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When the phase space P of a Hamiltonian G-system (P,ω,G,J,H) has an
almost Kähler structure, a preferred connection, called abstract mechanical
connection, can be defined by declaring horizontal spaces at each point to
be metric orthogonal to the tangent to the group orbit. Explicit formulas for
the corresponding connection one-form A are derived in terms of the mo-
mentum map, symplectic and complex structures. Such connection can play
the role of the reconstruction connection (due to the work of A. Blaom),
thus significantly simplifying computations of the corresponding dynamic
and geometric phases for an Abelian group G. These ideas are illustrated
using the example of the resonant three-wave interaction. Explicit formulas
for the connection one-form and the phases are given together with some
new results on the symmetry reduction of the Poisson structure.

1. Introduction

1.1. Definitions and preliminaries

Consider a finite-dimensional symplectic manifold (P,ω). Let a Lie group G

act on it canonically, that is, by preserving the symplectic form ω, and as-
sume that this action admits an (equivariant) momentum map J : P → U ⊂
g∗, U ≡ J(P). Let a dynamical system be defined on P by some Hamilton-
ian H. We call (P,ω,G,J,H) a Hamiltonian G-system. Assume also that G

acts on P freely and properly so that the Poisson reduction can be performed
(in fact, these conditions can be slightly relaxed, cf. [9]). For background on
momentum maps, Poisson reduction, etc., the reader is referred to Marsden
and Ratiu [9].
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Recall that an almost Kähler manifold (M,ω,J,s) can be defined as a
manifold M with an almost complex structure J and a J-invariant (i.e.,
Hermitian) metric s, whose fundamental 2-form ω, defined by

ω(x)(v,w) = s(x)
(
J(x)v,w

)
, ∀v,w ∈ TxM, (1.1)

is closed and hence a symplectic form on M. If in addition the Nijenhuis tor-
sion of J vanishes, then J is complex and M becomes a Kähler manifold [6].
The automorphisms of an almost Kähler structure are diffeomorphisms of
M which at the same time are symplectomorphisms, almost complex maps
and isometries with respect to ω,J, and s, respectively. It follows from the
definition that any two of these conditions imply the third one. For the back-
ground and more information, see, for example, Kobayashi and Nomizu [6].

1.2. Reconstruction of the dynamics

The space of group orbits P/G, which is obtained by taking the quotient
map π : P → P/G and is a smooth manifold under appropriate assumptions,
inherits a Poisson structure from that of P. The Hamiltonian H drops to a
reduced Hamiltonian h on P/G, and the corresponding Hamiltonian vector
fields XH and Xh, as well as their solutions xt and yt, respectively, are
related by the projection π : P → P/G.

Assume that yt is periodic with period T , then for any initial condition
x0 ∈ π−1(y0), the associated reconstruction phase is the unique g ∈ G such
that xT = g · x0. The methods presently used to compute reconstruction
phases are generally based on those established in [8]. The procedure can be
sketched as follows.

If J : P → g∗ is a momentum map, which we will suppose is Ad∗-
equivariant, then J(xt) = µ0 ≡ J(x0). Under appropriate connectedness hy-
potheses, the Marsden-Weinstein reduced space J−1(µ0)/Gµ0

(Gµ0
denoting

the isotropy of the coadjoint action at µ0 ∈ g∗) can be identified with a
symplectic leaf Pµ0

⊂ P/G containing the reduced solution curve yt, and
the projection J−1(µ0) → Pµ0

is a principal Gµ0
-bundle.

The first step in calculating the reconstruction phase g is to equip the
bundle J−1(µ0) → Pµ0

with a principal connection αµ0
, whose holonomy

along the reduced curve yt is called the associated geometric phase and
denoted ggeom. The phase g is then the product gdynggeom, where gdyn, called
the dynamic phase, is obtained by integrating a linear, nonautonomous,
and ordinary differential equation, called the reconstruction equation. The
coefficients in this equation are defined in terms of αµ0

, the unreduced
Hamiltonian vector field XH, and an αµ0

-horizontal lift of yt to J−1(µ0).
Calculating the geometric phase usually requires one to compute the curva-
ture of αµ0

.
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While any connection αµ0
can be used to compute g as described in the

previous paragraph, a poor choice will lead to unwieldy computations (see,
for example, [11]). For the so-called simple mechanical G-systems a natural
choice exists (see Section 1.3); for other systems the choice is often made
on a case-by-case basis.

1.3. Overview of the results

As we already mentioned, the methods presently used to compute recon-
struction phases are based on those established in [8]. Though the general
ideas in [8] apply for arbitrary Hamiltonian G-systems, most of the advances
in the computation techniques have been done for mechanical systems on
cotangent bundles T∗Q of some Riemannian manifolds Q with the metric,
which determines the kinetic energy, playing the crucial role for the defi-
nition of the mechanical connection. Unfortunately, these settings exclude
such interesting and important systems as N point vortices on a plane or on
a sphere, N-wave interaction, etc., where the configuration space is not a
cotangent bundle.

Luckily, some of these systems have a natural almost Kähler structure
which we exploit in the construction of the abstract mechanical connec-
tion. It is defined by specifying the horizontal space to be metric orthogonal
to the group orbits (see Section 4 for the details). The corresponding connec-
tion one-form is then obtained in terms of the momentum map, symplectic
and complex structures. These expressions enable us to further simplify the
computation of the reconstruction phases as described in [3] for the case
of Abelian groups. The requirement of the group being Abelian is essen-
tial for the geometric phase part (see Section 4.2), but it is not used in
the construction of the map L involving the abstract inertia tensor and in
the expression for the dynamic phase. The Abelian property of the group
makes the relation between the principal connections on Poisson and sym-
plectic bundles trivial (see Section 3.1). It also significantly simplifies the
picture of dual pairs, which underlies our constructions, and enables us to
construct a very “useful” bundle j : P/G → g∗. This is briefly described in
Section 3.2.

In the work in progress a generalization to non-Abelian group action is
being considered, as well as further simplification and links which arise
in the case of the phase space being a cotangent bundle with the almost
Kähler structure coming from a Riemannian metric on the configuration
space. The relation between the abstract mechanical connection and the
well-known mechanical connection is considered in [3], where the recon-
struction phases for the cotangent bundles were analyzed, though not from
the point of view of almost Kähler manifolds and corresponding abstract
mechanical connections.
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2. Reconstruction connection and the associated phases

In this section, we briefly overview the results on reconstruction phases ob-
tained in [3]. We refer the reader to the original paper for detailed and com-
prehensive treatment of the subject. Here we are mainly interested in adopt-
ing these results to the case of almost Kähler systems, and thus we avoid
giving much details to keep the presentation clear and avoid repetition.

In [3], a general formula is derived which expresses a reconstruction phase
in terms of the associated reduced solution, viewed as a curve in the Poisson-
reduced phase space P/G, and certain derivatives transverse to the symplec-
tic leaf in P/G containing the curve. Specifically, the dynamic part of the
phase depends on transverse derivative in the Poisson-reduced Hamiltonian,

while the geometric part is determined by transverse derivatives in the leaf
symplectic structures.

2.1. Highlights and basic assumptions

It is shown in [3] that the principal connection on the bundle J−1(µ0) →
Pµ0

, which plays a crucial role in the computation of the phases, is most
naturally viewed as the restriction to J−1(µ0) of a certain kind of distri-
bution A on P, which is called a reconstruction connection. To define the
transverse derivatives, one then specifies a connection D on the symplec-
tic stratification of P/G (a distribution on P/G furnishing a complement
for the characteristic distribution). This connection D can be obtained by
“Poisson-reducing” the connection A.

Explicitly, assuming that as a cycle, the reduced curve yt (see Section 1.2)
is a boundary ∂Σ (Σ ⊂ Pµ0

compact and oriented), the corresponding recon-
struction phase is g = gdynggeom, where

gdyn = exp
∫T

0

Dµ0
h(yt)dt, ggeom = exp

∫
Σ

Dµ0
ωD. (2.1)

In these formulas Dµ0
denotes a certain “exterior covariant derivative”

depending on D and µ0 that maps R-valued p-forms on P/G to gµ0
-valued

p-forms on Pµ0
(p = 0,1,2, . . .). For example, Dµ0

h(yt) is an element of gµ0

that happens to measure the derivative of h in directions lying in D(yt) (i.e.,
in certain directions transverse to the symplectic leaves). ωD denotes the
two-form on P/G whose restriction to a given leaf gives that leaf’s symplectic
structure, and whose contraction with vectors in D vanishes.

Equation (2.1) holds assuming that Gµ0
is Abelian, that Pµ0

is a non-
degenerate symplectic leaf, and that D is a smooth distribution in some
neighborhood of P/G. These conditions are in addition to the following as-
sumptions which are understood to be in place throughout the paper:

• all manifolds are smooth, that is, C∞
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• the group G acts freely and properly, so that the natural projection
π : P → P/G is a submersion

• the group action is Hamiltonian, that is, it admits a momentum map
J : P → g∗ which is Ad∗-equivariant, that is, J(g ·x) = Ad∗

g J(x).

Expressions (2.1) make sense for any connection D on the symplectic
stratification of P/G; whence, the total reconstruction phase g = gdynggeom

(which is independent of the choice of αµ0
, and hence A) can be computed

using any connection D on the symplectic stratification of P/G.
The following two subsections give a short review of the results in [3] that

are relevant for our applications.

2.2. Main constructions

Definition 2.1. Call a distribution A on P a reconstruction connection if

(a) A is G-invariant,
(b) KerTxJ = Tx(Gµ ·x)⊕A(x) (x ∈ P, m ≡ J(x)).

Here Gµ denotes the point stabilizer of the coadjoint action at µ ∈ g∗, TxJ

is the tangent map, and ⊕ denotes the direct sum.

2.2.1. Connections on the symplectic stratification of P/G

Let E denote the characteristic distribution on P/G (i.e., the distribution
tangent to the symplectic leaves). We call a distribution D on P/G a con-
nection on the symplectic stratification of P/G if it furnishes a complement
for E:

T(P/G) = E⊕D. (2.2)

Now let A be a G-invariant distribution on P. Since G acts by symplec-
tic diffeomorphisms, the distribution Aω, the symplectic orthogonal dis-
tribution to A, is also G-invariant. It consequently drops to a distribution
Â ≡ π∗(Aω) on P/G; here π∗ denotes push-forward. Conversely, if D is an
arbitrary distribution on P/G, then D̂ ≡ (π∗D)ω is a G-invariant distribu-
tion on P; here π∗ denotes pull-back. Evidently, one has

̂̂
D = D. (2.3)

We quote the following theorem form [3] without proof.

Theorem 2.2 (Blaom 1999). If A is a general reconstruction connection,

then Â is a connection on the symplectic stratification of P/G. Moreover,
the map A �→ Â is a bijection from the set of reconstruction connections
to the set of connections on the symplectic stratification of P/G. This
bijection has an inverse D �→ D̂.
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If A is a reconstruction connection, one thinks of Â as its Poisson-reduced
counterpart. A reconstruction connection A can be reconstructed from its
reduced counterpart D ≡ Â according to A = D̂.

Two other lemmas from [3] are relevant to our presentation and will be
used in Section 3.

Lemma 2.3. Let π : P → Q be a Poisson submersion and let E denote the
characteristic distribution on Q. If P is symplectic, and ω denotes the
symplectic form on P, then

π∗E = KerTπ+(KerTπ)ω. (2.4)

Lemma 2.4. Let x ∈ P be arbitrary and define µ ≡ J(x). Then

Tx

(
Gµ ·x)

=
(
(π∗E)(x)

)ω
. (2.5)

2.2.2. Transverse derivatives in P/G

Under appropriate connectedness hypotheses each reduced space J−1(µ)/Gµ

may be identified with a symplectic leaf Pµ ⊂ P/G. A connection D on the
symplectic stratification of P/G allows one to define derivatives of functions
on P/G transverse to Pµ. At a point in Pµ such a derivative can be identified
in a natural way with an element of the isotropy algebra gµ, provided that
the isotropy group Gµ is Abelian. More generally, for such µ the connection
D defines an “exterior covariant derivatives” mapping R-valued p-forms on
P/G to gµ-valued p-forms on the leaf Pµ.

Let D be a fixed connection on the symplectic stratification of P/G. Fix
µ ∈ U ≡ J(P) and assume Gµ is Abelian. Then we have the following propo-
sition.

Proposition 2.5. For each y ∈ Pµ there is a natural isomorphism D(y) ↔
g∗µ well defined by

v �−→ pµ

(
forg(TJ ·w)

)
, (2.6)

where w denotes any element of TxP with Tπ ·w = v, and x ∈ J−1(µ)∩
π−1(y) = π−1

µ (y) is arbitrary. The inverse of this map (which depends on
D,µ, and y) is denoted by L(D,µ,y) : g∗µ → D(y).

The map forg : TU → g∗ denotes the map that “forgets base point” and
pµ : g∗ → g∗µ denotes the natural projection.

Definition 2.6. Suppose that f is a function on P/G defined in some neigh-
borhood of y. Then the (D,µ)-exterior covariant derivative of f at y,
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denoted Dµf(y) ∈ gµ, is defined through〈
ν,Dµf(y)

〉
=

〈
df,L(D,µ,y)(ν)

〉 ∀ν ∈ g∗µ. (2.7)

Definition 2.7. Let σ be a differential p-form on P/G defined in a neigh-
borhood of Pµ, and assume that Gµ is Abelian. Then the (D,µ)-exterior
covariant derivative Dµσ of σ is the gµ-valued p-form on Pµ defined
through 〈

ν,Dµσ
(
v1, . . . ,yp

)〉
= dσ

(
L(D,µ,y)(ν),v1, . . . ,vp

)
, (2.8)

where ν ∈ g∗µ,v1, . . . ,vp ∈ TyPµ and y ∈ Pµ.

2.2.3. Smoothness conditions

Let A be a reconstruction connection and let D be a connection on the
symplectic stratification of P/G. Then we say that, A is µ-smooth (µ ∈ U)
if the set {

A(x) | x ∈ J−1(µ)
}

(2.9)

is a smooth sub-bundle of the tangent bundle T(J−1(µ)). We call D µ-smooth
if the set {

D(y) | y ∈ Pµ

}
(2.10)

is a smooth sub-bundle of TPµ(P/G) ≡ {Ty(P/G) | y ∈ Pµ}.
Then, the following smoothness results hold [3]:
• D is µ-smooth if and only if A is µ-smooth.
• If D is µ-smooth, then L(D,µ,y) in (2.6) depends smoothly on y ∈ Pµ.
• If D is µ-smooth, then Dµf : Pµ → gµ is smooth.
• Similarly, for a p-form σ, µ-smoothness of D ensures smoothness of

Dµσ.

2.3. Reconstruction phases

Let H be a G-invariant Hamiltonian on P, and let h : P/G → R be its Poisson-
reduced counterpart. With the assumptions stated in Section 2.1 satisfied,

consider an integral curve xt ∈ P of XH. The curve remains in the sub-
manifold J−1(µ0) (µ0 ≡ J(x0)) for all time t for which it is defined. The
Marsden-Weinstein reduction bundle

πµ0
: J−1(µ0) −→ Pµ0

(2.11)

is a principal Gµ0
-bundle. Let

αµ0
: T

(
J−1(µ0)

) −→ gµ0
(2.12)
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denote the connection one-form on this bundle whose associated horizontal
space at each x ∈ J−1(µ0) is horµ0

≡ A(x). To ensure that αµ0
and horµ0

are smooth, we require that A be µ0-smooth.
Let yt ∈ Pµ0

denote the integral curve of the reduced Hamiltonian vector
field Xh on P/G that has y0 = π(x0) ∈ Pµ0

as its initial point. Then as XH

and Xh are π-related, we have yt = π(xt) for all t.
Let dt ∈ J−1(µ0) denote the horµ0

-horizontal lift of yt having x0 as its
initial point d0. Supposing that yt is periodic with period T , we have

dT = ggeom ·x0, xT = gdyn ·dT , (2.13)

for some uniquely defined ggeom,gdyn ∈ Gµ0
called geometric and dynamic

phases associated with the reduced solution Yt. The product gtotal =

ggeomgdyn is called the total phase. It does not depend on A = D̂, but de-
pends only on y0, the flow of XH, and the period T .

2.3.1. Dynamic phases

It is well known (see [8]) that the dynamic phase is given by the solution of
the following initial value problem, known as the reconstruction equation:

ġt = gtξt, where ξt ≡ αµ0

(
XH(dt)

)
, g0 = Id . (2.14)

Here gtξt denotes the tangent action of gt.
Corollary 3.6 of [3] states that, assuming Gµ0

is Abelian, the dynamic
phase is given by

gdyn = exp
∫T

0

Dµ0
h(yt)dt. (2.15)

2.3.2. Geometric phases

Recall that the geometric phase ggeom associated with a solution xt is the
holonomy of a principal connection αµ0

on J−1(µ0)→ Pµ0
along the corre-

sponding reduced solution curve yt = π(xt) ∈ Pµ0
. Assuming Gµ0

is Abelian,

the holonomy of appropriate curves is determined by the curvature of αµ0
. It

is well known (see [8]) that if the cycle yt is in fact a boundary ∂Σ (Σ ⊂ Pµ0

compact and oriented), then

ggeom = exp
(

−

∫
Σ

Ωµ0

)
, (2.16)

where Ωµ0
is the curvature of αµ0

, viewed as a gµ0
-valued two-form on the

reduced space Pµ0
.

Theorem C of [3] shows that all curvature information on αµ0
is encoded

in (i) the connection D on the symplectic stratification of P/G correspond-
ing to the reconstruction connection A, together with (ii) the Poisson struc-
ture on P/G.
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The connection D allows to “assemble” the reduced symplectic structures
ωΛ (Λ ⊂ P/G a symplectic leaf) into a single two-form ωD on P/G by
decreeing that

ωD(u,v) ≡ ωΛ

(
pDu,pDv

)
, u,v ∈ T(P/G), (2.17)

where Λ denotes the leaf to which the common base point of u and v be-
longs, and where pD : T(P/G) → E denotes the projection along D onto the
characteristic distribution E.

We remark that in general ωD need not be smooth, but if Pµ0
is a nonde-

generate symplectic leaf, then ωD is smooth wherever D is of constant rank
and smooth. Then, Corollary 4.5 of [3] states that assuming Gµ0

is Abelian
and ωD is smooth in a neighborhood of Pµ0

, the geometric phase is given by

ggeom = exp
∫
Σ

Dµ0
ωD. (2.18)

3. Connections on various bundles for Abelian groups

In this section, the relation between connections on Poisson and symplectic
bundles is analyzed. This establishes the validity of the application of results
in [3] to our settings in the case of Abelian groups G, so that the metric
orthogonal spaces to the group orbit in the whole tangent TxP as well as
within the kernel KerTJ(x) ⊂ TxP both constitute valid horizontal spaces
for Poisson and symplectic bundles, respectively.

In Section 3.2, the formalism of dual pairs is introduced into the picture.
The symplectic leaf correspondence theorem brings insight into the struc-
ture of various bundles and relates the corresponding connections. For the
Abelian case, it gives a new interpretation of the connection on symplectic
stratification D as a connection on the bundle j : P/G → U ⊂ g∗ of symplec-
tic leaves over the dual of the Lie algebra (see Section 3.2).

3.1. Connections on Poisson and symplectic bundles

Consider the relation between a connection on the Poisson reduction bundle
P → P/G and connections on each of the symplectic Marsden-Weinstein re-
duction bundles J−1(µ) → J−1(µ)/Gµ for different µ ∈ g∗. This relation can
be easily established in the case of an Abelian group G when Gµ ≡ G and
both bundles have similar fibers.

Recall that a connection on the bundle P → P/G is a Lie algebra valued
one-form A on P that is G-equivariant g ·A = Adg ·A and satisfies A(ξP) =

ξ ∀ξ ∈ g. The corresponding horizontal space is defined by hor = KerA. The
following theorem then holds.

Theorem 3.1. For the case of an Abelian group G, a connection A on the
Poisson bundle induces connections αµ on symplectic Marsden-Weinstein
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bundles for regular momentum values µ. In particular, it defines a re-
construction connection A on P. Moreover, the connections on the sym-
plectic stratification of P/G corresponding to A and to A coincide,
that is,

Â = D = Â. (3.1)

Proof. Choose a regular value µ ∈ g∗ such that the symplectic reduction at
µ is defined. Define induced horizontal and vertical spaces at x ∈ J−1(µ) by
the intersections with KerTJ:

horµ = hor∩KerTJ, verµ = ver∩KerTJ. (3.2)

By definition, horµ∩verµ = 0. As G is Abelian, Gµ = G, and KerTπ ⊂
(KerTπ)ω =KerTJ, so that verµ =KerTπ. Using the following set-theoretical
identity (A+B)∩C = A+B∩C if A ⊂ C, we obtain

KerTJ = (KerTπ+hor)∩KerTJ

= KerTπ+hor∩KerTJ

= verµ +horµ.

(3.3)

Hence, KerTJ = verµ⊕horµ. The corresponding connection one-form αµ is
defined by the horizontal space via Kerαµ = horµ. The collection of these
αµ then define a reconstruction connection A as defined in Section 2. It is
G-invariant because A is G-invariant for Abelian groups.

Finally, for the connections on the symplectic stratification of P/G deter-
mined by connections on Poisson and symplectic bundles, that is, by A and
A, respectively, we have at y = π(x)

D ′(y) ≡ Â(x) = Tπ
(
horω(x)

)
,

D(y) ≡ Â(x) = Tπ
(
(horµ)ω

)
= Tπ

(
(hor∩KerTJ)ω

)
= Tπ

(
(hor)ω +(KerTJ)ω

)
= Tπ

(
(hor)ω +KerTπ

)
= Tπ

(
horω(x)

)
,

(3.4)

where x ∈ J−1(µ) with y = π(x) and we have used that (KerTJ)ω = KerTπ.
Comparing the last two expressions we conclude that D = D ′. �

This result enables us to go back and forth between connections on Pois-
son and symplectic bundles for Abelian groups; in particular, it will let us
apply results of [3] for the reconstruction phases and use the abstract me-
chanical connection (defined in Section 4) as a reconstruction connection.

3.2. Connections on dual pairs

Recall the notion of dual pairs introduced by Weinstein [13]. Consider a
symplectic manifold (P,ω), Poisson manifolds Q1,Q2, and Poisson maps ρi :
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P → Qi, i = 1,2. If for almost all x ∈ P, (KerTρ1(x))ω = KerTρ2(x), the
diagram Q1

ρ1←−− P
ρ2−−→ Q2 is called a dual pair. The dual pair is called

full, if ρ1,ρ2 are surjective submersion. If Q1
ρ1←−− P

ρ2−−→ Q2 is a full dual
pair, then the spaces of Casimir functions on Q1 and Q2 are in bijective
correspondence, that is, Cas(Q1)◦ρ1 = Cas(Q2)◦ρ2 (Weinstein [13]).

It was shown in Adam and Ratiu [1] that for a symplectic manifold (P,ω)

with a Hamiltonian action of a Lie group G having an equivariant momentum
map J : P → U ⊂ g∗, U ≡ J(P), such that π : P → P/G and J are surjective
submersion, P/G

π←− P
J−→ U is a full dual pair. The Poisson reduced space

P/G, being a base of a principle G-bundle, is itself foliated by symplectic
leaves Σy through points y ∈ P/G. We denote the space of symplectic leaves
by S. With the proper connectedness assumptions, these leaves are precisely
the symplectic reduced spaces Pµ = J−1(µ)/Gµ (note that Gµ can be differ-
ent for different values of µ).

On the other hand, P is foliated by the level sets of the momentum map
J−1(µ), for different µ ∈ g∗, with the dual of the Lie algebra itself being a
foliation by coadjoint orbits Oµ through µ. It follows from the symplectic leaf
correspondence theorem [13] that, under the assumptions in the previous
paragraph, the base space of this foliation is in one-to-one correspondence
with S, the space of symplectic leaves of the Poisson reduced space P/G. A
natural one-to-one correspondence between the symplectic leaves in each leg
of a dual pair has been described in Weinstein [13], together with a sketch
of the proof. Here, we state the symplectic leaf correspondence theorem and
refer for a detailed and comprehensive proof to Blaom [4].

Theorem 3.2. Let P be a symplectic manifold and Q1
ρ1←−− P

ρ2−−→ Q2 a
full dual pair. Assume that each leg ρj : P → Qj, j = 1,2 satisfies the
property that pre-images of connected sets are connected. Let Fj denote
the set of symplectic leaves in Qj. Then, under the assumptions outlined
in Section 3.2 above, there exists a bijection F1 → F2 given by

Σ1 �−→ ρ2

(
ρ−1

1 (Σ1)
)

(3.5)

having inverse

Σ2 �−→ ρ1

(
ρ−1

2 (Σ2)
)
. (3.6)

This theorem enables us to define a leaf-to-leaf bijection that maps sym-
plectic leaves Σy (which are diffeomorphic to symplectic reduced spaces Pµ)
to coadjoint orbits Oµ in the dual of the Lie algebra, µ = J(x). Yet another re-
alization of the symplectic leaves Σy is given by the orbit reduction theorem
[10] which establishes one-to-one correspondence between orbit reduced
spaces POµ = J−1(Oµ)/G and symplectic reduced spaces Pµ = J−1(µ)/Gµ.

In the case of an Abelian group G, the coadjoint orbits are trivial, that is,
Oµ = {µ} and Gµ = G, so that POµ ≡ Pµ and S ∼= g∗. It follows then from the
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reduction lemma (cf. [10]) that G-orbits of any point x ∈ P are isotropic,
that is, Tx(G ·x) ⊂ (Tx(G ·x))ω or, equivalently, KerTxπ ⊂ (KerTxπ)ω. More-
over, the bijection F1 → F2 becomes a well-defined map of the manifolds,
j : P/G → U which can be obtained through factoring the momentum map.
Indeed, the equivariance of the momentum map J : P → U ⊂ g∗ amounts in
the Abelian case to invariance. It therefore factors through π : P → P/G,

delivering a map j : P/G → U making the diagram in Figure 3.1 commute.

P

πJ

g∗ P/G
j

Figure 3.1. The momentum map J factors through delivering a map j : P/G →
U ⊂ g∗.

The map j is a submersion since J is a submersion (under our hypothesis
of a free action). Since the coadjoint orbits are points, the symplectic leaves
in P/G are simply the fibers of j, that is, Pµ = j−1(µ), µ ∈ U.

Thus, with this interpretation, the connection on the symplectic strati-
fication D can be thought of as an (Ehresmann) connection on the bundle
j : P/G → U ⊂ g∗. Theorem 2.1 of [3] as well as the results of Section 3 estab-
lish a relation between the connections A and D on the bundles π : P → P/G

and j : P/G → U ⊂ g∗, respectively.
Finally, the tangent map T j delivers the isomorphism of Proposition 2.5,

where now L does not depend explicitly on µ as G is Abelian; that is, g∗µ = g∗,
pµ ≡ Id, and the dependence on µ enters only through µ = j(y).

Lemma 3.3. Let L(D,y) : g∗ → D(y) be defined by (2.6), then its inverse
is given by the tangent map T j restricted to the distribution D

L−1 = forg
(
T j|D

)
: D −→ g∗, (3.7)

where the map forg : TU → g∗ denotes the map that “forgets base point.”

Proof. The proof readily follows from the fact that the momentum map fac-
tors through the quotient map, so that TJ = T j ◦ Tπ, and the definition of
the map L for any y ∈ Pµ given by (2.6), where w is any vector in TxP that
satisfies Tπ ·w = v, with v ∈ D(y) and x ∈ J−1(µ)∩π−1(x):

v �−→ L−1(D,y) ·v ≡ pµ

(
forg(TJ ·w)

)
= forg

(
Tj◦Tπ ·w)

= forg
(
Tj ·v). (3.8)

�
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4. Abstract mechanical connection

Let P be an almost Kähler manifold with a complex structure J : TxP → TxP,

such that J2 = −1, a symplectic form ω and a J-invariant Riemannian metric
s with the standard relation between these structures, (1.1),

ω(v,w) = s(Jv,w) ∀v,w ∈ TxP. (4.1)

Let a Lie group G act on P freely and properly (see [12] for some interesting
results on how to relax the regularity conditions) by isometries of the almost
Kähler structure, that is, it preserves Riemannian, symplectic, and almost
complex forms. The quotient manifold then has a unique Poisson structure
such that the canonical projection π : P → P/G is a Poisson map. Assume
that the G action admits an equivariant momentum map J and that P/G

π←−−
P

J−−→ U ⊂ g∗ is a full dual pair, that is, π and J are surjective submersions.
Though we are not interested here in the results for Kähler reduction (The
reader is referred to [5, 12], for example, for Marsden-Weinstein reduction
on Kähler manifolds.) we notice that the almost complex structure can be
dropped to the quotient space P/G. We keep the same notation for the
reduced object but write J(y), where y = π(x), to indicate that it can be
computed at any x ∈ π−1(y).

4.1. Main constructions

Definition 4.1. The abstract locked inertia tensor I(x) : g → g∗, ∀x ∈ P, is
defined by the following expression:〈

I(x) ·ξ,η
〉

= s
(
ξP(x),ηP(x)

)
(4.2)

for any Lie algebra elements ξ,η ∈ g, where ξP,ηP are the corresponding
infinitesimal generators, that is, vector fields on P.

The abstract locked inertia tensor is, obviously, an isomorphism for any
x ∈ P for which the group action is free. For a general Lie group, it is G-
equivariant in the sense of a map I : P → L(g,g∗), namely

I(g ·x) ·Adg ξ = Ad∗
g−1 I(x) ·ξ. (4.3)

For an Abelian group, the abstract locked inertia tensor is, in fact, G-
invariant and, hence, can be dropped to the quotient P/G. We use the same
notation for the reduced object but write I(y), where y = π(x), to indicate
that it can be computed at any x ∈ π−1(y).

Definition 4.2. For any choice of a principle connection on P/G, define the
induced metric s ′ on P/G in the following way. Let a,b ∈ Ty(P/G) and let
ã, b̃ be their corresponding pre-images in the horizontal subspace, that is,
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ã, b̃ ∈ hor(x), π(ã) = a, and π(ã) = b, where x ∈ π−1(y). As the metric is
G-invariant we can define s ′(a,b) = sx(ã, b̃), for any x ∈ π−1(y).

Definition 4.3. The abstract mechanical connection on the principle G-
bundle P → P/G is defined by specifying a horizontal space within TxP at
each point x ∈ P to be metric-orthogonal to the tangent to the group orbits

hor(x) =
{
v ∈ TxP | s

(
v,ξP(x)

)
= 0 ∀ξ ∈ g

}
. (4.4)

The connection one-form A is determined by KerA(x) = hor(x); an ex-
plicit expression for it is given by the following theorem.

Theorem 4.4. Abstract mechanical connection on an almost Kähler mani-
fold is given by

A(x) ·w = I
−1(x) ·s(ω#

(
dJ(x)

)
,w

) ∀w ∈ TxP. (4.5)

Proof. For any tangent vector w ∈ TxP and any Lie algebra element η ∈ g:

s
(
w,ηP

)
= s

(
wv +wh,ηP

)
= s

(
wv,ηP

)
= s

(
ξw

P ,ηP

)
=

〈
I(x)ξw,η

〉
, (4.6)

where wv = ξw
P for some ξw ∈ g is a vertical (fiber) component, wh is a

horizontal component, and s(wh,ηP) = 0 by definition.
By definition of the momentum map ηP = ω#(d〈J(x),η〉), so that

s
(
w,ηP

)
= s

(
w,ω#

(
d〈J(x),η〉)) =

〈
s
(
ω#(dJ),w

)
,η

〉
, (4.7)

where dJ is thought of as a g∗-valued one-form on P, and we have used the
fact that the pairing between g and its dual is independent of x ∈ P. Thus,〈

I(x)ξw,η
〉

=
〈
s
(
ω#(dJ),w

)
,η

〉
, (4.8)

and the result follows from the nondegeneracy of the pairing.
To verify that A indeed defines a connection, we check that it satis-

fies A(ξP(x)) = ξ ∀ξ ∈ g and is G-equivariant. Consider the pairing of
I(x) ·A(ξP(x)) with an arbitrary element from the Lie algebra η ∈ g and
use Definitions 4.1, 4.2, and 4.3 of the connection and the abstract locked
inertia tensor:〈

I(x) ·A(
ξP(x)

)
,η

〉
=

〈
s
(
ω#

(
dJ(x)

)
,ξP(x)

)
,η

〉
= s

(
ξP,ηP

)
=

〈
I(x)ξ,η

〉
.

(4.9)

From the nondegeneracy of the pairing, it follows that A(ξP(x)) = ξ. The
G-equivariance means that Φ∗

gA = Adg A and follows from equivariance of
the momentum map and equivariance of the abstract locked inertia tensor
in the sense of a map I : P → L(g,g∗) (see (4.3)). �
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Corollary 4.5. The connection one-form can be written as follow :

A(x) ·w = I
−1(x) · forg

(
TJ(x)(Jw)

) ∀w ∈ TxP. (4.10)

Then,

hor(x) = Ker
(
TJ(x)◦J

)
. (4.11)

Proof. Using (1.1), J2 = −1 and omitting x for simplicity, we have ∀w ∈ TxP

A ·w = I
−1 ·s(ω#(dJ),−J2w

)
= I

−1 ·ω(
ω#(dJ),Jw

)
= I

−1 · forg
(
TJ(Jw)

)
,

(4.12)

where for the last equality we used the definition of a symplectic form and
considered the one-form dxJ as a tangent map forg◦TJ acting on vectors
in TxP. �

Lemma 4.6. For the choice of the abstract mechanical connection A on P

with hor = (KerTπ)⊥, the following holds:

horω = (KerTJ)⊥ = J(KerTπ). (4.13)

Proof. The proof follows readily from (4.11) of Corollary 4.5 and the ω-
orthogonality of KerTJ and KerTπ:

horω =
(
Ker(TJ◦J)

)ω
=

(
J(KerTJ)

)ω
=

((
(KerTJ)⊥

)ω)ω

= (KerTJ)⊥=
(
(KerTπ)ω

)⊥
=J

(
Ker(TJ)

)
,

(4.14)

where we used that ((W)ω)⊥ = J(W) for a subspace W ∈ TxP. �

Below we present two alternative proofs of this lemma which provide an
interesting insight into the issue; these proofs can be skipped on the first
reading.

Alternative proof. By definition, w ∈ horω(x) if and only if

ω(v,w) = s(v,Jw) = 0 ∀v ∈ hor(x). (4.15)

Thus, w ∈ horω(x) ⇔ Jw ∈ (hor(x))⊥, or

w ∈ (
horω(x)

)⊥ ⇐⇒ Jw ∈ hor(x) =
(
KerTπ(x)

)⊥
. (4.16)

On the other hand, u ∈ (KerTπ(x))ω = KerTJ(x) if and only if

ω
(
u,ξP(x)

)
= s

(
ξP(x),Ju

)
= 0 ∀ξ ∈ g. (4.17)
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Thus,

u ∈ KerTJ(x) ⇐⇒ Ju ∈ (
Tx(G ·x)

)⊥ ≡ (
KerTπ(x)

)⊥
. (4.18)

Comparing conditions for u and w, we conclude that horω(x) =

(KerTJ(x))⊥. Then, (4.18) follows from KerTJ=(KerTπ)ω and ((KerTπ)ω)⊥

= J(KerTπ). �

Alternative proof. First notice that

horω =
(
(KerTπ)⊥

)ω
=

(
(KerTπ)ω

)⊥
= (KerTJ)⊥. (4.19)

The last equality in (4.19) follows from the following argument. Let A ⊂ TxP,

then a∈A⊥⇔s(a,b)=0 ∀b∈A. Similarly, c∈(A⊥)ω ⇔ω(c,a)=0 ∀a∈A⊥.
But 0 = ω(c,a) = s(Jc,a) ∀a ∈ A⊥ implies that

c ∈ (
A⊥)ω ⇐⇒ Jc ∈ (

A⊥)⊥ ≡ A. (4.20)

This is equivalent to c ∈ J(A) ⇔ c ∈ (A⊥)ω, so that (A⊥)ω = J(A) and
((KerTπ)⊥)ω = J(KerTπ). �

Define for any point ν ∈ g∗ a one-form Aν(x) = 〈ν,A(x)〉 on P.

Lemma 4.7. Identifying vectors and one-forms on P via Riemannian met-
ric (

Aν(x)
)#

=
(
I
−1(x) ·ν)

P
. (4.21)

Proof. Using (4.5) we obtain ∀w ∈ TxP

Aν ·w =
〈
ν,I−1 ·s(ω#(dJ),w

)〉
= s

(
ω#

(
d
〈
J,I−1ν

〉)
,w

)
= s

((
I
−1ν

)
P
,w

)
.

(4.22)

�

4.2. Abelian groups and reconstruction phases

In the rest of this section we assume that the Lie group G is Abelian. A sim-
ple corollary of Theorem 3.1 implies that metric orthogonal horizontal spaces
on the Poisson bundle P → P/G induce metric orthogonal horizontal spaces
on symplectic bundles J−1(µ) → Pµ for regular µ. Hence, by analogy, the
reconstruction connection A corresponding to A by means of Theorem 3.1
can be called an abstract mechanical reconstruction connection. The same
theorem gives also the corresponding connection on the symplectic stratifi-
cation D = Â by specifying its horizontal spaces to be Tπ(horω). The follow-
ing results significantly simplify explicit computations of these spaces, that
is, the distribution D.
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Theorem 4.8. For the choice of the abstract mechanical connection A on
P, the distribution D, which corresponds to the connection on the sym-
plectic stratification j : P/G → g∗, is metric orthogonal to the characteris-
tic distribution E in the metric s ′ induced on the quotient P/G. Moreover,
the distribution D can be explicitly constructed using the infinitesimal
generator vector fields ξP according to the following expression:

D(y) = Tπ
(
J
(
KerTπ(x)

))
, (4.23)

where x ∈ π−1(y) and KerTπ(x) = span{ξP(x)}.

Proof. Consider any vectors v ∈ D(y) and w ∈ E(y) ≡ TyΣy. By definition
of the induced metric s ′(v,w) = s(ṽ, w̃), where ṽ, w̃ ∈ hor(x) are horizontal
components of the pre-images: Tπ(ṽ) = v, Tπ(w̃) = w, and x ∈ π−1(y).

From Tπ(ṽ) = v ∈ Tπ(horω) it follows that ṽ ∈ horω +KerTπ. But ṽ ∈
hor ≡ (KerTπ)⊥, so that by Lemma 4.6,

ṽ ∈ horω∩(KerTπ)⊥ ≡ (KerTJ)⊥∩(KerTπ)⊥. (4.24)

For the vector w ∈ E(y) it holds T j(w) = 0 and, hence, by the commuta-
tivity of the diagram in Figure 3.1, TJ(w̃) = 0 for any of its pre-images. In
particular, for the horizontal pre-image w̃ ∈ hor we have

w̃ ∈ KerTJ∩(KerTπ)⊥. (4.25)

From the expressions for ṽ and w̃, it follows that s ′(v,w) = s(ṽ, w̃) = 0.
Finally, (4.23) follows from D = Tπ((hor)ω) and Lemma 4.6. �

4.2.1. Transverse derivatives

Here we give a new construction of the map L defined by Proposition 2.5
which is crucial for the definition of the transverse derivatives, and hence
for the computation of the phases. Our construction is based on Lemma 3.3
and depends implicitly on the choice of the abstract mechanical connection.

Definition 4.9. For each point y ∈ P/G define a map N(D,y) : g → D(y) by

ξ �−→ Tπ
(
J
(
ξP(x)

))
, (4.26)

where ξ is a Lie algebra element, ξP(x) is its corresponding infinitesimal
generator at x ∈ π−1(y) ⊂ P, and J is the almost complex structure on P.

From (4.26) it follows that N is a linear map as all maps used in its defi-
nition are linear. From the symplectic leaf correspondence theorem and the
fact that G is Abelian and finite dimensional it follows that the dimension of
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D(y) (which equals the co-dimension of the leaf Σy) equals the dimension
of the algebra g. On the other hand,

dim
(
horω(x)

)
= dim

(
J
(
KerTπ(x)

))
= dim

(
KerTπ(x)

)
= dimg. (4.27)

Hence, from the fact that D = Tπ(horω) the following lemma follows.

Lemma 4.10. For each y ∈ P/G the map N is an isomorphism between
the Lie algebra g and the transverse space D(y) defined at y by the
distribution D on the symplectic stratification j : P/G → g∗.

Lemma 4.11. For an Abelian group G, the map L(D,y) defined in Propo-
sition 2.5 is given by the following composition:

L(D,y) = N(D,y)◦I
−1(y) : g∗ −→ D(y), (4.28)

where I is the abstract locked inertia tensor.

Proof. By the definition of the momentum map, Jξ ≡ 〈J,ξ〉 is a Hamiltonian
for the vector field ξP of the infinitesimal transformations, that is, for any
vector u ∈ TxP

ω(x)
(
ξP,u

)
= dxJξ(u). (4.29)

The one-form dxJξ can be thought of as the tangent map TJ acting on vectors
in TxP and paired with ξ ∈ g. Take u to be J(ηP) for some infinitesimal
generator ηP corresponding to η ∈ g. Then,

ω(x)
(
ξP,J(ηP)

)
= dxJξ

(
J(ηP)

)
=

〈
dxJ

(
J(ηP)

)
,ξ

〉
=

〈
forg

(
TJ

(
J(ηP)

))
,ξ

〉
=

〈
forg

(
Tj◦Tπ

(
J(ηP)

))
,ξ

〉
=

〈
forg

(
Tj◦N(η)

)
,ξ

〉
,

(4.30)

where we used the definition of the map N given by (4.26).
On the other hand,

ω(x)
(
ξP,J(ηP)

)
= −ω(x)

(
J(ηP),ξP

)
= s(x)

(
ηP,ξP

)
=

〈
I(x)η,ξ

〉
=

〈
I
(
[x]

)
η,ξ

〉
=

〈
I(y)η,ξ

〉
.

(4.31)

Alternatively, this expression can be obtained from Corollary 4.5 using an
explicit form of the connection one-form given by (4.10).

From (4.30) and (4.31) and the nondegeneracy of the pairing we conclude
that forg(T j◦N) = I, then from Lemma 3.3 it follows that

L(D,y) = forg
(
T j|D

)−1
= N(D,y)◦I

−1(y). (4.32)

Notice that L is an isomorphism as both N and I are. �
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4.2.2. Dynamic phase

Recall that according to (2.15), the infinitesimal dynamic phase is given
by the transverse derivative of the reduced Hamiltonian, which we simplify
using formula (4.32) for the map L.

Theorem 4.12. The ν-component of the infinitesimal dynamic phase ξdyn,

for any ν ∈ g∗, can be expressed via the abstract locked inertia tensor
and the almost complex structure according to〈

ν,ξdyn(y)
〉

=
〈
ν,Dµh(y)

〉
= dh

(
Tπ

(
J
(
[x]

)((
I
−1

(
[x]

) ·ν)
P

)))
, (4.33)

where x ∈ [x] = π−1(y) and µ = j(y).

Proof. The proof is quite straightforward and relies on the constructions
discussed in this section. Using the definition of the transverse derivative,
Lemma 4.11 and G-invariance of the abstract locked inertia tensor, and the
almost complex structure, we obtain〈

ν,ξdyn(y)
〉

=
〈
ν,Dµh(y)

〉
= dh

(
L(D,µ,y) ·ν)

= dh
(
N(D,y)◦I

−1(x) ·ν)
= dh

(
Tπ

(
J(x)

((
I
−1(x) ·ν)

P

)))
,

(4.34)

where the last equality follows from (4.26).
As it was pointed out earlier, both J and I are G-invariant and, hence,

can be dropped to the quotient P/G, so that (4.33) can be computed at any
x ∈ [x] ≡ y. �

Remark 4.13. Equation (4.33) is equivalent to〈
ν,ξdyn(y)

〉
= dH

(
J(x)

((
I
−1(x) ·ν)

P

))
, (4.35)

where x ∈ π−1(y) and µ = j(y).

Notice that (4.33) does not depend on the choice of x ∈ π−1(y). This
agrees with the general philosophy of [3] that all information about the
phases is contained in the reduced quantities. Yet, for the explicit compu-
tations it might be convenient to work with the objects in the unreduced
space. Alternatively, when one has a good model of the reduced space P/G,

one can compute a basis vk of the distribution D at any y ∈ P/G using
isomorphism L and Lemma 4.11 corresponding to a basis ei of g∗. Then,

for any ν =
∑

νiei ∈ g∗, the corresponding ν-component of the dynamic
phase is given by the derivative of the reduced Hamiltonian in the direction
v =

∑
νkvk, that is, 〈ν,ξdyn(y)〉 = dh(

∑
νkvk).
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4.2.3. Geometric phase

Assuming the µ-regularity of the distribution D (see Section 2), the geo-
metric phase is given by the transverse derivative of the assembled reduced
symplectic form ωD according to (2.17). In this section, we give an explicit
construction of this form ωD using the horizontal lifts with respect to the
abstract mechanical connection A and the unreduced symplectic form ω.
This allows us to circumvent explicit computations of the curvature of the
connection one-form that is used in (2.16) and, in some cases, also the com-
putations of the reduced symplectic form that is used in (2.17).

Definition 4.14. For an Abelian group G, define a closed “horizontal” two-
form ω ′ on P/G according to

ω ′(y)(u,v) := ω(x)(ũ, ṽ) ∀u,v ∈ Ty(P/G), y ∈ Pµ, (4.36)

where ũ, ṽ ∈ A(x) ≡ hor(x) ≡ (KerTπ)⊥ with Tπ(ũ) = u, Tπ(ṽ) = v, x ∈
π−1(y).

From the G-invariance of the symplectic form ω as well as of the hori-
zontal distribution A we conclude that ω ′ is well defined.

Theorem 4.15. The two-form ω ′ coincides with the assembled two-form
ωD on P/G:

ω ′ = ωD. (4.37)

Proof. We start with the definition of the two-form ω ′ Definition 4.14 of
the two-form and shall demonstrate that the following three special cases
hold for any y ∈ P/G:

(1) ω ′|E = ωµ, here E is the characteristic distribution and µ = j(y),

(2) ω ′|D = 0,

(3) ω ′(u,v) = 0 for any u ∈ E(y) ≡ TyPµ and v ∈ D(y),

which all together prove the statement of the theorem, according to the
definition of the assembled form (2.17).

(1) From the definition of the reduced symplectic form in the Marsden-
Weinstein reduction it follows that

ωµ(y)(u,v) = ω(x)(ŭ, v̆), (4.38)

where x ∈ π−1(y)∩J−1(µ) and ŭ, v̆ ∈ A(x), that is, the pre-images lie in the
horizontal space of the reconstruction connection A. Recall that in our case,
A denotes the metric orthogonal to the group orbit within the kernel of TJ:

A(x) =
(
Tx(G ·x)

)⊥∩KerTJ(x) =
(
KerTπ(x)

)⊥∩KerTJ(x). (4.39)
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From Lemma 2.3 and the fact that G-orbits of any point x ∈ P are isotropic
for an Abelian group, it follows that

π∗E = KerTπ+(KerTπ)ω = (KerTπ)ω. (4.40)

Hence, using the definition on the two-form ω ′, Definition 4.14 of the two-
form, for any vectors u,v ∈ E = TyPµ lying in the characteristic distribution
at y ∈ Pµ, their pre-images ũ, ṽ ∈ A(x) satisfy

ũ, ṽ ∈ A(x)∩(KerTπ)ω = (KerTπ)⊥∩KerTJ = A(x), (4.41)

so that

ω ′(y)(u,v) := ω(x)(ũ, ṽ) = ω(x)(ŭ, v̆) = ωµ(y)(u,v). (4.42)

(2) Let u,v ∈ D(y), then ũ, ṽ ∈ π∗D = Aω, by the definition of the
reconstruction connection. But ũ, ṽ ∈ (KerTπ)⊥, so that

ũ, ṽ ∈ Aω∩(KerTπ)⊥ =
(
(KerTπ)⊥∩KerTJ

)ω∩(KerTπ)⊥

=
((

(KerTπ)ω
)⊥

+KerTπ
)∩(KerTπ)⊥.

(4.43)

Using the modularity property and the fact that KerTπ is isotropic, that is,
KerTπ ⊂ (KerTπ)ω, and, hence,

(KerTπ)⊥ ⊃ (
(KerTπ)ω

)⊥
, (4.44)

we obtain that

ũ, ṽ ∈ Aω∩(KerTπ)⊥ =
(
(KerTπ)ω

)⊥∩(KerTπ)⊥ =
(
(KerTπ)ω

)⊥
, (4.45)

but this space is also isotropic, that is, it is contained in its symplectic
orthogonal because of (4.44)(

(KerTπ)ω
)⊥

=
(
(KerTπ)⊥

)ω ⊂ ((
(KerTπ)ω

)⊥)ω
. (4.46)

Thus, ω ′|D = 0.
(3) Finally, combining the two arguments (1) and (2), for any u ∈ TyE

and v ∈ D(y), ũ ∈ A and ṽ ∈ ((KerTπ)ω)⊥. But,

Aω =
(
(KerTπ)⊥∩KerTJ

)ω
=

(
(KerTπ)ω

)⊥
+(KerTJ)ω, (4.47)

so that ṽ ∈ Aω and ω(ũ, ṽ) = 0. �

Corollary 4.16. The infinitesimal geometric reconstruction phase is com-
puted according to

ξgeom(y) = Dµω ′(y), (4.48)

where the transverse derivative Dµω ′ is computed using Lemma 4.11.
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5. Application: resonant three-wave interaction

The three-wave equations describe the resonant quadratic nonlinear interac-
tion of three waves and are obtained as amplitude equations in an asymp-
totic reduction of primitive equations in optics, fluid dynamics, and plasma
physics. It was first analyzed by Alber, Luther, Marsden, and Robbins in [2]
and later in [7]. Here we only quote the results relevant for the definition
of the connection and the computation of phases and refer the reader to
[2] for the detailed description. Some results for the Poisson reduction ob-
tained here (such expressions for the Casimirs C1 and C2 as well as formulas
(5.11) for the reduced Poisson bracket and (5.15) for the reduced symplectic
structure) are original and were not presented in [2]. We use the canonical
Hamiltonian structure and ignore an alternative Lie-Poisson description of
this system.

5.1. The phase space and its Kähler structure

The phase space P of the system is C
3 with appropriately weighed standard

Kähler structure. In particular, a γi-weighed canonical Poisson bracket on
C

3 is used. This bracket has the real and imaginary parts of each complex
dynamic variable qi as conjugate variables. The corresponding symplectic
structure is written as follows:

ω(z,w) = −
∑

k

1

skγk
Im

(
zkw̄k

)
, (5.1)

where z,w ∈ TqC
3 and sk are sign variables.

Similarly, define a weighted metric on P

s(z,w) =
∑

k

1

skγk
Re

(
zkw̄k

)
, (5.2)

and the standard complex structure J(z) = iz. The Kähler structure then
contains s and ω as real and imaginary parts, respectively.

5.2. The symmetry group and momentum map

Consider the action of an Abelian group T2 on C
3 given by(

q1,q2,q3

) �−→ (
exp−iξ1

q1,exp−i(ξ1+ξ2) q2,exp−iξ2

q3

)
, (5.3)

where ξ = (ξ1,ξ2) is an element of the Lie algebra t2 ≡ R
2. The vector fields

of the infinitesimal transformations corresponding to ξ1,ξ2 are given by

ξ1
P(q) =

(
− iξ1q1,−iξ1q2,0

)
, ξ2

P(q)

=
(
0,−iξ2q2,−iξ2q3

) ∈ TqC
3.

(5.4)
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Points of the form (q1,0,0),(0,q2,0),(0,0,q3) have nontrivial isotropy sub-
groups, and thus account for singularities in the reduced space, that is, as the
action is not free, the reduced space fails to be a smooth manifold (cf. [9]).
Henceforth, we ignore these points and restrict ourselves to the set of regular
points in C

3.
The momentum map for this action was computed in [2] and is given by

J
(
q1,q2,q3

)
=

(
K1,K2

)
=

(
1

2

(∣∣q1

∣∣2
s1γ1

+

∣∣q2

∣∣2
s2γ2

)
,
1

2

(∣∣q2

∣∣2
s2γ2

+

∣∣q3

∣∣2
s3γ3

))
.

(5.5)

We keep the notations (K1,K2) for the values of the momentum map to be
consistent with [9]; they play the role of µ = J(x) which was used throughout
the paper.

It is checked directly using (5.3) that the momentum map is G-invariant.
For further applications, we note that even though J is not analytic, we
can consider its differential as a real-valued map of the tangent space TC

3

to TR
2.

5.3. The Hamiltonian

The Hamiltonian for the three-wave interaction is

H = −
1

2

(
q̄1q2q̄3 +q1q̄2q3

)
. (5.6)

Hamilton’s equations are q̇k = {qk,H} and it is straightforward to check that
in complex notations they are given by

dqk

dt
= −2iskγk

∂H

∂q̄k
. (5.7)

5.4. Poisson reduction

It was shown in [2] that the following quantities constitute invariants for
the T2 action

X+ iY = q1q̄2q3, Z1 =
∣∣q1

∣∣2 −
∣∣q2

∣∣2, Z2 =
∣∣q2

∣∣2 −
∣∣q3

∣∣2. (5.8)

They provide coordinates for the four-dimensional (real) orbit space. The
symplectic leaves in it are two-dimensional. This follows from the leaf corre-
spondence theorem, as T2 is Abelian, and each point in it being a coad-
joint orbit has co-dimension 2. One can define two Casimirs on C

3/T2,

for example,

C1 =
(
X2 +Y2

)
−κ4

(
2s2γ2K1 +Z1

)(
2s3γ3K2 +Z2

)(
2s2γ2K2 −Z2

)
, (5.9)

where κ4 = (s1γ1s2γ2s3γ3)/(s1γ1 +s2γ2)(s2γ2 +s3γ3)2, and

C2 =
(
Z1 −2s1γ1K1

)(
s2γ2 +s3γ3

)
+

(
Z2 +2s3γ3K2

)(
s1γ1 +s2γ2

)
, (5.10)
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which can be obtained by a pull-back of properly defined Casimirs on g∗

using ideas of dual pairs (cf. [4, 13]). The level set of these Casimirs, defined
for any momentum map value (K1,K2) ∈ U, where U ≡ J(C3) ⊂ t2, by the
set {C1 = 0,C2 = 0} determines the corresponding symplectic leaf P(K1,K2)

in the reduced space.
The reduced Poisson bracket on C

3/T2 ∼= (X,Y,Z1,Z2) is given for any
two functions f,k by

{f,k} = det
(∇C2∇C1∇f∇k

)
. (5.11)

The reduced Hamiltonian equations of motion have the following form:

Ẋ = 0, Ẏ = −
∂C2

∂Z2

∂C1

∂Z1
+

∂C2

∂Z1

∂C1

∂Z2
,

Ż1 =
∂C2

∂Z2

∂C1

∂Y
, Ż1 = −

∂C2

∂Z1

∂C1

∂Y
.

(5.12)

Notice that the second Casimir C2 establishes a linear dependence be-
tween Z1 and Z2; hence, we can solve for one of them, say Z1 and restrict
ourselves to the consideration of three-dimensional subspace in C

3/T2 de-
fined by (X,Y,Z2). The dynamics in Z1 can then be trivially reconstructed.
In this case, the first Casimir C1 can be rewritten as

φ =
(
s2γ2 +s3γ3

)[(
X2 +Y2

)
−κ3

(
δ−Z2

)(
2s3γ3K2 +Z2

)(
2s2γ2K2 −Z2

)]
,

(5.13)

where κ3 = (s1γ1s2γ2s3γ3)/(s2γ2 +s3γ3)3 and δ = 2s2γ2K1 +2s3γ3(K1 −

K2). This relation defines two-dimensional (perhaps singular) surfaces in
(X,Y,Z2) space, with Z1 determined by the values of the invariants and
conserved quantities. These surfaces are called three-wave surfaces.

The reduced Poisson bracket in (X,Y,Z2) space is given by

{f,k} = ∇φ ·(∇f×∇k) (5.14)

for any functions f,k. For a nonsingular point y on a symplectic leaf P(K1,K2)

the induced symplectic form is then given by

ω(K1,K2)(v,w) = −
∇φ

‖∇φ‖2
·(v×w), (5.15)

where v,w ∈ TyP(K1,K2); here (K1,K2) is the momentum value which de-
termines a particular symplectic leaf P(K1,K2). Thus, for a function f on the
orbit space (X,Y,Z2), the corresponding Hamiltonian vector field has the
form Xf = −∇φ×∇f.

The reduced Hamiltonian for the three-wave interaction is given by h =

−X and produces the following reduced equations of motion:

Ẋ = 0, Ẏ =
∂φ

∂Z2
, Ż2 = −2(s2γ2 +s3γ3)Y, (5.16)
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which otherwise can be obtained by the restriction of the equations of mo-
tion in C

3/T2 ∼= (X,Y,Z1,Z2) to three-wave surfaces.

5.5. Abstract mechanical connection

First of all, we compute the locked inertia tensor I(q) : R
2 �→ R

2 using its
definition (4.2). It is an isomorphism for regular points q and is given by
the following expression:

I(q) =


2K1

∣∣q2

∣∣2
s2γ2∣∣q2

∣∣2
s2γ2

2K2

 , (5.17)

where K1(q1,q2,q3) and K2(q1,q2,q3) are components of the momentum
map given by (5.5). Notice that I can be dropped to the quotient space:

I
(
X,Y,Z1,Z2

)
=


2K1

2s3γ3K2 +Z2

s2γ2 +s3γ3

2s3γ3K2 +Z2

s2γ2 +s3γ3
2K2

 , (5.18)

where K1,K2 are now functions of (X,Y,Z1,Z2) as the momentum map fac-
tors through the quotient and are constant on each symplectic leaf, or a
three-wave surface of thereof, in the reduced space.

Using Corollary 4.5, we can explicitly construct the corresponding abstract
mechanical connection one-form

A(x) ·w = −I
−1(x) · Im


q̄1w1

s1γ1
+

q̄2w2

s2γ2

q̄2w2

s2γ2
+

q̄3w3

s3γ3

 . (5.19)

Comparing expression (5.19) with the definition of the Riemannian structure
(5.2), we can conclude that

w ∈ hor(q) ⇐⇒



Im
(

q̄1w1

s1γ1
+

q̄2w2

s2γ2

)
= 0

Im
(

q̄2w2

s2γ2
+

q̄3w3

s3γ3

)
= 0

⇐⇒ {
s
(
ξ1

P(q),w
)

= 0

s
(
ξ2

P(q),w
)

= 0,

(5.20)

that is, the horizontal space is precisely the metric orthogonal to the group
orbits. Similar computations show that (hor(q))ω is determined by the span
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of vectors J(ξ1
P(q)), J(ξ2

P(q)), and(
hor(q)

)ω
= span

{
iξ1

P(q), iξ2
P(q)

}
=

(
KerTJ(q)

)⊥
. (5.21)

The distribution D = Â on the symplectic stratification j : P/G → g∗ is
obtained by applying the tangent map Tπ to the space (hor(q))ω. Define
vectors v1,v2 tangent to the quotient space at the point (X,Y,Z1,Z2) to be
the images of a basis in (hor(q))ω under this tangent map:

v1 = Tπ(q)
(
iξ1

P

)
= 2ξ1 ·

(
X,Y,Z1,

s2γ2

s2γ2 +s3γ3

(
2s3γ3K2 +Z2

))
,

v2 = Tπ(q)
(
iξ2

P

)
= 2ξ2 ·

(
X,Y,−

s2γ2

s1γ1 +s2γ2

(
2s1γ1K1 −Z1

)
,Z2

)
.

(5.22)

Then,

D
(
X,Y,Z1,Z2

)
= Tπ

(
hor(q)

)ω
= span

{
v1,v2

}
. (5.23)

To finish the construction of the map L given by Lemma 4.11, we need to
substitute I

−1 ·ν, ∀ν ∈ (t2)∗ for the ξ. Then, for any ν =
∑

νkek ∈ (t2)∗,
where ek is the dual basis of (t2)∗, the map L is given by

L : ν �−→ L(ν) =
∑

νkTπ
(
i
(
I
−1 ·ν)k

P

)
=

∑
νkvk, (5.24)

where in the expressions for vk we take ξk = (I−1 ·ν)k.

5.6. Phases for the three-wave interaction

Recall that the reduced Hamiltonian on P/G is h = −X. Applying
Theorem 4.12, we can immediately obtain the ν-component the associated
dynamic phase by computing directional derivatives of the reduced Hamil-
tonian in the directions v = v1 +v2 in the transverse distribution D:

〈ν,ξdyn〉 = dh(v) =
2h

detI

(
2K1ν2 +2K2ν1 −

2s3γ3K2 +Z2

s2γ2 +s3γ3

(
ν1 +ν2

))
,

(5.25)
where (K1,K2) are the momentum values at (X,Y,Z1,Z2) along the reduced
trajectory yt. To get the dynamic phase gdyn, one integrates the exponent
of this expression along the reduced trajectory yt on a three-wave surface.

The infinitesimal geometric phase ξgeom, as a two-form on the reduced
space, can be computed using (4.48), so that its ν-component is given by〈

ν,ξgeom(y)
〉

=
〈
ν,Dµω ′(y)

〉
. (5.26)

This expression should be computed using standard formulas for the differ-
entials of p-forms. We omit here the calculations of the dynamic phase as
they crucially depend on the area over which the two-form is integrated.
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6. Concluding remarks

If the phase space P has an almost Kähler structure, a preferred connection
can be defined by declaring horizontal spaces at each point to be metric
orthogonal to the tangent to the group orbit. We call it abstract mechanical
connection. Then, explicit formulas for the corresponding g∗-valued one-
form A in terms of the momentum map, symplectic and complex structures
can be derived. Also, we show that in this case the horizontal spaces for
the induced connections are metric orthogonal to the corresponding natural
vertical spaces for each foliation.

These results are applied to the resonant three-wave interaction problem
(cf. [2]). The corresponding horizontal spaces are constructed and a formula
for the dynamic phase is obtained. The associated geometric phase is given
by the integral of a two-form which is defined by the reduced symplectic
structure.
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