A LAPLACE DECOMPOSITION ALGORITHM APPLIED TO A CLASS OF NONLINEAR DIFFERENTIAL EQUATIONS

SUHEIL A. KHURI

Received 24 January 2001 and in revised form 22 June 2001

In this paper, a numerical Laplace transform algorithm which is based on the decomposition method is introduced for the approximate solution of a class of nonlinear differential equations. The technique is described and illustrated with some numerical examples. The results assert that this scheme is rapidly convergent and quite accurate by which it approximates the solution using only few terms of its iterative scheme.

1. Introduction

This paper presents a Laplace transform numerical scheme, based on the decomposition method, for solving nonlinear differential equations. The analysis will be adapted to the approximate solution of a class of nonlinear second-order initial-value problems, though the algorithm is well suited for a wide range of nonlinear problems. The numerical technique basically illustrates how the Laplace transform may be used to approximate the solution of the nonlinear differential equation by manipulating the decomposition method which was first introduced by Adomian [1, 2]. The underlying idea of the technique is to assume an infinite solution of the form $u=\sum_{n=0}^{\infty} u_{n}$, then apply Laplace transformation to the differential equation. The nonlinear term is then decomposed in terms of Adomian polynomials and an iterative algorithm is constructed for the determination of the $u_{n}^{\prime} s$ in a recursive manner. The method is implemented for three numerical examples and the numerical results show that the scheme approximates the exact solution with a high degree of accuracy using only few terms of the iterative scheme. The main thrust of this technique is that the solution which is expressed as an infinite series converges fast to exact solutions.

[^0]The balance in this paper is as follows. In Section 2, the Laplace transform decomposition method will be presented as it applies to a class of secondorder nonlinear equations. In Section 3, the algorithm is implemented for three numerical examples.

2. Numerical Laplace transform method

In this paper, a Laplace transform decomposition algorithm is implemented for the solution of the following class of second-order nonlinear initial-value problems

$$
\begin{gather*}
y^{\prime \prime}+a(x) y^{\prime}+b(x) y=f(y) \tag{2.1}\\
y(0)=\alpha, \quad y^{\prime}(0)=\beta . \tag{2.2}
\end{gather*}
$$

Here $f(y)$ is a nonlinear operator and $a(x)$ and $b(x)$ are known functions in the underlying function space. The technique consists first of applying Laplace transformation (denoted throughout this paper by \mathcal{L}) to both sides of (2.1), hence

$$
\begin{equation*}
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[a(x) y^{\prime}\right]+\mathcal{L}[b(x) y]=\mathcal{L}[f(y)] . \tag{2.3}
\end{equation*}
$$

Applying the formulas on Laplace transform, we obtain

$$
\begin{equation*}
s^{2} \mathcal{L}[y]-y(0) s-y^{\prime}(0)+\mathcal{L}\left[a(x) y^{\prime}\right]+\mathcal{L}[b(x) y]=\mathcal{L}[f(y)] . \tag{2.4}
\end{equation*}
$$

Using the initial conditions (2.2), we have

$$
\begin{equation*}
s^{2} \mathcal{L}[y]=\beta+\alpha s-\mathcal{L}\left[a(x) y^{\prime}\right]-\mathcal{L}[b(x) y]+\mathcal{L}[f(y)] \tag{2.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathcal{L}[y]=\frac{\alpha}{s}+\frac{\beta}{s^{2}}-\frac{1}{s^{2}} \mathcal{L}\left[a(x) y^{\prime}\right]-\frac{1}{s^{2}} \mathcal{L}[b(x) y]+\frac{1}{s^{2}} \mathcal{L}[f(y)] . \tag{2.6}
\end{equation*}
$$

The Laplace transform decomposition technique consists next of representing the solution as an infinite series, namely,

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} y_{n} \tag{2.7}
\end{equation*}
$$

where the terms y_{n} are to be recursively computed. Also the nonlinear operator $f(y)$ is decomposed as follows:

$$
\begin{equation*}
f(y)=\sum_{n=0}^{\infty} A_{n} \tag{2.8}
\end{equation*}
$$

where $A_{n}=A_{n}\left(y_{0}, y_{1}, y_{2}, \ldots, y_{n}\right)$ are the so-called Adomian polynomials. The first few polynomials are given by

$$
\begin{align*}
& A_{0}=f\left(y_{0}\right) \\
& A_{1}=y_{1} f^{(1)}\left(y_{0}\right) \\
& A_{2}=y_{2} f^{(1)}\left(y_{0}\right)+\frac{1}{2!} y_{1}^{2} f^{(2)}\left(y_{0}\right), \tag{2.9}\\
& A_{3}=y_{3} f^{(1)}\left(y_{0}\right)+y_{1} y_{2} f^{(2)}\left(y_{0}\right)+\frac{1}{3!} y_{1}^{3} f^{(3)}\left(y_{0}\right) .
\end{align*}
$$

Substituting (2.7) and (2.8) into (2.6) results

$$
\begin{align*}
\mathcal{L}\left[\sum_{n=0}^{\infty} y_{n}\right]= & \frac{\alpha}{s}+\frac{\beta}{s^{2}}-\frac{1}{s^{2}} \mathcal{L}\left[a(x) \sum_{n=0}^{\infty} y_{n}^{\prime}\right] \\
& -\frac{1}{s^{2}} \mathcal{L}\left[b(x) \sum_{n=0}^{\infty} y_{n}\right]+\frac{1}{s^{2}} \mathcal{L}\left[\sum_{n=0}^{\infty} A_{n}\right] . \tag{2.10}
\end{align*}
$$

Using the linearity of Laplace transform it follows that

$$
\begin{align*}
\sum_{n=0}^{\infty} \mathcal{L}\left[y_{n}\right]= & \frac{\alpha}{s}+\frac{\beta}{s^{2}}-\frac{1}{s^{2}} \sum_{n=0}^{\infty} \mathcal{L}\left[a(x) y_{n}^{\prime}\right] \tag{2.11}\\
& -\frac{1}{s^{2}} \sum_{n=0}^{\infty} \mathcal{L}\left[b(x) y_{n}\right]+\frac{1}{s^{2}} \sum_{n=0}^{\infty} \mathcal{L}\left[A_{n}\right] .
\end{align*}
$$

Matching both sides of (2.11) yields the following iterative algorithm:

$$
\begin{align*}
& \mathcal{L}\left[y_{0}\right]=\frac{\alpha}{s}+\frac{\beta}{s^{2}}, \tag{2.12}\\
& \mathcal{L}\left[y_{1}\right]=-\frac{1}{s^{2}} \mathcal{L}\left[a(x) y_{0}^{\prime}\right]-\frac{1}{s^{2}} \mathcal{L}\left[b(x) y_{0}\right]+\frac{1}{s^{2}} \mathcal{L}\left[A_{0}\right], \tag{2.13}\\
& \mathcal{L}\left[y_{2}\right]=-\frac{1}{s^{2}} \mathcal{L}\left[a(x) y_{1}^{\prime}\right]-\frac{1}{s^{2}} \mathcal{L}\left[b(x) y_{1}\right]+\frac{1}{s^{2}} \mathcal{L}\left[A_{1}\right] . \tag{2.14}
\end{align*}
$$

In general,

$$
\begin{equation*}
\mathcal{L}\left[y_{n+1}\right]=-\frac{1}{s^{2}} \mathcal{L}\left[a(x) y_{n}^{\prime}\right]-\frac{1}{s^{2}} \mathcal{L}\left[b(x) y_{n}\right]+\frac{1}{s^{2}} \mathcal{L}\left[A_{n}\right] . \tag{2.15}
\end{equation*}
$$

Applying the inverse Laplace transform to (2.12) we get

$$
\begin{equation*}
y_{0}=\alpha+\beta x . \tag{2.16}
\end{equation*}
$$

Substituting this value of y_{0} into (2.13) gives

$$
\begin{equation*}
\mathcal{L}\left[y_{1}\right]=-\frac{1}{s^{2}} \mathcal{L}[\beta a(x)]-\frac{1}{s^{2}} \mathcal{L}[b(x)(\alpha+\beta x)]+\frac{1}{s^{2}} \mathcal{L}\left[A_{0}\right] . \tag{2.17}
\end{equation*}
$$

Evaluating the Laplace transform of the quantities on the right-hand side of (2.17) then applying the inverse Laplace transform, we obtain the value of y_{1}. The other terms y_{2}, y_{3}, \ldots can be obtained recursively in a similar fashion using (2.15).

3. Numerical examples

The Laplace transform decomposition algorithm, described in Section 2, is applied to some special cases of the class of nonlinear initial-value problems given in (2.1) and (2.2).

Example 3.1. Consider the nonlinear problem

$$
\begin{align*}
& y^{\prime \prime}+(1-x) y^{\prime}-y=2 y^{3} \tag{3.1}\\
& y(0)=1, \quad y^{\prime}(0)=1 \tag{3.2}
\end{align*}
$$

whose closed form solution is

$$
\begin{equation*}
y=\frac{1}{1-x} \tag{3.3}
\end{equation*}
$$

Taking Laplace transform of both sides of (3.1) gives

$$
\begin{equation*}
s^{2} \mathcal{L}[y]-y(0) s-y^{\prime}(0)=-\mathcal{L}\left[(1-x) y^{\prime}\right]+\mathcal{L}[y]+2 \mathcal{L}\left[y^{3}\right] . \tag{3.4}
\end{equation*}
$$

The initial conditions (3.2) imply

$$
\begin{equation*}
s^{2} \mathcal{L}[y]=s+1-\mathcal{L}\left[(1-x) y^{\prime}\right]+\mathcal{L}[y]+2 \mathcal{L}\left[y^{3}\right] \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathcal{L}[y]=\frac{1}{s}+\frac{1}{s^{2}}-\frac{1}{s^{2}} \mathcal{L}\left[(1-x) y^{\prime}\right]+\frac{1}{s^{2}} \mathcal{L}[y]+\frac{2}{s^{2}} \mathcal{L}\left[y^{3}\right] . \tag{3.6}
\end{equation*}
$$

Following the technique, if we assume an infinite series solution of the form (2.7) we obtain

$$
\begin{align*}
\mathcal{L}\left[\sum_{n=0}^{\infty} y_{n}\right]= & \frac{1}{s}+\frac{1}{s^{2}}-\frac{1}{s^{2}} \mathcal{L}\left[(1-x) \sum_{n=0}^{\infty} y_{n}^{\prime}\right] \\
& +\frac{1}{s^{2}} \mathcal{L}\left[\sum_{n=0}^{\infty} y_{n}\right]+\frac{2}{s^{2}} \mathcal{L}\left[\sum_{n=0}^{\infty} A_{n}\right] \tag{3.7}
\end{align*}
$$

where the nonlinear operator $f(y)=y^{3}$ is decomposed as in (2.8) in terms of the Adomian polynomials. From (2.9) the first few Adomian polynomials
for $f(y)=y^{3}$ are given by

$$
\begin{align*}
& A_{0}=y_{0}^{3} \\
& A_{1}=3 y_{0}^{2} y_{1} \\
& A_{2}=3 y_{0}^{2} y_{2}+3 y_{0} y_{1}^{2}, \tag{3.8}\\
& A_{3}=3 y_{0}^{2} y_{3}+6 y_{0} y_{1} y_{2}+y_{1}^{3}
\end{align*}
$$

Upon using the linearity of Laplace transform then matching both sides of (3.7), results in the iterative scheme

$$
\begin{align*}
& \mathcal{L}\left[y_{0}\right]=\frac{1}{s}+\frac{1}{s^{2}}, \tag{3.9}\\
& \mathcal{L}\left[y_{1}\right]=-\frac{1}{s^{2}} \mathcal{L}\left[(1-x) y_{0}^{\prime}\right]+\frac{1}{s^{2}} \mathcal{L}\left[y_{0}\right]+\frac{2}{s^{2}} \mathcal{L}\left[A_{0}\right], \tag{3.10}\\
& \mathcal{L}\left[y_{2}\right]=-\frac{1}{s^{2}} \mathcal{L}\left[(1-x) y_{1}^{\prime}\right]+\frac{1}{s^{2}} \mathcal{L}\left[y_{1}\right]+\frac{2}{s^{2}} \mathcal{L}\left[A_{1}\right] . \tag{3.11}
\end{align*}
$$

In general,

$$
\begin{equation*}
\mathcal{L}\left[y_{n+1}\right]=-\frac{1}{s^{2}} \mathcal{L}\left[(1-x) y_{n}^{\prime}\right]+\frac{1}{s^{2}} \mathcal{L}\left[y_{n}\right]+\frac{2}{s^{2}} \mathcal{L}\left[A_{n}\right] . \tag{3.12}
\end{equation*}
$$

Operating with Laplace inverse on both sides of (3.9) gives

$$
\begin{equation*}
y_{0}=1+x . \tag{3.13}
\end{equation*}
$$

Substituting this value of y_{0} and that of $A_{0}=y_{0}^{3}$ given in (3.8) into (3.10), we get

$$
\begin{equation*}
\mathcal{L}\left[y_{1}\right]=\frac{1}{s^{2}} \mathcal{L}[2 x]+\frac{1}{s^{2}} \mathcal{L}\left[(1+x)^{3}\right] \tag{3.14}
\end{equation*}
$$

so

$$
\begin{equation*}
\mathcal{L}\left[y_{1}\right]=\frac{2}{s^{4}}+\frac{2}{s^{2}}\left[\frac{1}{s}+\frac{3}{s^{2}}+\frac{6}{s^{3}}+\frac{6}{s^{4}}\right]=\frac{2}{s^{3}}+\frac{8}{s^{4}}+\frac{12}{s^{5}}+\frac{12}{s^{6}} . \tag{3.15}
\end{equation*}
$$

The inverse Laplace transform applied to (3.15) yields

$$
\begin{equation*}
y_{1}=x^{2}+\frac{4}{3} x^{3}+\frac{1}{2} x^{4}+\frac{1}{10} x^{5} \tag{3.16}
\end{equation*}
$$

Substituting (3.16) into (3.11) and using the value of A_{1} given in (3.8) implies

$$
\begin{align*}
\mathcal{L}\left[y_{2}\right]= & -\frac{1}{s^{2}} L\left[(1-x)\left(2 x+4 x^{2}+2 x^{3}+\frac{1}{2} x^{4}\right)\right] \tag{3.17}\\
& +\frac{1}{s^{2}} \mathcal{L}\left[x^{2}+\frac{4}{3} x^{3}+\frac{1}{2} x^{4}+\frac{1}{10} x^{5}\right]+\frac{2}{s^{2}} \mathcal{L}\left[3 y_{0}^{2} y_{1}\right] .
\end{align*}
$$

146 Laplace decomposition algorithm
Table 3.1. Error obtained using Laplace transform numerical algorithm with four iterations.

x	Error	Relative error
0.1	1.7858×10^{-9}	1.6072×10^{-9}
0.2	9.4926×10^{-8}	7.5941×10^{-8}
0.3	1.0220×10^{-6}	7.1542×10^{-7}
0.4	1.2033×10^{-5}	7.2195×10^{-6}
0.5	2.3196×10^{-4}	1.1598×10^{-4}
0.6	3.2598×10^{-3}	1.3039×10^{-3}
0.7	3.2952×10^{-2}	9.8855×10^{-3}

Simplifying the right-hand side of (3.17) then applying the inverse Laplace transform, we obtain

$$
\begin{equation*}
y_{2}=-\frac{1}{3} x^{3}+\frac{5}{12} x^{4}+\frac{7}{6} x^{5}+\frac{9}{10} x^{6}+\frac{38}{105} x^{7}+\frac{3}{40} x^{8}+\frac{1}{120} x^{9} . \tag{3.18}
\end{equation*}
$$

Higher iterates can be easily obtained using the computer algebra system Maple. For example,

$$
\begin{align*}
y_{3}= & \frac{1}{12} x^{4}-\frac{1}{4} x^{5}+\frac{1}{40} x^{6}+\frac{4}{5} x^{7}+\frac{25}{24} x^{8} \\
& +\frac{361}{540} x^{9}+\frac{3233}{12600} x^{10}+\frac{29}{462} x^{11}+\frac{11}{1200} x^{12}+\frac{11}{15600} x^{13} \tag{3.19}\\
y_{4}= & -\frac{1}{60} x^{5}+\frac{13}{180} x^{6}-\frac{41}{280} x^{7}-\frac{1213}{6720} x^{8} \\
& +\frac{7}{18} x^{9}+\frac{9991}{10800} x^{10}+\frac{14603}{16632} x^{11}+\frac{832991}{1663200} x^{12} \\
& +\frac{2066429}{10810800} x^{13}+\frac{20101}{400400} x^{14}+\frac{8101}{900900} x^{15}+\frac{211}{208000} x^{16}+\frac{211}{3536000} x^{17} . \tag{3.20}
\end{align*}
$$

Therefore, the approximate solution is

$$
\begin{align*}
y= & y_{0}+y_{1}+y_{2}+y_{3}+y_{4}+\cdots \\
= & 1+x+x^{2}+x^{3}+x^{4}+x^{5}+\frac{359}{360} x^{6}+\frac{853}{840} x^{7}+\frac{2097}{2240} x^{8} \\
& +\frac{1151}{1080} x^{9}+\frac{17867}{15120} x^{10}+\frac{15647}{16632} x^{11}+\frac{848237}{1663200} x^{12}+\frac{518513}{2702700} x^{13} \tag{3.21}\\
& +\frac{20101}{400400} x^{14}+\frac{8101}{900900} x^{15}+\frac{211}{208000} x^{16}+\frac{211}{3536000} x^{17}+\cdots .
\end{align*}
$$

Table 3.1 exhibits the results of the approximation using only four iterations of the Laplace transform decomposition technique. The table shows the absolute error, that is, the difference between the approximate solution given

Table 3.2. Error obtained using the [5,5] Pade approximant of the infinite series solution obtained by the Laplace transform numerical algorithm using four iterations.

x	Error	Relative error
0.5	1.041×10^{-5}	5.2075×10^{-6}
1.5	6.417×10^{-5}	3.2083×10^{-5}
3	1.596×10^{-5}	3.1920×10^{-5}
5	1.111×10^{-5}	4.4470×10^{-5}
7	9.705×10^{-6}	5.8230×10^{-5}
9	9.036×10^{-6}	7.2290×10^{-5}
10	8.819×10^{-6}	7.9372×10^{-5}
20	7.935×10^{-6}	1.5076×10^{-4}
50	7.469×10^{-6}	3.6596×10^{-4}
100	7.322×10^{-6}	7.2494×10^{-4}

in (3.22) and the exact solution in (3.3), as well as the relative error. In both cases the error is less than 1%. Note that the error is small for small values of x and the accuracy degrades heavily for x greater than 1 . The infinite series solution diverges for values of x greater than 1 , however we can use Maple to calculate the [5,5] Pade approximant of the infinite series solution (3.21) which gives the following rational fraction approximation to the solution:

$$
\begin{equation*}
y \simeq \frac{1+\frac{53}{7} x+\frac{8703}{392} x^{2}-\frac{46607}{2058} x^{3}-\frac{178320109}{460992} x^{4}+\frac{1}{360} x^{5}}{1+\frac{46}{7} x+\frac{5735}{392} x^{2}-\frac{369119}{8232} x^{3}-\frac{5596047}{153664} x^{4}+\frac{2674820843}{6914880} x^{5}} . \tag{3.22}
\end{equation*}
$$

In Table 3.2 we calculate the absolute and relative errors using this [5,5] Pade approximant of the infinite series solution obtained by the Laplace decomposition algorithm. In both cases the error is less than 0.75%. Clearly for large values of x, calculating the errors using the Pade approximant instead of the approximate infinite solution will lead to a drastic improvement in the degree of accuracy. The infinite series solution does not provide a good approximation for substantial values of x, however replacing the partial sum of the infinite series solution with its Pade approximant yields a very accurate rational solution.

Example 3.2. Consider the initial-value problem

$$
\begin{gather*}
y^{\prime}+y^{2}=1 \tag{3.23}\\
y(0)=3 \tag{3.24}
\end{gather*}
$$

148 Laplace decomposition algorithm
whose closed form solution is

$$
\begin{equation*}
y=-1+\frac{2}{1-.5 e^{-2 x}} \tag{3.25}
\end{equation*}
$$

First, we apply Laplace transform to both sides of (3.23),

$$
\begin{equation*}
s \mathcal{L}[y]-y(0)+\mathcal{L}\left[y^{2}\right]=\frac{1}{s} . \tag{3.26}
\end{equation*}
$$

The initial condition (3.24) gives

$$
\begin{equation*}
\mathcal{L}[y]=\frac{3}{s}+\frac{1}{s^{2}}-\frac{1}{s} \mathcal{L}\left[y^{2}\right] . \tag{3.27}
\end{equation*}
$$

Assuming an infinite series solution of the form (2.7), we have

$$
\begin{equation*}
\mathcal{L}\left[\sum_{n=0}^{\infty} y_{n}\right]=\frac{3}{s}+\frac{1}{s^{2}}-\frac{1}{s} \mathcal{L}\left[\sum_{n=0}^{\infty} A_{n}\right], \tag{3.28}
\end{equation*}
$$

where the nonlinear operator $f(y)=y^{2}$ is decomposed as in (2.8) in terms of the Adomian polynomials. From (2.9) the first few Adomian polynomials are

$$
\begin{align*}
& A_{0}=y_{0}^{2} \\
& A_{1}=2 y_{0} y_{1}, \\
& A_{2}=2 y_{0} y_{2}+y_{1}^{2}, \tag{3.29}\\
& A_{3}=2 y_{0} y_{3}+2 y_{1} y_{2}
\end{align*}
$$

Following the Laplace transform decomposition method, if we match both sides of (3.27) we obtain the iterative scheme

$$
\begin{gather*}
\mathcal{L}\left[y_{0}\right]=\frac{3}{s}+\frac{1}{s^{2}}, \tag{3.30}\\
\mathcal{L}\left[y_{1}\right]=-\frac{1}{s} \mathcal{L}\left[A_{0}\right], \tag{3.31}\\
\mathcal{L}\left[y_{2}\right]=-\frac{1}{s} \mathcal{L}\left[A_{1}\right], \tag{3.32}
\end{gather*}
$$

and the general iterative step is

$$
\begin{equation*}
\mathcal{L}\left[y_{n+1}\right]=-\frac{1}{s} \mathcal{L}\left[A_{n}\right] . \tag{3.33}
\end{equation*}
$$

The inverse Laplace transform applied to (3.30) results

$$
\begin{equation*}
y_{0}=3+x . \tag{3.34}
\end{equation*}
$$

Substituting $y_{0}=3+x$ and $A_{0}=y_{0}^{2}$ given in (3.8) into (3.31), we obtain

$$
\begin{align*}
\mathcal{L}\left[y_{1}\right] & =-\frac{1}{s} \mathcal{L}\left[y_{0}^{2}\right]=-\frac{1}{s} \mathcal{L}\left[(3+x)^{2}\right] \\
& =-\frac{1}{s}\left(\frac{9}{s}+\frac{6}{s^{2}}+\frac{2}{s^{3}}\right)=-\frac{9}{s^{2}}-\frac{6}{s^{3}}-\frac{2}{s^{4}} . \tag{3.35}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
y_{1}=-9 x-3 x^{2}-\frac{1}{3} x^{3} \tag{3.36}
\end{equation*}
$$

Using this value of y_{1} into (3.32) yields

$$
\begin{equation*}
\mathcal{L}\left[y_{2}\right]=-\frac{1}{s} \mathcal{L}\left[2 y_{0} y_{1}\right]=-\frac{2}{s} \mathcal{L}\left[-27 x-18 x^{2}-4 x^{3}-\frac{1}{3} x^{4}\right] \tag{3.37}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathcal{L}\left[y_{2}\right]=\frac{54}{s^{3}}+\frac{72}{s^{4}}+\frac{48}{s^{5}}+\frac{16}{s^{6}} . \tag{3.38}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
y_{2}=27 x^{2}+12 x^{3}+2 x^{4}+\frac{2}{15} x^{5} \tag{3.39}
\end{equation*}
$$

The following higher iterates are obtained using Maple:

$$
\begin{align*}
& y_{3}=-81 x^{3}-45 x^{4}-\frac{51}{5} x^{5}-\frac{17}{15} x^{6}-\frac{17}{315} x^{7}, \tag{3.40}\\
& y_{4}=243 x^{4}+162 x^{5}+\frac{231}{5} x^{6}+\frac{248}{35} x^{7}+\frac{62}{105} x^{8}+\frac{62}{2835} x^{9} . \tag{3.41}
\end{align*}
$$

The infinite series solution becomes, upon using six iterations,

$$
\begin{align*}
y= & 3-8 x+24 x^{2}-\frac{208}{3} x^{3}+200 x^{4}-\frac{8656}{15} x^{5}+\frac{24976}{15} x^{6}+\frac{553339}{315} x^{7} \\
& +\frac{15550}{21} x^{8}+\frac{502784}{2835} x^{9}+\frac{125536}{4725} x^{10}+\frac{78362}{31185} x^{11}+\cdots \tag{3.42}
\end{align*}
$$

The $[3,3]$ Pade approximant of the solution obtained in (3.42) is given by

$$
\begin{equation*}
y \simeq \frac{3+x+(6 / 5) x^{2}+(1 / 15) x^{3}}{1+3 x+(2 / 5) x^{2}+(1 / 5) x^{3}} \tag{3.43}
\end{equation*}
$$

Table 3.3 gives the absolute and relative errors of the infinite series approximation using six iterations of the Laplace transform decomposition technique. The error is less than 0.025%. As in Example 3.1, it was noticed that for large values of x, replacing the infinite series solution (3.42) with its Padé approximant (3.43) will improve the error.

150 Laplace decomposition algorithm
Table 3.3. Error obtained upon using six iterations of the Laplace transform decomposition algorithm.

x	Error	Relative error
0.1	2.9849×10^{-10}	1.2509×10^{-10}
0.2	2.4803×10^{-8}	1.2351×10^{-8}
0.3	2.9356×10^{-7}	1.6714×10^{-7}
0.4	1.5941×10^{-6}	1.0092×10^{-6}
0.5	5.6963×10^{-6}	3.9263×10^{-6}
0.6	1.5688×10^{-5}	1.1581×10^{-5}
0.7	3.6180×10^{-5}	2.8237×10^{-5}
0.8	7.3380×10^{-5}	5.9923×10^{-5}
0.9	1.3503×10^{-4}	1.1441×10^{-4}
1.0	2.3023×10^{-4}	2.0105×10^{-4}

Example 3.3. Consider the following nonlinear problem:

$$
\begin{gather*}
y^{\prime}=4 y-y^{3} \tag{3.44}\\
y(0)=0.5 \tag{3.45}
\end{gather*}
$$

The exact solution is

$$
\begin{equation*}
y=2\left(\frac{e^{8 x}}{e^{8 x}+15}\right)^{1 / 2} \tag{3.46}
\end{equation*}
$$

Operating with Laplace transform on both sides of (3.44) results

$$
\begin{equation*}
s \mathcal{L}[y]-y(0)=4 \mathcal{L}[y]-\mathcal{L}\left[y^{3}\right] \tag{3.47}
\end{equation*}
$$

Using the initial condition (3.45) then simplifying the resulting equation in (3.47), we obtain

$$
\begin{equation*}
\mathcal{L}[y]=\frac{0.5}{s}+\frac{4}{s} \mathcal{L}[y]-\frac{1}{s} L\left[y^{3}\right] . \tag{3.48}
\end{equation*}
$$

Assuming an infinite series solution as in (2.7) we have

$$
\begin{equation*}
\mathcal{L}\left[\sum_{n=0}^{\infty} y_{n}\right]=\frac{0.5}{s}+\frac{4}{s} \mathcal{L}\left[\sum_{n=0}^{\infty} y_{n}\right]-\frac{1}{s} \mathcal{L}\left[\sum_{n=0}^{\infty} A_{n}\right], \tag{3.49}
\end{equation*}
$$

where the nonlinear operator $f(y)=y^{3}$ is decomposed as in (2.8) in terms of the Adomian polynomials, which for this case the first few are given in (3.8). Matching both sides of (3.49), the components of y can be defined
as follows:

$$
\begin{align*}
& \mathcal{L}\left[y_{0}\right]=\frac{0.5}{s} \tag{3.50}\\
& \mathcal{L}\left[y_{1}\right]=\frac{4}{s} \mathcal{L}\left[y_{0}\right]-\frac{1}{s} \mathcal{L}\left[A_{0}\right], \tag{3.51}\\
& \mathcal{L}\left[y_{2}\right]=\frac{4}{s} \mathcal{L}\left[y_{1}\right]-\frac{1}{s} \mathcal{L}\left[A_{1}\right] \tag{3.52}
\end{align*}
$$

and the general term is

$$
\begin{equation*}
\mathcal{L}\left[y_{n+1}\right]=\frac{4}{s} \mathcal{L}\left[y_{n}\right]-\frac{1}{s} \mathcal{L}\left[A_{n}\right] . \tag{3.53}
\end{equation*}
$$

The terms y_{n} can be obtained in a recursive manner. Taking the inverse Laplace transform of (3.50) gives

$$
\begin{equation*}
y_{0}=0.5 \tag{3.54}
\end{equation*}
$$

Substituting this value of y_{0} into (3.51), and using that $A_{0}=y_{0}^{3}$ from (3.8), we obtain

$$
\begin{equation*}
\mathcal{L}\left[y_{1}\right]=\frac{2}{s^{2}}-\frac{1}{s} \mathcal{L}\left[(0.5)^{3}\right]=\frac{2}{s^{2}}-\frac{1}{8 s^{2}} \tag{3.55}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
y_{1}=1.875 x \tag{3.56}
\end{equation*}
$$

Using this value of y_{1} into (3.52) gives

$$
\begin{equation*}
\mathcal{L}\left[y_{2}\right]=\frac{4}{s} \mathcal{L}[1.875 x]-\frac{1}{s} \mathcal{L}\left[3 y_{0}^{2} y_{1}\right] . \tag{3.57}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
y_{2}=3.046875 x^{2} \tag{3.58}
\end{equation*}
$$

The next higher iterates are obtained using Maple,

$$
\begin{align*}
& y_{3}=1.54296875 x^{3} \\
& y_{4}=-4.678955079 x^{4} \tag{3.59}
\end{align*}
$$

The series solution is therefore

$$
\begin{align*}
y= & 0.5+1.875 x+3.046875 x^{2}+1.54296875 x^{3} \\
& -4.678955079 x^{4}-13.98919678 x^{5}+\cdots \tag{3.60}
\end{align*}
$$

The $[4,4]$ Pade approximant of this approximate solution is

$$
\begin{equation*}
y \simeq \frac{0.5+2.940330021 x+9.262070767 x^{2}+13.01811008 x^{3}+9.597056446 x^{4}}{1+2.130660041 x+4.440416382 x^{2}-6.684988403 x^{3}+19.98685852 x^{4}} \tag{3.61}
\end{equation*}
$$

Table 3.4. Error obtained using four iterations of the numerical algorithm.

x	Error	Relative error
0.05	2.5873×10^{-7}	4.3013×10^{-7}
0.10	1.5733×10^{-5}	2.1885×10^{-5}
0.15	1.6370×10^{-4}	1.9226×10^{-4}
0.20	7.9299×10^{-4}	7.9581×10^{-4}
0.25	2.3856×10^{-3}	2.0763×10^{-3}
0.30	4.8087×10^{-3}	3.6942×10^{-3}
0.35	5.6245×10^{-3}	3.8888×10^{-3}
0.40	2.3004×10^{-3}	1.4601×10^{-3}

Table 3.4 shows that the absolute and relative errors of the approximation (3.61), using four iterations of the numerical technique, is less than 2%. Again, as in the previous examples, the Pade approximant (3.61) of the solution (3.60) yields a better approximation of the exact solution for larger values of x.

Example 3.4. In this last example, the method is illustrated by considering the damped Duffing's equation

$$
\begin{gather*}
y^{\prime \prime}+k y^{\prime}=-y^{3} \tag{3.62}\\
y(0)=\alpha, \quad y^{\prime}(0)=\beta \tag{3.63}
\end{gather*}
$$

where k is a positive constant. Applying Laplace transform to both sides of (3.62) we obtain

$$
\begin{equation*}
s^{2} \mathcal{L}[y]-y(0) s-y^{\prime}(0)+k(s \mathcal{L}[y]-y(0))=-\mathcal{L}\left[y^{3}\right] \tag{3.64}
\end{equation*}
$$

Simplifying this equation and using the initial conditions (3.63) yields

$$
\begin{equation*}
\left(s^{2}+k s\right) \mathcal{L}[y]=\alpha(s+k)+\beta-\mathcal{L}\left[y^{3}\right] \tag{3.65}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathcal{L}[y]=\alpha \frac{s+k}{s^{2}+k s}+\frac{\beta}{s^{2}+k s}-\frac{1}{s^{2}+k s} \mathcal{L}\left[y^{3}\right] . \tag{3.66}
\end{equation*}
$$

Assuming an infinite series solution of the form (2.7) we get

$$
\begin{equation*}
\mathcal{L}\left[\sum_{n=0}^{\infty} y_{n}\right]=\alpha \frac{s+k}{s^{2}+k s}+\frac{\beta}{s^{2}+k s}-\frac{1}{s^{2}+k s} \mathcal{L}\left[\sum_{n=0}^{\infty} A_{n}\right], \tag{3.67}
\end{equation*}
$$

where the nonlinear operator $f(y)=y^{3}$ is decomposed in terms of the Adomian polynomials which for this case are given in (3.8). Upon using
the linearity of Laplace transform then matching both sides of (3.67), results in the iterative algorithm

$$
\begin{align*}
& \mathcal{L}\left[y_{0}\right]=\alpha \frac{s+k}{s^{2}+k s}+\frac{\beta}{s^{2}+k s}, \tag{3.68}\\
& \mathcal{L}\left[y_{1}\right]=-\frac{1}{s^{2}+k s} \mathcal{L}\left[A_{0}\right], \tag{3.69}\\
& \mathcal{L}\left[y_{2}\right]=-\frac{1}{s^{2}+k s} \mathcal{L}\left[A_{1}\right] . \tag{3.70}
\end{align*}
$$

In general,

$$
\begin{equation*}
\mathcal{L}\left[y_{n+1}\right]=-\frac{1}{s^{2}+k s} \mathcal{L}\left[A_{n}\right] . \tag{3.71}
\end{equation*}
$$

Consider the case where $\alpha=\beta=k=1$. Operating with Laplace inverse on both sides of (3.68) gives

$$
\begin{equation*}
y_{0}=2-e^{-x} . \tag{3.72}
\end{equation*}
$$

Substituting this value of y_{0} and that of $A_{0}=y_{0}^{3}$ given in (3.8) into (3.69), we obtain

$$
\begin{equation*}
\mathcal{L}\left[y_{1}\right]=-\frac{1}{s^{2}+k s} \mathcal{L}\left[y_{0}^{3}\right]=-\frac{1}{s^{2}+k s} \mathcal{L}\left[\left(2-e^{-x}\right)^{3}\right] \tag{3.73}
\end{equation*}
$$

so

$$
\begin{equation*}
\mathcal{L}\left[y_{1}\right]=\frac{8 / s-12 /(s+1)+6 /(s+2)-1 /(3+s)}{s^{2}+s} \tag{3.74}
\end{equation*}
$$

The inverse Laplace transform applied to (3.74) yields

$$
\begin{equation*}
y_{1}=-8 x+\frac{52}{3}-12 x e^{-x}-\frac{29}{2} e^{-x}-3 e^{-2 x}+\frac{1}{6} e^{-3 x} \tag{3.75}
\end{equation*}
$$

Substituting the value of A_{1} given in (3.8) into (3.70) implies

$$
\begin{equation*}
\mathcal{L}\left[y_{2}\right]=-\frac{1}{s^{2}+k s} \mathcal{L}\left[3 y_{0}^{2} y_{1}\right] . \tag{3.76}
\end{equation*}
$$

Substituting the values of y_{0} and y_{1} given in (3.72) and (3.75) into (3.76) then applying the inverse Laplace transform, we obtain

$$
\begin{align*}
y_{2}= & 48 x^{2}-304 x+\frac{37049}{60}-\left(24 x^{2}+430 x+\frac{10543}{24}\right) e^{-x} \tag{3.77}\\
& -(60 x+185) e^{-2 x}+\left(6 x+\frac{71}{12}\right) e^{-3 x}+\frac{11}{12} e^{-4 x}-\frac{1}{40} e^{-5 x} .
\end{align*}
$$

154 Laplace decomposition algorithm
Table 3.5. Error that results from comparing the solution derived by the Laplace transform numerical algorithm with four iterations, and the numerical solution obtained using Maple.

x	Error	Relative error
0.1	1.6482×10^{-10}	1.5123×10^{-10}
0.2	3.7401×10^{-10}	3.2275×10^{-10}
0.3	3.6991×10^{-8}	3.0661×10^{-8}
0.4	7.8776×10^{-7}	6.3895×10^{-7}
0.5	8.5726×10^{-6}	6.9187×10^{-6}
0.6	6.0690×10^{-5}	4.9478×10^{-5}
0.7	3.1769×10^{-4}	2.6522×10^{-4}
0.8	1.3281×10^{-3}	1.1494×10^{-3}
0.9	4.6628×10^{-3}	4.2292×10^{-3}
1.0	1.4236×10^{-2}	1.3664×10^{-2}

In a similar fashion, higher iterates are obtained using Maple. For example,

$$
\begin{align*}
y_{3}= & -320 x^{3}+3616 x^{2}-\frac{246667}{15} x+\frac{184833613}{6300} \\
& +\left(32 x^{3}-796 x^{2}-\frac{545719}{30} x-\frac{71534779}{3600}\right) e^{-x} \\
& +\left(84 x^{2}+\frac{1055}{3} x+\frac{9103}{144}\right) e^{-3 x}-\left(\frac{3}{2} x+\frac{29}{400}\right) e^{-5 x} \tag{3.78}\\
& -\left(360 x^{2}+4308 x+\frac{385069}{40}\right) e^{-2 x}+\left(\frac{121}{3} x+\frac{863}{9}\right) e^{-4 x} \\
& +\frac{19}{5040} e^{-7 x}-\frac{373}{1800} e^{-6 x}
\end{align*}
$$

Therefore, the approximate solution is

$$
\begin{align*}
y= & y_{0}+y_{1}+y_{2}+y_{3}+\cdots \\
= & -\frac{251347}{15} x-320 x^{3}-\left(\frac{392589}{40}+4368 x+360 x^{2}\right) e^{-2 x} \\
& -\left(\frac{39}{400}+\frac{3}{2} x\right) e^{-5 x}+\left(84 x^{2}+\frac{1073}{3} x+\frac{9979}{144}\right) e^{-3 x} \\
& -\left(\frac{73172029}{3600}+32 x^{3}+\frac{558979}{30} x+820 x^{2}\right) e^{-x}+3664 x^{2} \\
& +\left(\frac{121}{3} x+\frac{3485}{36}\right) e^{-4 x}-\frac{373}{1800} e^{-6 x}+\frac{19}{5040} e^{-7 x}+\frac{94422779}{3150}+\cdots . \tag{3.79}
\end{align*}
$$

Table 3.5 shows the absolute and relative errors that result from comparing the approximate solution obtained from the Laplace transform decomposition algorithm using four iterations, and the numerical solution of the damped Duffing's equation evaluated using Maple solve commands. The error is less than 0.001%. In all the previous four examples, it was observed that increasing the number of iterates will improve the accuracy of the solution.

References

[1] G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Comput. Math. Appl. 21 (1991), no. 5, 101-127. MR 92h:00002b. Zbl 0732.35003.
[2] _ Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Dordrecht, 1994. MR 95e:00026. Zbl 0802.65122.

Suheil A. Khuri: Department of Computer Science, Mathematics and Statistics, American University of Sharjah, United Arab Emirates

E-mail address: skhoury@aus.ac.ae

Journal of Applied Mathematics and Decision Sciences

Special Issue on
 Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal's Author Guidelines, which are located at http://www .hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

Manuscript Due	June 1, 2009
First Round of Reviews	September 1, 2009
Publication Date	December 1, 2009

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be

[^0]: Copyright © 2001 Hindawi Publishing Corporation
 Journal of Applied Mathematics 1:4 (2001) 141-155
 2000 Mathematics Subject Classification: 41A10, 45M15, 65L05
 URL: http://jam.hindawi.com/volume-1/S1110757X01000183.html

