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ABSTRACT. Let R be a ring and let N denote the set of nilpotent elements of R. Let
Z denote the center of R. Suppose that (i) N is commutative, (ii) for every x in R
there exists x' € <x> such that x - xzx' e N, where <X> denotes the subring generated
by x, (iii) for every x,y in R, there exists an integer n = n(x,y) > 1 such that both
(xy)n - (yx)n and (xy)n+1 - (yx)n+l belong to Z. Then R is commutative and, in fact,
R is isomorphic to a subdirect sum of nil commutative rings and local commutative
rings. 1t is further shown that both conditions in hypothesis (iii) are essential.
The proof uses the structure theory of rings along with some earlier results of the

authors.
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1. INTRODUCTION.

Recently [1], the authors proved that if R is a semisimple ring with the property
that, for all x,y in R there exists an integer n = n(x,y) > 1 such that (xy)n - (yx)n
is in the center of R, then R is commutative. This naturally gives rise to the fol-

lowing question: what additional conditions are needed to force the commutativity of
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R when R is an arbitrary ring? 1In this paper, we establish a theorem which gives some
conditions.
2. MAIN RESULTS.

In preparation for the proof of the main theorem, we first state the following

result which was proved in [2] (also see [3], [4], [5]):

LEMMA 1. Let R be a ring and let N be the set of nilpotent elements of R. Sup-

pose that (i) N is commutative, (ii) for every x in R there exists an element x' in

the subring <X> generated by x such that x - xzx' e N, (iii) for all a ¢ N and b ¢ R,

ba - ab commutes with b, Then R is commutative.

With the aid of the above lemma, we are able to prove the following.

MAIN THEOREM. Let R be a ring, N the set of nilpotent elements of R, and Z the

center of R. Suppose that (i) N is commutative, (ii) for every x in R there exists

an element x' in the subring <X> generated by x such that x - xzx' e N, (iii) for

every x,y in R, there exists an integer n = n(x,y) > 1 such that both (xy)n - (yx)n

+ +
and (xy)n 1 - (yx)n 1 belong to Zc Then R is a subdirect sum of local commutative

rings and nil commutative rings.

PROOF. The proof will be broken into several claims.

CLAIM 1. The idempotents of R are all in the center Z of R.

For, suppose e2 = e e R, x € R, By hypothesis (iii), there exists a positive
integer n such that
{e(ex - exe + e)}" - {(ex - exe + e)e}" ¢ Z.
This reduces to
(ex -~ exe +e) - e €2
and hence ex - exe commutes with e. Therefore, ex - exe = e(ex - exe)
= (ex - exe)e = 0; that is, ex = exe. Replacing ex - exe + e by xe - exe + e in the
above argument, we obtain xe = exe, and Claim 1 is proved.

CLAIM 2. The set N is a commutative ideal in R and hence N2 C Zz.

This was essentially proved in [4]. However, for convenience, we re-produce the
proof. Let a € N, b € R and let ak = 0.

By hypothesis (ii),
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(ab)™ = (ab)™1c
for some element c ¢ <ab> and some positive integer m.
Let

e = (ab)"c"

Then, as is readily verified,
2

(ab)™ = (ab)e, e“ = e € z (by Claim 1). (2.1)

Therefore, since e € Z,

2

e=¢ = e(ab)mcm = aeb(ab)m-lcm = ake{b(ab)m-lcm}k

=0’
since ak = 0. Thus, e = 0 and hence by (2.1), (ab)m = 0., Therefore, ab € N.
Similarly, ba € N. Thus ab and ba are in N for all a € N, b € R. Combining this

2
with hypothesis (i), we conclude that N is a commutative ideal of R, and hence N C Z.

CLAIM 3. 1If f: R > R* is an onto homomorphism, then f(N) coincides with the set

of all nilpotent elements of R*,

Again, this was proved in [4], but for convenience we re-produce the proof.
Let d* be an arbitrary nilpotent element of R* with (d*)k = 0. Choose d in R such

that f(d) = d*. By hypothesis (ii),

d - dzdr € N for some d' € <d>, (2.2)

Observe that

gt

d @)% = (@ - d%d") + dd'(d - d%d") + ... + (@d") 1 - d%a"y. (2.3)

Since, by Claim 2, N is an ideal in R, the right side of (2.3) is in N (see (2.2)) and
hence

d - d*ank e, (2.4)
Recalling that f(d) = d*, (d*)k = 0, (2.4) now implies that

%y e r,

d* = f(d) = £(d -
and thus d* € £(N), which proves Claim 3.

CLAIM 4., Any homomorphic image of R satisfies all the hypotheses (i), (ii),

(iii).
This follows at once in view of Claim 3.
To complete the proof of the Main Theorem, first recall that
R 2 a subdirect sum of fings Ri(i e s (2.5)

each Ri is subdirectly irreducible.
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Furthermore, by Claim 4,
each Ri satisfies hypotheses (i), (ii), (diii). (2.6)
We now distinguish two cases.

Case 1: Ri does not have an identity. Let x € Ri‘ By hypothesis (ii), there

exists an element y € <x> and a positive integer m such that

+
X" = xm+ly, (ye <x>, me z ).

Let

e =xy", (ye <x). (2.7)

Then, as in the proof of Claim 2 ( see (2.1)),

X" = xme, e2 =e € Zi ( = center of Ri; see (2.6) and Claim 1). (2.8)

Since e is a central idempotent in the subdirectly irreducible ring Ri’ and since Ri

has no identity, e = 0 and, hence by (2.8), x™ = 0. We have thus shown that X" =0
for all x in Ri; that is, Ri is nil.

Hence, Ri is a nil commutative ring (see (2.6) and hypothesis (i)).

Case 2: Ri has an identity 1.

Let x € Ri' Arguing as in Case 1, the central idempotent element e in (2.7) and

(2.8) satisfies
e=0 ore=1 (2.9)

If e = 0, then X" =0 (see (2.8)). On the other hand, if e = 1, then by (2.7),

x_l = xm-lym € Ri'

We have thus shown that

Ri is a local ring (in Case 2). (2.10)

Now, let u be a unit in Ri and let y € Ri' By (2.6) and hypothesis (iii), there

exists an integer n = n(u,y) > 1 such that
-1 -
(Cuyd)u™ ) = (u l(uy))n €z [ = center of Ri]’

and hence

n
uy u - yrl commutes with u.

Therefore,

1

-1 -
(uynu - yn)u = u(uynu - yn), and thus
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uyn _ ynu - u(uynu_l _ yn).
Multiplying by u on the right side of the above equation, we get
(uy” - ynu)u = u(uyq-ynu); (u = unit in Ri’ y € R%, (2.11)
Setting y = 1 + a, where a is an arbitrary but fixed nilpotent element of Ri’ in
(2.11) and recalling that ak € Zi for all k > 2 (see Claim 4 and Claim 2), we see

that

(u(na) - (na)u)u = u(u(na) - (na)u), and thus

n(ua - au) commutes with u. (2.12)
But, by (2.6) and hypothesis (iii), the above argument can be repeated with n + 1

replacing n, to get (see (2.12))
(n + 1)(ua - au) commutes with u. (2.13)
By (2.12) and (2.13), we conclude that
ua - au commutes with u, (u a unit in Ri’ a € Ni)' (2.14)

Moreover, since Ni is commutative (2.14) holds trivially if u is any nilpotent element

of Ri’ and hence by (2.10) and (2.14),

ba - ab commutes with b for all b ¢ Ri’ a € Ni' (2.15)

is commutative, and thus by (2.10), R, is a local commuta-

Therefore, by Lemma 1, R 1

i
tive ring. This completes the proof of the Main Theorem.

We conclude with the following.

REMARK 1. Our Main Theorem need not be true if we delete one of the two con-

ditions in hypothesis (iii), as a consideration of the following ring shows:

a b c
2
R = 0 a 0 a, b, ¢ € GF(4)
0 0 a

In this ring, we readily verify that (i) N2 = {0}, (i) x - x4 e N for all x € R,
. 6 6
(iii) (xy) = (yx) for all x,y in R (but (xy)7 - (yx)7 is not in the center of R).

Note that R is not commutative.
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We further remark that we can delete one of the conditions in hypothesis (iii) by
fixing n and assuming, in addition, that R is n-torsion free. Indeed, the above proof

also shows the following.

n
THEOREM. Let R be a ring and let n be a fixed positive integer such that (xy) -

(yx)n € 2 and R is n-torsion free. Suppose, further, that the set N of nilpotents

of R is commutative and for every x in R, there exists x' in <X> such that x - xzx'

€ N. Then R is a subdirect sum of local commutative rings and nil commutative rings.

REMARK 2. Our Main Theorem remains valid if we replace the exponent (n + 1) in
hypothesis (iii) by m, where m is any positive integer relatively prime to n. Indeed,
the only change in the above proof takes place in (2.13), where (n + 1) now gets re-
placed by m, but this does not affect the conclusion in (2.14) or the rest of the

proof.
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