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Integer linear fractional programming problem with multiple objective (MOILFP) is an important
field of research and has not received as much attention as did multiple objective linear fractional
programming. In this work, we develop a branch and cut algorithm based on continuous fractional
optimization, for generating the whole integer efficient solutions of the MOILFP problem. The
basic idea of the computation phase of the algorithm is to optimize one of the fractional objective
functions, then generate an integer feasible solution. Using the reduced gradients of the objective
functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions
is truncated by adding this cut. A sample problem is solved using this algorithm, and the main
practical advantages of the algorithm are indicated.
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1. Introduction

Fractional programming has been widely reviewed by many authors (Schaible [1], Nagih,
and Plateau [2]) and there are entire books and chapters devoted to this subject (Craven [3],
Stancu-Minasian [4], Horst et al. [5], and Frenk and Schaible [6]). A bibliography, with 491
entries presented by Stancu-Minasian [7], attracts our attention to the amount of work that
has been done in the field in recent years. This bibliography of fractional programming is a
continuation of five previous bibliographies by the author [8]. Schaible [1] has published a
comprehensive review of the work in fractional programming, outlining some of its major
developments. Stancu-Minasian’s textbook [4] contains the state-of-the-art theory and practice
of fractional programming, allowing the reader to quickly become acquainted with what has
been done in the field.

The mathematical optimization problems with a goal function that is a ratio of two
linear functions have many applications: in finance (corporate planning, bank balance sheet
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management), marine transportation, water resources, health care, and so forth. Indeed, in
such situations, it is often a question of optimizing a ratio debt/equity, output/employee,
actual cost/standard cost, profit/cost, inventory/sales, risk-assets/capital, student/cost,
doctor/patient, and so on subject to some constraints [9]. In addition, if the constraints are
linear, we obtain the linear fractional programming (LFP) problem.

Different approaches have been proposed in the literature to solve both continuous LFP
and integer linear fractional programming (ILFP) problems. These can be divided in studies
that have developed solution methods (e.g., [4, 10–14]) and those which concentrated on
applications (e.g., [4, 6]).

The multiple objective linear fractional programming (MOLFP) problem is one of the
most popular models used in multiple criteria decision making. Numerous studies and
applications have been reported in the literature in hundreds of books, monographs, articles,
and books’ chapters. For an overview of these studies and applications, see, for instance, [4, 7–
9, 15–22], and references therein.

Contrary to the multiple objective linear programming (MOLP) problem, Steuer [9]
shows that the efficient solutions set inMOLFP problem is not necessarily closed; some interior
points of the feasible solutions set may be efficient, while others are not, and efficient extreme
solutions need not all be connected by a path of efficient edges. It becomes difficult to generate
the whole efficient solutions. As the efficient set may be too difficult to determine, Kornbluth
and Steuer [20] propose an algorithm forMOLFP problem that generates the set of the so-called
weakly efficient solutions bymeans of a simplex-based algorithm. A new technique to optimize
a weighted sum of the linear fractional objective functions is proposed by Costa [19]. This
technique generates only one nondominated solution of the MOLFP problem associated with
a given weight vector. At each stage of the technique, the nondominated domain is divided in
two subdomains and each of them is analyzed in order to discard the one not containing the
nondominated solutions. The process ends when the remaining domains are so little that the
differences among their nondominated solutions are lower than a predefined error.

In this paper, we have proposed a technique for generating the efficient set of the
MOLFP problem with integer variables by using all the decision criteria in an active way.
This last problem, called MOILFP, is more difficult to solve than the MOLFP problem taking
into account the integrity of variables. Indeed, finding all efficient solutions of multiobjective
combinatorial optimization problems is, in general, NP-complete [23].

We should like to point out that theMOILFP problem has not received as much attention
as did the multiple objective integer linear programming (MOILP) problem, what justified our
interest to study this problem.

In [15], a considerable computation is necessary to obtain an optimal integer solution of
an ILFP problem in the first stage, since the authors used a branch and boundmethod (see, e.g.,
[24]). In our method, we use only the Cambini andMartein’s [10]method to obtain an optimal
solution for the relaxed ILFP problem and an integer solution is detected by the branching
process of the branch and boundmethod. In addition, a cutting plane is constructed taking into
account all the criteria. In this manner, we are able to eliminate not only noninteger solutions of
the feasible domain, but also integer solutions which are not efficient. Thus our method avoids
to scan all the integer feasible solutions of the problem.

The notations and definitions used throughout this work are presented in Section 2. In
Section 3, the algorithm generating all efficient solutions for theMOILFP problem is developed
and the main theoretical results are proposed. An illustrative example is given in Section 4
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and a computational experience is reported in Section 5. Section 6 provides some concluding
remarks.

2. Problem formulation

The purpose of this paper is to develop an exact method for solving themultiple objective integer
linear fractional program (MOILFP):

(p)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxZ1(x) =
c1x + α1

d1x + β1

maxZ2(x) =
c2x + α2

d2x + β2
...

maxZk(x) =
ckx + αk

dkx + βk

x ∈ S, x integer

(2.1)

where k ≥ 2; ci, di are 1 × n vectors; αi, βi are scalars for each i ∈ {1, 2, . . . , k}; S = {x ∈ R
n |

Ax ≤ b, x ≥ 0}; A is an m × n real matrix; and b ∈ R
m. Throughout this article, we assume that

S is a nonempty, compact polyhedron set in R
n and dix + βi > 0 over S for all i ∈ {1, 2, . . . , k}.

Many approaches for analyzing and solving the MOLFP problem use the concept of
efficiency. A point x ∈ R

n is called an efficient solution, or Pareto-optimal solution, for MOLFP
problem when x ∈ S, and there exists no point y ∈ S such that Zi(y) ≥ Zi(x), for all i ∈
{1, . . . , k} and Zi(y) > Zi(x) for at least one i ∈ {1, . . . , k}. Otherwise, x is not efficient and the
vector Z(y) dominates the vector Z(x), where Z(x) = (Zi(x))i=1,...,k.

The approach adopted in this work for detecting all integer efficient solutions of problem
(P) is based on solving a linear fractional programming problem, at each stage l:

(p1)
{

maxZ1(x) =
c1x + α1

d1x + β1
, x ∈ Sl, (2.2)

with S0 = S and without the integrity constraint of variables. Note that in place of Z1, one can
similarly consider the problem (Pl) with another objective Zi for any i ∈ {2, . . . , r}.

If the optimal solution of (Pl) is integer, it is compared to all of the potentially efficient
solutions already found and the set of efficient solutions is actualized. The growth direction of
each criterion is determined by using its gradient. The method uses this information to deduce
a cut able to delete integer solutions which are not efficient for the problem (P) and determines
a new integer solution. In the case where this optimal solution is not integer, two new linear
fractional programs are created by using the branching process well known in branch and
bound method. Each of them will be solved like the problem (Pl).

To this aim—let x∗
l
be the first integer solution obtained after solving problem (Pl) by

using, eventually, the branching process—one defines Bl as the set of indices of basic variables

and Nl as the set of indices of nonbasic variables of x∗
l
. Let γij be the jth component of the

reduced gradient vector γi defined by (2.3) for each fixed i ∈ {1, 2, . . . k};

γi = βi ci − αi di, (2.3)
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where ci, di, αi, and βi are updated values. Let us note that the gradient vector of Zi and the
corresponding reduced gradient vector γi for each fixed index i, i ∈ {1, 2, . . . , k}, have the same
sign. Thus calculating γi is enough to determine the growth direction for each criterion.

In order to give themathematical expression of the cut, we define the following sets at x∗
l
:

Hl =
{
j ∈ Nl | ∃i ∈ {1, 2, . . . , k}; γij > 0

}
∪
{
j ∈ Nl | γij = 0, ∀i ∈ {1, 2, . . . , k}

}
, (2.4)

Sl+1 =

{

x ∈ Sl |
∑

j∈Hl

xj ≥ 1

}

. (2.5)

An efficient cut is a cut which removes only nonefficient integer solutions.
In Section 3, the approach to solve program (P) is presented.

3. Methodology for solving MOILFP

In this section, an exact method based on the branching process and using an efficient cut for
generating all integer efficient solutions for problem (P) is presented. First of all, the proposed
method is presented in detail, the algorithm for solving the multiple objective integer linear
fractional programming problems is then described. We finish the section with the theoretical
results which prove the convergence of the algorithm.

3.1. Description of the method

Starting with an optimal solution of an LFP problem, the domain of feasible integer solutions
is partitioned into subdomains using the principle of branching to the search for integer
solutions. As soon as an integer solution is found in a new domain, it is compared to solutions
already found and hence the set of all the potentially efficient solutions is updated. An efficient
cut is then added for deleting integer solutions that are not efficient. To construct this cut, the
growth directions of the criteria are used. The search for the efficient solutions is made in each
subdomain created. A given domain contains no efficient solutions when none criterion can
grow. This last is said an explored domain. The search for the efficient solutions is stopped
only if all created domains were explored domains.

First, Cambini andMartein’s [10] algorithm is used for solving the following continuous
linear fractional program:

(p)

{

maxZ1(x) =
c1x + α1

d1x + β1
, x ∈ S0. (3.1)

This is based on the concept of optimal level solution. A feasible point x is an optimal
level solution for the linear fractional program (P0), if x is optimal for the linear program:

(Px)

{

max
(
c1x + α1), d1x = d1x, x ∈ S0. (3.2)

If, in addition, x is a vertex of the feasible solutions set S0, x is said to be a basic optimal
level solution. Obviously, an optimal solution for the linear fractional program (P0) is a basic
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optimal level solution. According to this, the algorithm generates a finite sequence of basic
optimal level solutions, the first one, say x0, is an optimal solution for the linear program:

min
(
d1x + β1

)
, x ∈ S0. (3.3)

If x0 is unique, then it is also a basic optimal level solution for program (P0), otherwise,
solve the linear program (Px0) to obtain a basic optimal level solution.

The solution of the program (P0) obtained in a finite sequence of optimal level solutions

is optimal if and only if γ1j ≤ 0 for all j ∈ J10 , where

J10 =
{
j ∈ N0 | d1

j > 0
}
. (3.4)

Otherwise, there exists an index j ∈ J10 for which γ1j > 0. The nonbasic variable xr, r ∈ J10 ,which
must enters the basis is indicated by the index r such that

c1r

d1
r

= max

⎧
⎨

⎩

c1j

d1
j

, j ∈ J10

⎫
⎬

⎭
. (3.5)

The original format of the objectives fractional functions and original structure of the
constraints is maintained and the iterations are carried out in an augmented simplex table
which includes m + 3k rows. The first m rows correspond to the original constraints, the m +
3(i − 1) + 1 and m + 3(i − 1) + 2 rows correspond to the numerator and denominator of the
objective fractional function Zi, i ∈ {1, 2, . . . , k}, of program (P), respectively, and the m + 3i

row corresponds to the γi
l
vector at step l.

At each stage of the algorithm, all the rows are modified as usual through the pivot
operation when the nonbasic variable xr, r ∈ J10 , enters the basis, except the m + 3i rows, for

i ∈ {1, 2, . . . , k}, which are modified using the γi
l
formula (2.3).

Each program (Pl) corresponds to node l in a structured tree. A node l of the tree is
fathomed if the corresponding program (Pl) is not feasible or Hl = ∅ (explored domain).

If the optimal solution x̃l of program (Pl) is not integer, let xj be one component of x̃l

such that xj = αj, where αj is a fractional number. The node l of the tree is then separated
in two nodes which are imposed by the additional constraints xj ≤ 	αj
 and xj ≥ 	αj
 + 1,
where 	αj
 indicates the greatest integer less than αj . In each node, the linear fractional program
obtained must be solved, until an integer feasible solution is found. In presence of an integer
feasible solution, the efficient cut

∑
j∈Hl

xj ≥ 1 is added to the program and the new program is
solved using the dual simplex method. The method terminates when all the created nodes are
fathomed.

3.2. Algorithm

The algorithm generating the set of all integer efficient solutions of program (P) is presented
in the following steps. The nodes in the tree structure are treated according to the backtracking
principle.

Step 1. Initialization: l = 0, create the first node with the program (P0). Eff = ∅; (integer-
efficient set of program (P)
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Step 2. General step: as long as a nonfathomed node exists in the tree, do: choose the node not yet
fathomed, having the greatest number l, solve the corresponding linear fractional program (Pl)
using the dual simplex method and the Cambini and Martein’s method. (Initially, for solving
program (P0), only the Cambini and Martein’s method is used).

If program (Pl) has no feasible solutions, then the corresponding node is fathomed.
Else, let x̃l be an optimal solution. If x̃l is not integer, go to Step 3, else go to Step 4.

Step 3. Branching process (partition of the problem into mutually disjoint and jointly exhaustive
sub-problems): choose one coordinate xj of x̃l such that xj := αj , with αj fractional number,
and separate the actual node l of the tree in two nodes k, k ≥ l + 1, and h, h ≥ l + 1, h /= k.

In the current simplex table, the constraint xj ≥ 	αj
 is added and a new domain is
considered in node k and similarly, the constraint xj ≥ 	αj
 + 1 is added to obtain another
domain in node h. (Each created program must be solved using the same process until an
integer feasible solution is found), go to Step 2.

Step 4. Update the set Eff: if Z(x̃l) is not dominated by Z(x) for all x ∈ Eff, then Eff := Eff ∪ {x̃l}.
If there exists x ∈ Eff such that Z(x̃l) dominates Z(x), then Eff := Eff \ {x} ∪ {x̃l}.

Construct the efficient cut: determine the setsNl andHl.
If Hl = ∅, then the corresponding node is fathomed. Go to Step 2.
Else, add the efficient cut

∑
j∈Hl

xj ≥ 1 to the program (Pl). Go to Step 2.

The following theorems show that the algorithm generates all integer efficient solutions
of program (P) in a finite number of stages.

Theorem 3.1. Suppose thatHl /=∅ at the current integer solution x∗
l
. If x is an integer efficient solution

in domain Sl \ {x∗
l
}, then x ∈ Sl+1.

Proof. Let x be an integer solution in domain Sl \ {x∗
l
} such that x /∈ Sl+1, then

∑
j∈Hl

xj = 0, that
implies xj = 0 for all index j ∈ Hl.

From the simplex table corresponding to the optimal solution x∗
l
, the criteria are eval-

uated by

Zi(x) =

∑
j∈Nl

cijxj + αi

∑
j∈Nl

di
jxj + βi

for i ∈ {1, . . . , k}, (3.6)

where

αi

βi
= Zi

(
x∗
l

)
. (3.7)

Then we can write

Zi(x) =

∑
j∈Nl\Hl

cijxj + αi

∑
j∈Nl\Hl

di
jxj + βi

, ∀i ∈ {1, . . . , k}. (3.8)
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In the other hand, γij = βi cij −αi di
j ≤ 0, for all index j ∈ Nl \Hl and γij = βi cij −αi di

j < 0 for

at least one criterion, implies that cij ≤ αi di
j/β

i for all j ∈ Nl \Hl because βi = dix∗
l
+βi > 0 for all

criterion i ∈ {1, . . . , k}. The decision variables being nonnegative, we obtain cijxj ≤ (αi di
j/β

i)xj

for all j ∈ Nl \Hl and hence

∑

j∈Nl\Hl

cijxj ≤
∑

j∈Nl\Hl

αi di
j

βi
xj =⇒

∑

j∈Nl\Hl

cijxj + αi ≤
∑

j∈Nl\Hl

αi di
j

βi
xj + αi. (3.9)

For any criterion Zi, i ∈ {1, . . . , k}, the following inequality is obtained

Zi(x) =

∑
j∈Nl\Hl

cijxj + αi

∑
j∈Nl\Hl

di
jxj + βi

=⇒ Zi(x) ≤
∑

j∈Nl\Hl

(
αi di

j/β
i
)
xj + αi

∑
j∈Nl\Hl

di
jxj + βi

=⇒ Zi(x) ≤
(αi/βi)

(∑
j∈Nl\Hl

di
jxj + βi

)

∑
j∈Nl\Hl

di
jxj + βi

=⇒ Zi(x) ≤ αi

βi
=⇒ Zi(x) ≤ Zi(x∗

l ).

(3.10)

Consequently, Zi(x) ≤ Zi(x∗
l
) for all i ∈ {1, . . . , k} and Zi(x) < Zi(x∗

l
) for at least one

index. Hence Z(x∗
l
) dominates Z(x) and the solution x is not efficient.

Corollary 3.2. Suppose thatHl /=∅ at the current integer solution x∗
l
. Then the constraint

∑
j∈Hl

xj ≥ 1
is an efficient cut.

Proof. By the above theorem, no efficient solution is deleted when the constraint
∑

j∈Hl
xj ≥ 1 is

added. We can say that this is an efficient valid constraint. In the other hand, x∗
l
does not satisfy

this constraint since xj = 0, for all j ∈ Nl. We conclude that the constraint is an efficient cut.

Proposition 3.3. If Hl = ∅ at the current integer solution x∗
l
, then Sl \ {x∗

l
} is an explored domain.

Proof. Hl = ∅ means that x∗
l
is an optimal integer solution for all criterion, hence x∗

l
is an ideal

point in the domain Sl and Sl \ {x∗
l
} does not contain efficient solutions.

Theorem 3.4. The described algorithm terminates in a finite number of iterations and generates all the
efficient solutions of program (P).

Proof. The set S of feasible solutions of problem (P), being compact, contains a finite number
of integer solutions. Each time an optimal integer solution x∗

l
is calculated, the efficient cut is

added. Thus according to the above theorem and corollary, at least the solution x∗
l
is eliminated

when one studies any subproblem (Pk), k > l, but no efficient solution is deleted.
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Table 1

B Rhs x3 x4

x2 8/7 2/7 1/7
x1 32/7 1/7 4/7
c1 −4/7 −1/7 −4/7
d1 −13/7 2/7 1/7
γ1 −3/7 −8/7
c2 4/7 1/7 4/7
d2 −15/7 −2/7 −1/7
γ2 1/7 8/7
c3 24/7 −1/7 3/7

4. An illustrative example

The following program (P) is given as an example of multiple objective linear fractional
programming (MOLFP) in Kornbluth and Steuer [20]:

maxZ1(x) =
x1 − 4
−x2 + 3

,

maxZ2(x) =
−x1 + 4
x2 + 1

,

maxZ3(x) = −x1 + x2, subject to − x1 + 4x2 ≤ 0, 2x1 − x2 ≤ 8, x1 ≥ 0, x2 ≥ 0, and integers.
(4.1)

Using the described algorithm, program (P0) is first resolved and the optimal solution is
given in the simplex Table 1:

Since γ1j ≤ 0 for all j ∈ J10 , J
1
0 = N0 = {3, 4}, then the obtained solution (32/7, 8/7) is

optimal for program (P0), but not integer. Therefore, two branches are possible.

(1) x1 ≥ 5 ⇔ −1/7x3 − 4/7x4 ≥ 3/7. This is not possible and (1) is fathomed.

(2) x1 ≤ 4 ⇔ −1/7x3 − 4/7x4 ≤ −4/7.
This constraint is added and the dual simplex method is applied. The integer optimal

solution of program (P2) is obtained in Table 2.
γ1j ≤ 0 for all j ∈ J12 , J

1
2 = N2 = {3, 5}, then the current solution (4, 1) is optimal. Eff :=

{(4, 1)}, H2 = {5}, and S3 = {x ∈ S2|x5 ≥ 1}.
The constraint x5 ≥ 1 is added to the current simplex table and after pivoting, we obtain

Table 3.
J13 = ∅ then, (3, 0) is an optimal integer solution and Eff := {(4, 1), (3, 0)}.
Proceeding in this manner, we obtain Table 4.
J14 = ∅ then, (0, 0) is an optimal integer solution, Eff := {(4, 1), (3, 0), (0, 0)},N4 = {1, 10},

H4 = {10}, and S5 = {x ∈ S4|x10 ≥ 1}.
The constraint x10 ≥ 1 is added and we obtain Table 5.
The dual is not feasible, then the corresponding node is fathomed.
The algorithm terminates since all nodes are fathomed and the integer efficient solutions

set of program (P) is Eff = {(4, 1), (3, 0), (2, 0), (1, 0), (0, 0)}.
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Table 2

B Rhs x3 x5

x2 1 1/4 1/4
x1 4 0 1
x4 1 1/4 −7/4
c1 0 0 −1
d1 −2 1/4 1/4
γ1 0 −2
c2 0 0 1
d2 −2 −1/4 −1/4
γ2 0 2
c3 3 −1/4 3/4

Table 3

B Rhs x2 x6

x3 3 4 1
x1 3 0 1
x4 2 −1 −2
x5 1 0 −1
c1 1 0 −1
d1 −3 −1 0
γ1 −1 −3
c2 −1 0 1
d2 −1 1 0
γ2 −1 1
c3 3 1 1

Table 4

B Rhs x1 x10

x6 3 1 0
x3 0 1 4/3
x4 8 1 −1
x5 4 1 0
x7 2 0 −1
x9 1 3 8
x8 0 1 1
x2 0 −1 −1
c1 4 1 0
d1 −3 −1 −1
γ1 −1 −4
c2 −4 −1 0
d2 −1 1 1
γ2 −5 −4
c3 0 0 1
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Table 5

Rhs x11 x10

x6 2 1 −1
x3 −1 1 1/3
x4 7 1 −2
x5 3 1 −1
x7 2 0 −1
x9 −2 3 5
x8 −1 1 0
x2 1 −1 0
x1 1 −1 1
c1 3 1 −1
d1 −2 −1 0
γ1 −1 −4
c2 −3 −1 1
d2 −2 1 0
γ2 −5 −4
c3 0 0 1

Table 6

(n,m, α), (15,10,33) (20,10,25) (25,5,17) (25,10,17)
Efficient Mean 99,50 204,50 200,45 98,00
Solutions Max 215 324 397 228

Min 4 23 67 17
CPU Mean 38,52 185,96 400,48 306,74
(second) Max 54,39 337,08 673,17 367,11

Min 23,094 143,56 193,87 177,09
Simplex Mean 75837,7 126488,50 521763,45 255726,55
Iterations Max 101207 365750 719105 306665

Min 55851 2717 369414 145324
Efficient Mean 885,3 2341,50 2607,15 979,00
Cuts (EC) Max 1152 2593 3909 1268

Min 451 679 839 440
(EC)/(Cuts) Mean 0,91 0,97 0,84 0,81

5. Computational results

The computer program was coded in MATLAB 7.0 and run on a 3.40GHz DELL pentium 4,
1.00GB RAM. The used software was developed by the authors and was tested on randomly
generated problems. We show the results of the computational experiment in Table 6.

The method was tested with m = 5 and 10 constraints with r = 4 objectives functions
and n variables, n ∈ {15, 20, 25} randomly generated. The coefficients are uncorrelated integers
uniformly distributed in the interval [1, 100] for constraints and [1, 80] for objective functions
about the first two types of treated problems. For the latter two types of problems tested, the
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integer values of the matrix constraints vary in the interval [1, 50] and for those of criteria in
[1, 30]. The right-hand side value is set to α% of the sum of the coefficients (integer part) of
each constraint, where α ∈ {17, 25, 33}. With each instance (n,m, α), a series of 20 problems is
solved and the whole efficient solution set was generated for all these problems.

Themethod being exact, it was expected that the iteration number of the simplexmethod
is very large taking into account the fact that, for this type of problems, the number of efficient
solutions increases quickly with the data size. In addition, we should like to point out that the
ratio EC/cuts tends toward the value one, showing that the number of efficient cuts introduced
into the method is very large compared to the full number of cuts and indicating that this type
of cuts has a positive impact on the research of the whole of efficient solutions.

6. Conclusion

In this paper, an exact method for generating all efficient solutions for multiple objective
integer linear fractional programming problems is presented Themethod does not require any
nonlinear optimization. A linear fractional program is solved using the Cambini andMartein’s
algorithm in the original format and then by using the well-known concept of branching
in integer linear programming, integer solutions are generated. The proposed efficient cut
exploits all the criteria in the simplex table, and only the parts of the feasible solutions domain
containing efficient solutions are explored. Also it is easy to implement the proposed cut
since to obtain integer solution xk+1 from xk, one has just to append the cut in the simplex
table corresponding to xk and carry out pivoting iterations as in an ordinary linear fractional
programming problem. The described method solves MOILFP problems in the general case.
However, in order to make the algorithm more powerful, the tree structure of the algorithm
can be exploited for construction of a parallel algorithm. For large scale problems, the number
of efficient solutions can be very high so that it becomes unrealistic to generate them all. In
this case, one can choose only the increasing directions of criteria which satisfy a desirable
augmentation. This can be made by building the sets Hl in an interactive way at each step of
the algorithm.
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