal variables. Analytical
models of different types of hysteresis loops enable reproduction of major and minor
loops and provide good agreement with experimental data. Using an effective algorithm
based on the analysis of wandering trajectories, an evolution of chaotic behavior regions
of oscillators with hysteresis is presented in various parametric planes. A substantial in-
fluence of a hysteretic dissipation value on the form and location of these regions and
also restraining and generating effects of the hysteretic dissipation on chaos occurrence
are shown. It was demonstrated that for fixed parameters, which govern the shape of a
hysteresis loop, the extent of pinch of this loop could be controlled by means of the am-
plitude and frequency of external periodic excitation.

Copyright © 2006 J. Awrejcewicz and L. Dzyubak. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Hysteresis is caused by very different processes in nature and is characterized above all
by the presence of an output delay with respect to input in an input-output correlation,
energy dissipation, and memory in a system. The problem of hysteretic systems investiga-
tion occurs in many fields of science for mechanical, engineering, physical, and biological
systems and even for sociological and economic systems.

The present paper is composed of five sections. Section 2 is devoted to the simulation
of hysteretic systems. There is a lot of different phenomenological approaches to hys-
teresis modeling. General mathematical models of hysteresis are presented and discussed
in the monographs [21, 28]. Recent results of the analysis of hysteretic systems includ-
ing modeling, experiments, dynamic response, and applications can be found in [27].
A large number of publications [7, 9–15, 17–19, 22–26] are devoted to hysteresis simu-
lation, since it is known that hysteretic systems are complicated to investigate and vari-
ous difficulties occur when applying the existing models. The question of multipurpose
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and generally valid models describing the wide spectrum of hysteretic phenomena is still
open. In the present work, hysteresis is simulated by means of additional state variables
(internal variables). In particular, the behavior of magnetorheological/electrorheological
(MR/ER) fluids (which are known as smart materials and commercially available now)
in a damper/absorber [24, 25] is simulated. Another example is modeling of stress-strain
hysteresis in a steel rope including minor-loop reproduction. The developed models are
effective and contain principally less parameters than, for example, Bouc-Wen or Spencer
models.

Section 3 is dedicated to the analysis of chaotic behavior occurring in the hysteretic
systems in various parametric spaces. The models describing systems with hysteresis are
discontinuous and contain high nonlinearities with memory-dependent properties. The
output is delayed with respect to the input and for every input there may be more than one
equilibrium state. Investigation of these systems within the framework of an approximate
analytical approaches as, for instance, slowly varying parameters or harmonic balance
methods, results in a conclusion that irrespective of the values of control parameters oc-
curring in the conditions of external periodic excitation, the hysteretic system has a stable
symmetric asymptotic response. However, the recent publications and works [8, 16, 20],
based on numerical and combined numerical-analytical techniques, present frequency-
response curves and bifurcation diagrams which indicate the presence of solutions and
bifurcations mostly unexpected for hysteretic oscillators. At the same time, knowledge of
the control parameter spaces is still insufficient. In this connection, the prediction of con-
ditions for stable/unstable behavior of such systems is very topical. In the present work, a
chaotic behavior occurring in the dynamic hysteretic system governed by a coupled dif-
ferential set is investigated in various parametric planes using a methodology described
in [1–6]. This methodology had been successfully applied already in particular to predict
stick-slip chaos in a weakly forced oscillator with friction [3], in 2-DOF discontinuous
systems with friction [2, 4], and chaos in other smooth and nonsmooth systems [4].

Section 4 is devoted to the control of dissipation properties of oscillators with hystere-
sis.

2. Hysteresis simulation by means of additional state variables (internal variables)

In modeling of systems showing hysteresis based on the parametric approaches, it is in-
tended to use various linear and nonlinear elements simulating memory in the system
as well as the energy dissipated in each cycle. In a physical sense, energy losses can be
described by including into the model, for example, dashpots, friction elements, springs,
and other mechanical elements. Thus, the classical Masing model of hysteresis merges the
element of Hooke (elastic body model) and a number of St. Venant’s elements (plastic
body models) in parallel. The Biot model of hysteresis includes some number of New-
ton’s elements (Newton flow models) instead of St. Venant’s elements. Not infrequently
successive joints of mechanical (physical) elements are also used as, for example, in the
Spencer model which is an extension of the Bouc-Wen model. The parameters of each
model can be defined during a parameter identification process with experimental data.
The model validity is confirmed also by the experiment.
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Figure 2.1. Mechanical system with elastic-plastic properties for the hysteresis modeling (the Masing
model).

Let us consider a combination of N friction elements with the maximum friction
forces F1,F2, . . . ,FN and springs k0,k1,k2, . . . ,kN in parallel, as it is shown in Figure 2.1.
Here, x is the input (input signal) and z is the output (response) of the hysteretic system.
The delay in the arrival of the output with respect to the input can be described with the
aid of internal variables (forces) y1, y2, . . . , yN .

If the absolute value of the internal variable |yi| (i= 1,2, . . . ,N) is less than maximum
friction force Fi, or if both this value is equal to Fi and the velocity of the input ẋ and the
force yi have different signs (including the case when ẋ = 0), then the evolution of force
yi in time is governed by the following equation:

ẏi = kiẋ for
∣
∣yi
∣
∣ < Fi∨

(∣
∣yi
∣
∣= Fi∧ sgn

(

ẋyi
)≤ 0

)

, i= 1,2, . . . ,N. (2.1)

In all other cases, this evolution is as follows:

ẏi = 0. (2.2)

Equations (2.1) and (2.2) are generalized into the following equation:

ẏi = kiẋ
1
2

(

1− sgn
(

y2
i −F2

i

)− sgn
(

ẋyi
)[

1 + sgn
(

y2
i −F2

i

)])

. (2.3)

Using the approximation
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(

y2
i −F2

i

)≈
∣
∣
∣
∣
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Fi

∣
∣
∣
∣

m

− 1 for y2
i ≤ F2

i , m∈R+∧m≥ 1, (2.4)

equation (2.3) can be rewritten in the form

ẏi = kiẋ
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1− 1
2
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ẋyi
))
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∣
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Fi

∣
∣
∣
∣

m
)

, (2.5)
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and then the response of the hysteretic system is

z(t)= k0x(t) +
N
∑

i=1

yi(t). (2.6)

A generalization of (2.5) and (2.6) in the case of friction elements and springs with
properties of a more complex character (in particular of nonlinear character) yields

z(t)= k0(x)x(t) +
N
∑

i=1

yi(t),

ẏi =
(

Ai(x)− (βi +αi sgn(ẋ)sgn
(

yi
))
∣
∣
∣
∣

yi
Fi(x)

∣
∣
∣
∣

m
)

ẋ,

(2.7)

where k0(x),Ai(x) ≥0, Fi(x) >0, the input signal belongs to admissible codomain x ∈
[xmin,xmax], αi,βi ∈R; or it can be written even in a more general form

z = p
(

x, y1, y2, . . . , yN
)

,

ẏi = q
(

x, ẋ, yi
)

, i= 1,2, . . . ,N.
(2.8)

Here p and q are the nonlinear (in a general case) functions of their arguments. They are
chosen depending on the properties of a hysteretic system and a loop form.

Note that, according to (2.7), the structure of differential equations describing the
evolution in time of the internal variables is very similar to the structure of the differential
equations of the Bouc-Wen hysteretic oscillator model.

The parameters of functions p(x, y1, y2, . . . , yN ) and q(x, ẋ, yi) (i = 1,2, . . . ,N) are de-
termined via a procedure minimizing the criterion function

Φ
(

c1, . . . ,cj ,α1, . . . ,αk, . . . ,β1, . . . ,βl
)

=
∑

i

(

p
(

x
(

c1, . . . ,cj , ti
)

, y1
(

α1, . . . ,αk, ti
)

, . . . , yN
(

β1, . . . ,βl, ti
))− zi

)2
, (2.9)

which characterizes an error between the experimental and calculated curves. Here zi are
the responses of a hysteretic system, which are known from the experiment and the values
p(x(c1, . . . ,cj , ti), y1(α1, . . . ,αk, ti), . . . , yN (β1, . . . ,βl, ti)) are obtained from the integration of
the system which is described by model (2.8). To minimize the criterion function (2.9),
the method of gradient descent is used. The step-by-step descent to the minimum of
the criterion function is performed in the opposite direction to the criterion function
gradient

gradΦ=
{
∂Φ

∂c1
, . . . ,

∂Φ

∂cj
,
∂Φ

∂α1
, . . . ,

∂Φ

∂αk
,
∂Φ

∂β1
, . . . ,

∂Φ

∂βl

}

. (2.10)

When solving the optimization problem

Φ
(

c1, . . . ,cj ,α1, . . . ,αk, . . . ,β1, . . . ,βl
)−→min (2.11)
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after a sufficiently good choice of the initial approximation (c0
1, . . . ,c0

j ,α
0
1, . . . ,α0

k, . . . ,β0
1, . . . ,

β0
l ), the convergence of the approximation is reached. If in the step-by-step descent

c̃i = ci−hci

(
∂Φ

∂ci
/|gradΦ|

)

, i= 1, j,

α̃i = αi−hαi

(
∂Φ

∂αi
/|gradΦ|

)

, i= 1,k,

...

β̃i = βi−hβi

(
∂Φ

∂βi
/|gradΦ|

)

, i= 1, l,

(2.12)

the value of the criterion function Φ increases or remains unchanged, it is necessary to
decrease the values of the steps hc1 , . . . ,hcj ,hα1 , . . . ,hαk , . . . ,hβ1 , . . . ,hβl .

The model presents the fast enough numerical convergence. Applications to different
types of hysteresis loops confirmed that models with internal variables were appropriate
to simulate hysteresis.

Consider two examples of such applications. As it was mentioned, hysteresis is widely
found in nature. Among others, hysteretic behavior is peculiar to “smart” materials that
more and more attract the attention of commercial structures. Electrorheological/magne-
torheological (ER/MR) fluids belong to such materials. These fluids are used for construc-
tion of dampers, which act as interfaces between electronic control systems and mechani-
cal systems. The dynamic characteristics of ER/MR dampers are strongly nonlinear that is
reflected in numerous results of the experimental studies of MRF damper behavior [24].
Physically accurate and simple models of dampers are highly required by engineering
community and they are necessary for producing effective samples. Due to the nonlin-
earities of hysteresis and jumps in damper behavior, difficulties arise while developing
these models [25].

During analysis of seven known parametric models in [25], an attempt was made to
find a compromise between simplicity, “economy” of the model, and its physical accuracy.
However, it was concluded that the simplest involution model with two parameters could
not be applied to simulate the damper behavior. An extension of the Bouc-Wen model
proposed by Spencer enables the most accurate prediction of an actual MR damper be-
havior, but this model contains nine parameters.

We suggest here the developed model with a single internal variable

z(t)= y1(t),

ẏ1 =
(

c1−
(

c2 + c3 sgn(ẋ)sgn
(

y1
))∣
∣y1
∣
∣
)

ẋ,
(2.13)

which contains only three parameters and simulates the actual hysteretic MR damper be-
havior in the damping force versus velocity plane. This analytical model is simple and
provides a high degree of correspondence with experimental data. A comparison of the
simulated loop with experimental data is presented in Figure 2.2. Final values of the pa-
rameters used in model (2.13) for identification of the experimental data are given in
Table 2.1.
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Figure 2.2. Experimental (◦ ◦ ◦) and simulated solid line (as in ms) hysteresis loops for the magne-
torheological damper filled with MRF-132LD (applied current 0.15 A, frequency 5 Hz).

Table 2.1. Final values of the parameters used in model (2.13) for identification of the experimental
data.

c1 c2 c3

70000 80.7208 3.002

Further, we consider the stress-strain hysteresis in a steel rope. It happens that when a
force acts upon a steel rope, some transient processes are reflected in minor loops repro-
duction. In this case, there are two (or more) ways to simulate these processes in hysteresis
behavior of the steel rope. The first one is to increase the number of internal variables.
But it leads to a complication of the model and increase in the number of parameters.

The model with five parameters, which contains a single internal variable and quite
well describes the major stress-strain hysteresis loop, is

z(t)= c4x(t) + c5 + y1(t),

ẏ1 =
(

c1−
(

c2 + c3 sgn(ẋ
)

sgn
(

y1
))∣
∣y1
∣
∣
)

ẋ.
(2.14)

It presents a fast numerical convergence. However, when the transient processes are taken
into account, model (2.14) does not enable a proper reproduction of minor loops (Figure
2.3(a)). They are not closed, though losses connected with the transient processes are
presented. A quite accurate reproduction of minor loops is possible after introducing in
model (2.14) the additional value zc, which characterizes the geometrical center of each
minor loop

z(t)= c4x(t) + c5 + y1(t),

ẏ1 =
(

c1−
(

c2 + c3 sgn(ẋ)sgn
(

y1− zc
))∣
∣y1− zc

∣
∣
)

ẋ.
(2.15)

Model (2.15) enables a simulation of minor loops (Figure 2.3(b)) and presents fast
numerical convergence. The values of parameters in model (2.15), obtained during min-
imization of the criterion function (2.9), are given in Table 2.2.
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Figure 2.3. Experimental (◦ ◦ ◦) and simulated solid line (as in ms) stress-strain hysteresis with tran-
sient processes for the steel rope (stress (N) versus strain (mm))—(a) simulation using model (2.14)
with not properly reproducing minor loops; (b) simulation using model (2.15).

Table 2.2. Final values of the parameters used in model (2.15) for the experimental data identification.

c1 c2 c3 c4 c5

2.22254 0.0010226 0.338787 0.387749 1.45286

3. Evolution of chaotic behavior regions in control parameter planes of

the Masing and Bouc-Wen hysteretic oscillators

Consider classical hysteretic models such as Masing oscillator and Bouc-Wen oscillator.
In both cases, an external periodic excitation with an amplitude F and frequency Ω acts
on the mass m which oscillates along an inertial base. These oscillators possess hysteretic
properties and it is supposed that there is a linear viscous damper with the coefficient 2μ.

The following set of differential equations governs a motion of the Masing oscillator:

ẋ = y,

ẏ =−2μy− (1− ν)g(x)− νz+F cosΩt,

ż = g′
(
z− zi

2

)

y.

(3.1)

In the above, ν ∈ [0,1]; g(x) = (1− δ)x/(1 + |x|n)1/n + δx; R = (1− ν)g(x) + νz is the
total restoring force with nonlinear elastic part (1− ν)g(x) and with hysteretic part νz.
The case ν = 1 corresponds to the maximum hysteretic dissipation and ν = 0 corre-
sponds to the elastic behavior of the oscillator. The parameter δ characterizes a ratio
between the post- and preyielding stiffness. The parameter n governs the smoothness of
the transitions from the elastic to the plastic range. The couples ±(xi,zi) represent the
velocity reversal points at ẋ = 0. According to Masing’s rule which is extended to the
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case of steady-state motion of the hysteretic oscillator, the loading/unloading branches
of a hysteresis loop are geometrically similar. So, if f (x,z)= 0 is the equation of a virgin
loading curve, then the equations f ((x± xi)/2,(z± zi)/2)= 0 describe loading/unloading
branches of the hysteresis loop. In the case of non-steady-state motion of Masing’s oscil-
lator, it is supposed that the equation of any hysteretic response curve can be obtained
by applying the original Masing rule to the virgin loading curve using the latest point of
velocity reversal.

A motion of the Bouc-Wen oscillator is governed by the following set of differential
equations:

ẋ = y,

ẏ =−2μy− δx− (1− δ)z+F cosΩt,

ż = [kz −
(

γ+β sgn(y)sgn(z)
)|z|n]y,

(3.2)

where R = δx + (1− δ)z is the total restoring force; the parameters (kz,β,n) ∈ R+ and
γ ∈ R govern the shape of the hysteresis loop. The parameters δ and n have the same
sense as in the case of the Masing model.

Describe briefly the approach based on the analysis of wandering trajectories in view
of the state vector of systems (3.1) and (3.2) for x ∈ R3. In the chaotic behavior of non-
linear deterministic systems, wandering of the trajectories of motion around the various
equilibrium states is assumed. They are characterized by unpredictability and sensitive
dependence on the initial conditions. By analyzing the trajectories of motion of these
systems, it is possible to find the chaotic vibration regions in the control parameter space.

The continuous dependence property on the initial conditions x(0) = x(t0) of the solu-
tions of set (3.1) or (3.2) will be used. For every initial condition x(0), x̃(0) ∈ R3, for every
number T >0, no matter how large, and for every preassigned arbitrarily small ε > 0, it is
possible to indicate a positive number δ > 0 such that if the distance ρ between x(0) and
x̃(0), ρ(x(0), x̃(0)), is less than δ, and |t| ≤ T , the following inequality is satisfied:

ρ
(

x(t), x̃(t)
)

< ε. (3.3)

In other words, if the initial points are chosen close enough, then during the preas-
signed arbitrary large time interval −T ≤ t ≤ T the distance between simultaneous posi-
tions of moving points will be less than a given positive number ε.

For the sake of tracing chaotic and regular dynamics, it is assumed that, with an in-
crease of time, all trajectories remain in the closed bounded domain of a phase space, that
is,

∃Ci ∈ R : max
t

∣
∣xi(t)

∣
∣≤ Ci, i= 1,23. (3.4)

To analyze trajectories of sets (3.1) and (3.2), the characteristic vibration amplitudesAi

of components of the motion are introduced Ai=(1/2)|maxt1≤t≤T xi(t)−mint1≤t≤T xi(t)|.
Index number i runs over three values corresponding to three generalized coordinates x,
y, z. [t1,T]⊂ [t0,T] and [t0,T] is the time interval, in which the trajectory is considered.
The interval [t0, t1] is the time interval, in which all transient processes are damped.
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For the sake of our investigation, it seems the most convenient to use the embedding
theorem and to consider a 3-dimensional parallelepiped instead of a hypersphere with
the center in point x. Two neighboring initial points x(0) = x(t0) and x̃(0) = x̃(t0) (x =
(x, y,z)T or x = (x1,x2,x3)T) are chosen in the 3-dimensional parallelepiped Pδx ,δy ,δz(x(0))

such that |x(0)
i − x̃(0)

i | < δi, where δi >0 is small in comparison with Ai. In the case of a
regular motion, it is expected that εi >0 used in inequality |xi(t)− x̃i(t)| < εi is also small
in comparison with Ai. The wandering orbits attempt to fill up some bounded domain
of the phase space. In instant t0, the neighboring trajectories diverge exponentially after-
wards. Hence, for some instant t1, the absolute values of differences |xi(t)− x̃i(t)| can take
any value in closed interval [0,2Ai]. An auxiliary parameter α is introduced, 0 < α < 1.
αAi is referred to as a divergence measure of observable trajectories in the directions of
generalized coordinates and with the aid of parameter α one has been chosen, which is in-
admissible for the case of the motion “regularity.” The domains, where a chaotic behavior
of considered systems is possible, can be found using the following condition:

∃t∗ ∈ [t1,T
]

:
∣
∣x
(

t∗
)− x̃

(

t∗
)∣
∣ > αAx. (3.5)

If this inequality is satisfied in some nodal point of the sampled control parameter
space, then such motion is relative to chaotic one (including transient and alternating
chaos). The manifold of all such nodal points of the investigated control parameter space
sets up domains of chaotic behavior of the considered systems.

Motion stability depends on all parameters of the considered hysteretic models in-
cluding initial conditions. We succeeded in tracing irregular responses of the Masing
and Bouc-Wen hysteretic oscillators in the damping coefficient—amplitude (μ,F) and
frequency—amplitude (Ω,F) of external periodic excitation planes after a coordinate
sampling.

The Masing oscillator (3.1) is nonlinear both in the case of a pure elastic behavior
without hysteretic dissipation (ν = 0) and in the case of motion with hysteretic dissipa-
tion (ν > 0). At ν= 0 chaos has been found too. Figures 3.1 and 3.2 display the evolution
of chaotic behavior domains with an increasing hysteretic dissipation value in the men-
tioned planes. The (Ω,F) and (μ,F) planes had been uniformly sampled by 100× 100
nodal points in the rectangles (0.01 ≤Ω ≤ 0.61; 0.01 ≤ F ≤ 1.51) and (0.01 ≤ μ ≤ 0.26;
0.01 ≤ F ≤ 1.61), respectively. The time period for the simulation T is 300π/Ω nondi-
mensional time unit. During computations, half of the time period T corresponds to
the time interval [t0, t1], where transient processes are damped. The integration step
size is π/100Ω. Initial conditions of the closed trajectories are distinguished by 0.5 per-
cent with ratio to characteristic vibration amplitudes, for example, the starting points
of these trajectories are in the 3-dimensional parallelepiped (|x(t0)− x̃(t0)| < 0.005Ax,
|ẋ(t0)− ˜̇x(t0)| < 0.005Aẋ, |z(t0)− z̃(t0)| < 0.005Az). The parameter α is chosen to be
equal to 1/3. All domains are multiple connected. There are also a number of scattered
points here. Such structure is characteristic of the domains, where chaotic vibrations are
possible.

One can observe the effect of restraining of the chaotic regions with the increasing hys-
teretic dissipation value in the (Ω,F) plane (Figures 3.1(a), 3.1(b), 3.1(c)). The “quickness”
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Figure 3.1. Evolution of the chaotic regions for the Masing hysteresis model in the (Ω,F) plane with
increasing hysteretic dissipation value (a) ν = 0; (b) ν = 0.5; (c) ν = 0.8. The parameters μ = 0, δ =
0.05, n= 10.0, x(0)= 0.1, ẋ(0)= 0.1, z(0)= 0 are fixed for all cases.
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of the restraining decreases when ν increases. So, in the case of a maximum hysteretic dis-
sipation value ν = 1, the chaotic regions in the (Ω,F) plane are distinguished from the
regions (c), Figure 3.1, non-principally.

In the (μ,F) plane (Figures 3.2(a), 3.2(b), 3.2(c)), the form and location of the chaotic
domains are changed depending on the hysteretic dissipation of the nonlinear terms in
set (3.1).

Figure 3.3 characterizes the obtained domains and demonstrates a different character
of motion of the Masing oscillator as chaos and hysteresis loss (a), and periodic response
(b).

Other situation occurs for the Bouc-Wen oscillator (3.2) which naturally is linear
(when δ = 1). So, addition of the hysteretic dissipation leads to chaotic responses that
occur in this system. Figures 3.4 and 3.5 present the evolution of chaotic behavior regions
with an increasing hysteretic dissipation value in the (Ω,F) and (μ,F) planes, respectively.
One can observe a change in the form and location of the chaotic regions. Note that
chaotic responses of the Bouc-Wen oscillator are not observed right up till δ = 0.2 when
the influence of the nonlinear terms becomes critical. It demonstrates a generating effect
of the hysteretic dissipation on chaos occurring in the hysteretic system, which appears
after some critical value δcr. After δcr, both the form and location of the chaotic behavior
regions are changed with the increasing hysteretic dissipation. In the case of a maximum
hysteretic dissipation value (when δ = 0), the chaotic behavior regions are practically the
same as in case (c) in Figure 3.4. A “friable” form of the chaotic regions (Figures 3.5(a)
and 3.5(c)) in the (μ,F) planes is conditioned by the fixation of the frequency Ω = 0.24
and changing location of the corresponding domains in the (Ω,F) planes with an increase
of the hysteretic dissipation. The straight line Ω= 0.25 only slightly contacts the chaotic
behavior regions in cases (a) and (c), in Figure 3.4.

During simulation, the (Ω,F) and (μ,F) planes had been uniformly sampled by 100×
100 nodal points in the rectangles (0.01 ≤Ω ≤ 0.36; 0.01 ≤ F ≤ 2.05) and (0.001 ≤ μ ≤
0.04; 0.01≤ F ≤ 1.71), respectively. The time period for the simulation T is 300π/Ω. Dur-
ing computations, half of the time period corresponds to the time interval [t0, t1], where
transitional processes are damped. The integration step size equal to π/40Ω is chosen.
As in the case of the Masing oscillator, the initial conditions of the closed trajectories are
distinguished by 0.5 percent in comparison to characteristic vibration amplitudes. The
parameter α is set equal to 1/3.

Figure 3.6 characterizes the obtained regions of irregular motion and depicts various
responses of the Bouc-Wen oscillator as chaos and hysteresis loss (a), and periodic re-
sponse (b). Figures 3.7(a), 3.7(a) and 3.8(a), 3.8(a) with periodic pinched hysteresis also
agree well with the obtained regions of regular/irregular behavior of hysteretic oscillators
(see Figures 3.1(b), 3.2(b), 3.4(a), and 3.5(a)).

4. Control of pinched hysteresis phenomenon by means of an amplitude
and frequency of an external periodic excitation

Pinched hysteresis possesses reduce dissipation properties and are a consequence of resid-
ual phenomena diminution or “delay” reduction of the output relative to the input in a
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Figure 3.2. Evolution of the chaotic regions for the Masing hysteresis model in the (μ,F) plane with
increasing hysteretic dissipation value (a) ν = 0; (b) ν = 0.5; (c) ν = 0.8. The parameters Ω = 0.15,
δ = 0.05, n= 10.0, x(0)= 0.1, ẋ(0)= 0.1, z(0)= 0 are fixed for all cases.
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Figure 3.3. Phase portraits and hysteresis loops of the Masing hysteretic oscillator in the cases of (a)
chaotic (Ω = 0.15, F = 1.21, μ = 0.026, ν = 0.5, δ = 0.05, n = 10.0, x(0) = 0.1, ẋ(0) = 0.1, z(0) = 0)
and (b) periodic (Ω= 0.7, F = 0.8, μ= 0, ν= 0.5, δ = 0.05, n= 10.0, x(0)= 0.1, ẋ(0)= 0.1, z(0)= 0)
responses.

hysteretic system. In this connection, a control of pinching phenomena is of great impor-
tance for various practical applications. It was shown that for the nonzero fixed value of
hysteretic dissipation (which, in changing from minimum to maximum, can produce be-
havior of the system with/without delay) and for the fixed parameters which govern the
shape of a hysteresis loop, it is possible to choose an “appropriate” hysteretic process with
desirable residual phenomena with the aid of an amplitude and frequency of an external
periodic excitation:

(i) Masing oscillator

ẋ = y,

ẏ =−2μy− (1− ν)g(x)− νz+ (F + iΔF)cos(Ω+ jΔΩ)t,

ż = g′
(
z− zi

2

)

y, g(x)= (1− δ)x
(

1 + |x|n)1/n + δx;

(4.1)
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Figure 3.4. Evolution of the chaotic regions for the Bouc-Wen oscillator with hysteresis in the (Ω,F)
plane with increasing hysteretic dissipation value (a) δ = 0.0476; (b) δ = 0.01; (c) δ = 0.001 at kz = 0.5,
γ = 0.3, β = 0.005, n= 1.0, x(0)= 0.1, ẋ(0)= 0.1, z(0)= 0, and μ= 0.
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Figure 3.5. Evolution of the chaotic regions for the Bouc-Wen oscillator with hysteresis in the (μ,F)
plane with increasing hysteretic dissipation value (a) δ = 0.0476; (b) δ = 0.01; (c) δ = 0.001 at kz = 0.5,
γ = 0.3, β = 0.005, n= 1.0, x(0)= 0.1, ẋ(0)= 0.1, z(0)= 0, and Ω= 0.24.
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Figure 3.6. Phase portraits and hysteresis loops of the Bouc-Wen hysteretic oscillator in the cases
of (a) chaotic (Ω = 0.24; F = 1.1227, μ = 0.00136, δ = 0.01, kz = 0.5, γ = 0.3, β = 0.005, n = 1.0,
x(0) = 0.1, ẋ(0) = 0.1, z(0) = 0) and (b) periodic (Ω = 0.35; F = 1.2, μ = 0.0, δ = 0.0476, kz = 0.5,
γ = 0.3, β = 0.005, n= 1.0, x(0)= 0.1, ẋ(0)= 0.1, z(0)= 0) responses.

(ii) Bouc-Wen oscillator

ẋ = y,

ẏ =−2μy− δx− (1− δ)z+ (F + iΔF)cos(Ω+ jΔΩ)t,

ż = [kz −
(

γ+β sgn(y)sgn(z)
)|z|n]y,

(4.2)

i= 1,2, . . . ,n; j = 1,2, . . . ,m.
The relation εr/ε was chosen as a value that characterizes a pinch in the hysteresis loop.

As shown in Figure 4.1, ε is the distance between the projection of the velocity reversal
points±(xi,zi) to the input-axis; εr is the distance characterizing the residual phenomena.

It is shown that the thresholds of the regions with a “pinched hysteresis” in the planes
frequency versus the amplitude of external periodic excitation in both cases of Masing
and Bouc-Wen hysteretic oscillators (Figures 4.2(a) and 4.3(a)) have an almost linear
character. The behavior of Masing hysteretic oscillator with enhanced dissipation prop-
erties is possible above the straight line F =−1.889Ω+ 1.7. The analogous behavior of the
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Figure 3.7. Phase portraits and pinched hysteresis loops of the Masing hysteretic oscillator (a) (Ω=
0.1114, F = 0.43, μ= 0, ν= 0.5, δ = 0.05, n= 10.0, x(0)= 0.1, ẋ(0)= 0.1, z(0)= 0) and (b) (Ω= 0.15,
F = 0.634, μ= 0.0856, ν= 0.5, δ = 0.05, n= 10.0, x(0)= 0.1, ẋ(0)= 0.1, z(0)= 0).

Bouc-Wen oscillator is observed above the straight line F = −4.8Ω+ 2.4. Figures 4.2(b)
and 4.3(b) indicate that a linear viscous damper μ almost does not influence the pinch-
ing and a hysteresis with the improved dissipation properties is observed above the lines
F = 0.94 (F = 1.4) for the Masing (Bouc-Wen) hysteretic oscillator.

Figures 3.7 and 3.8 characterize the obtained regions and demonstrate pinching phe-
nomena in the hysteresis loops.

Figures 3.3(b) and 3.6(a) illustrating the enhanced dissipation properties of hysteresis
loops are presented in the section devoted to the analysis of chaos occurring in the hys-
teretic systems. It is clear that there is no sense to discuss dissipation properties in the case
of hysteresis loss or chaotic behavior of hysteretic oscillators (Figures 3.3(a) and 3.6(a)).

5. Conclusions

In the present work, hysteresis is simulated by means of additional state variables (internal
variables). In particular, the behavior of magnetorheological/electrorheological (MR/ER)
fluids in a damper/absorber as well as stress-strain hysteresis with transient processes in a
steel rope are simulated. The developed models are effective, enable production of minor
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Figure 3.8. Phase portraits and pinched hysteresis loops of the Bouc-Wen hysteretic oscillator (a)
(Ω= 0.2; F = 1, μ= 0.0, δ = 0.01, kz = 0.5, γ = 0.3, β = 0.005, n= 1.0, x(0)= 0.1, ẋ(0)= 0.1, z(0)= 0)
and (b) (Ω = 0.24, F = 0.724, μ = 0.017257, δ = 0.0476, kz = 0.5, γ = 0.3, β = 0.005, n = 1.0, x(0) =
0.1, ẋ(0)= 0.1, z(0)= 0).

loops, present fast numerical convergence, provide good agreement with experimental
data, and contain principally less parameters than, for example, Bouc-Wen or Spencer
models.

Highly nonlinear Masing and Bouc-Wen hysteretic models with discontinuous right-
hand sides are investigated using an effective approach based on the analysis of wander-
ing trajectories. This algorithm of quantifying regular and chaotic dynamics is simpler
and faster from the computational point of view comparing with standard procedures
and allows us to trace accurately enough the regular/irregular responses of the hysteretic
systems. The evolution of chaotic behavior regions of the oscillators with hysteresis is
presented in various control parameter spaces: in the damping coefficient—amplitude
and the frequency—amplitude of the external periodic excitation planes. A substantial
influence of the hysteretic dissipation value on the possibility of chaotic behavior occur-
ring in the systems with hysteresis is shown. The restraining and generating effects of the
hysteretic dissipation on a chaotic behavior are demonstrated.

It was shown that for fixed parameters, which govern the shape of a hysteresis loop, the
extent of pinch of this loop could be controlled by means of an amplitude and frequency
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Figure 4.2. Regions of hysteresis with various dissipation properties for the Masing model. The pa-
rameters δ = 0.05, n = 10.0, ν = 0.5, x(0) = 0.1, ẋ(0) = 0.1, z(0) = 0 and (a) μ = 0, (b) Ω = 0.15 are
fixed.

of the external periodic excitation. It was found that a linear viscous damper did not
influence the pinching. The regions of hysteresis with various dissipation properties for
the Masing and Bouc-Wen models are presented.
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Figure 4.3. Regions of hysteresis with various dissipation properties for the Bouc-Wen model. The
parameters δ = 0.01, kz = 0.5, γ = 0.3, β = 0.005, n = 1.0, x(0) = 0.1, ẋ(0) = 0.1, z(0) = 0 and (a)
μ= 0, (b) Ω= 0.24 are fixed.
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