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We present identities used to represent real numbers of the form xum ± yvn for appro-
priately chosen real numbers x, y, u, v and nonnegative integers m and n. We present the
proofs of the identities by applying Zeilberger’s algorithm.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

It is well known that every integer can be written as a sum of integral powers of 2. A some-
what related problem is to find for every positive integer n a positive integer k depending
on n with k(n) < k(n+ 1) and integer coefficients ai, i= 1,2, . . . ,k− 1, such that

n=
k−1∑

i=0

ai22i. (1.1)

The background and motivation for studying this problem lies in finding the zeros of
the jth-order generalized Fibonacci polynomial defined by Fj(x) = x j−1 − ··· − x− 1.
Dubeau [1] and Flores [3] have shown that the positive roots of Fj(x) are of the form
2−O(2− j). Grossman and Narayan [4] have proven that the single negative zero of Fj(x)
has the form −1 +O( j−1) for j even and tends to −1 monotonically as j →∞. Using the
fact that

Fj(x)= (x− 2 + εj
)(
x+ 1− δj

)(
x j−2 + aj−3 x

j−3 + ···+ a1 x+ a0
)
, (1.2)

where δj and εj are positive, decreasing sequences for j = 4,6, . . ., Grossman and Zeleke
[6] have found an explicit form for the coefficients ai, where i= 0,1, . . . , j− 3, in terms of δ
and ε. The solution was found by solving a nonhomogeneous linear recurrence relation of
the form −an + b an+1 + c an+2 = 1, where b = ε− 1− δ, c = (1− δ)(2− ε). As byproduct
of this solution, several combinatorial identities were formulated by considering even-
and odd-indexed terms of an.
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Some of these identities give representations of positive integers using binomial coeffi-
cients. Others are identities for representing certain types of real numbers. In this paper,
we call these identities “real number identities.” Real number identities are interesting for
various reasons. On one side, formulation and proofs of combinatorial identities tradi-
tionally have been linked to arguments that have their origin in counting problems. Such
identities can then be used to represent positive integers. From this perspective, it is not
obvious that one can formulate real number identities. This by itself makes the attempt
to represent real numbers in terms of combinatorial identities interesting. Furthermore,
by considering some special cases, we can use the real number identities to generate inter-
esting sequences. We give five examples to demonstrate this fact. In the first example, we
consider a representation of the integer sequence 2n, n ≥ 0. What is different about this
representation is that the summand in the identity involves irrational terms. In example
two, we discuss an alternate way to generate the Fibonacci sequence Fn with initial values
F1 = F2 = 1. The third example shows how to generate a shifted even-indexed Fibonacci
sequence F2n+2, n≥ 1. The fourth example shows how to generate from Theorem 2.1 in-
teger solutions of a Pell equation of the form x2 − 3y2 = 1. In example five, we give an
identity that can be used to represent a certain type of rational numbers.

The real number identities in this paper have been introduced in [6] where the meth-
ods of proofs involve induction, previously known combinatorial identities, and alge-
braic manipulations. The goal of this paper is to present computer-generated proofs us-
ing Zeilberger’s algorithm. For a superb exposition of Zeilberger’s algorithm see, among
others, the books A= B [8] and Hypergeometric Summation [7] which are devoted to this
and other methods. The paper is organized as follows. In Section 2 we present several
real number identities. Computer-generated proofs of these identities are presented in
Section 3. Throughout this paper, we denote the set {k,k+ 1,k+ 2, . . .} for k ∈ Z by Nk.

2. Main theorems

Theorem 2.1. For n∈N0, b ∈R \ {−2,−1},

1
(b+ 1)n+2

n∑

k=0

b2k+1

(b+ 1)k

(
n+ k+ 1

2k+ 1

)
= 1

b+ 2

(
1− 1

(b+ 1)2(n+1)

)
. (2.1)

Theorem 2.2. Let n∈N1 and let b,c ∈R \ {0} such that b2 + 4c > 0. Then

n∑

k=1

1
2nb2

(
b

2c

)2n(
1 +

4c
b2

)k−1
(

2n
2k− 1

)
= αβ

α−β

(
αn−βn

)
, (2.2)

where α= 1/(b2 + 2c−√b2(b2 + 4c)) and β = 1/(b2 + 2c+
√
b2(b2 + 4c)).

Theorem 2.3. For n∈N−1, b∈R \ {−2,−1},

n+1∑

k=0

b2k

(b+ 1)n+k+1

(
n+ k+ 1

2k

)
= b+ 1

b+ 2

(
1 +

1
(b+ 1)2n+3

)
. (2.3)
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Theorem 2.4. Let n∈N1 and let b,c ∈R such that b �= 0 and c > 0. Then

n∑

k=0

(
b

2n−1

)(
b

2c

)2n+1(
1 +

4c
b2

)k+1
(

2n+ 1
2k+ 1

)
=
√
α+

√
β

√
αβ

(
βn+1/2−αn+1/2

)
, (2.4)

where α= 1/(b2 + 2c−√b2(b2 + 4c)) and β = 1/(b2 + 2c+
√
b2(b2 + 4c)).

Theorem 2.5. For n∈N1, b ∈R{−2,−1},

n−1∑

k=0

n+1+k∑

m=2k+2

bm

(b+ 1)n+k+1

(
n+ k+ 1

m

)
= b(n+ 1)

b+ 2
− (b+ 1)2

(b+ 2)2

(
1− 1

(b+ 1)2n+2

)
. (2.5)

Remark 2.6. By substituting specific values for the parameters in the above theorems, one
can get interesting identities. We consider five examples.

Example 2.7 (identities for 2n). By substituting b =−1 +
√

2/2 in Theorem 2.1, we get the
following identity for the integer sequence 2n:

1
2

+
2n/2

2

n∑

k=0

(
3√
2
− 2

)k(
n+ k+ 1
2 k+ 1

)
= 2n. (2.6)

If we let b =−1−√2/2, we get a different identity for the sequence 2n:

1
2

+
2n/2

2

n∑

k=0

(−1)n+k

(
3√
2

+ 2

)k(
n+ k+ 1
2 k+ 1

)
= 2n. (2.7)

These two identities are different from other representations of 2n in the sense that they
involve irrational terms to generate an integer sequence. They are also interesting from
this perspective.

Example 2.8 (generating the Fibonacci sequence.). In Theorem 2.2, choose c =±1/2 and

b =±
√

(
√

5− 2)/2. This makes α= (
√

5 + 1)/2 and β = (
√

5− 1)/2. Note that since αβ =
α−β = 1, the right-hand side of Theorem 2.2 is the sequence

Gn =
(√

5 + 1
2

)n

−
(√

5− 1
2

)n

, n≥ 1. (2.8)

By setting F0 =G0 = 0, we get the following relation between Gn and Fn for n≥ 0:

G2n =
√

5F2n, G2n+1 = F2n +F2n+2. (2.9)

From this relation, we see that Theorem 2.2 provides a combinatorial identity to generate
the Fibonacci sequence.
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Example 2.9 (generating a shifted even-indexed Fibonacci sequence). In Theorem 2.1, if
we let b = (1±√5)/2, then b2/(b+ 1)= 1 and Theorem 2.1 takes the form

n∑

k=0

(
n+ k+ 1

2k+ 1

)
=
(

5 + 3
√

5
10

)(
3 +
√

5
2

)n

+

(
5− 3

√
5

10

)(
3−√5

2

)n

. (2.10)

One can show that the right-hand side of (2.10) is F2n+2.

Example 2.10. By substituting b = 1±√3 in Theorem 2.1, we get the following identity
that generates the sequence a0 = 1, a1 = 4, and an+2 = 4an+1− an for n≥ 0:

n∑

k=0

2k
(
n+ k+ 1

2k+ 1

)
=
(

1
2

+

√
3

3

)
(
2 +
√

3
)n

+

(
1
2
−
√

3
3

)
(
2−√3

)n
. (2.11)

The first few terms of the sequence an are 1, 4, 15, 56, 209, 780, . . . . One interesting
property of these terms is that 3an2 + 1 is a perfect square.

Example 2.11. By substituting b = 1 in Theorem 2.1 and b = −1, c = 2 in Theorem 2.2,
we get the identities discovered in [6] for real numbers of the form (1/6)(1− 1/4n).

3. Proofs of the theorems

Proof of Theorem 2.1. Since
(
n+k+1
2k+1

)
= 0 for k > n+ 1 and k < 0, the identity in Theorem

2.1 can be rewritten as

1
(b+ 1)n+2

∑

k∈Z

b2k+1

(b+ 1)k

(
n+ k+ 1

2k+ 1

)
= 1

b+ 2

(
1− 1

(b+ 1)2(n+1)

)
. (3.1)

This is also equivalent to

∑

k∈Z

(2 + b)b2 k+1

(b+ 1)k−n

(
n+ k+ 1

2k+ 1

)
= (1 + b)2(n+1)− 1. (3.2)

Let us denote the left-hand side of (3.2) by Sb(n). Let Fb(n,k) denote the summand of
Sb(n), that is,

Fb(n,k)= (2 + b)b2k+1

(b+ 1)k−n

(
n+ k+ 1

2k+ 1

)
. (3.3)

Then Fb satisfies the recurrence equation (the recurrence equation is automatically gen-
erated by the Maple package ekhad which is available (for free) from http://www.math
.rutgers.edu/˜zeilberg/):

−(b+ 1)2Fb(n,k) + (b2 + 2b+ 2)Fb(n+ 1,k)−Fb(n+ 2,k)=Gb(n,k+ 1)−Gb(n,k),

where Gb(n,k)= (2 + b)b2k+1(b+ 1)n−k+2

(
n+ k+ 1
2k− 1

)
.

(3.4)

http://www.math.rutgers.edu/~zeilberg/
http://www.math.rutgers.edu/~zeilberg/
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By summing both sides of (3.4) with respect to k, we get

−(b+ 1)2Sb(n) +
(
b2 + 2b+ 2

)
Sb(n+ 1)− Sb(n+ 2)= 0. (3.5)

Moreover, Sb(0) = (b + 1)2 − 1 and Sb(1) = (1 + b)4 − 1. Also (1 + b)2(n+1) − 1 satisfies
(3.5), and hence Sb(n)= (1 + b)2(n+1)− 1. �

Remarks 3.1. (1) In the sequel, we will use the same proof style. Compute a recurrence
relation of order d for the summand and sum the summand recurrence with respect to
the summation index to get a recurrence for the sum S(n). Check that the right-hand side
also satisfies the same recurrence and that it agrees with S(n) for the first d initial values
of n. Then the identity follows.

(2) We would like to note that one can also get the right-hand side of (3.2) by directly
solving the recurrence (3.5) which has constant coefficients. For more details, see for
instance [8, 9].

To make the proofs more compact, we introduce the following operator notations.

Defintion 3.2. Given a function F(n,k) of the (discrete) variables n and k, define the
forward shift operator En by EnF(n,k)= F(n+ 1,k).

With this notation, (3.4) becomes

(− (b+ 1)2 +
(
b2 + 2b+ 2

)
En−E2

n

)
Fb(n,k)=Gb(n,k+ 1)−Gb(n,k). (3.6)

From the proof of Theorem 2.1, we observe that to certify the truth of the identity, it
would suffice to display the pair (P,Gb) (called a “Z-pair”), where P =−(b+ 1)2 + (b2 +
2b+ 2)En−En

2.
In the sequel for a given function F(n,k), a Z-pair (P,G) means that PF(n,k)= G(n,

k + 1)−G(n,k). Since the Z-pair actually certifies the truth of the identity, it is called
the proof certificate. Therefore, in the proofs of Theorems 2.2, 2.4, we only give the proof
certificates.

Proof of Theorem 2.2. Since
(

2n
2k−1

)
= 0 for k > n and k < 1, the identity in Theorem 2.2

can be rewritten as

∑

k∈Z

1
2nb2

(
b

2c

)2n(
1 +

4c
b2

)k−1
(

2n
2k− 1

)
= αn−βn

αβ(α−β)
. (3.7)

Let us denote the summand of the left-hand side of (3.7) by Fb,c(n,k), that is,

Fb,c(n,k)= 1
2nb2

(
b

2c

)2n(
1 +

4c
b2

)k−1
(

2n
2k− 1

)
. (3.8)
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The required Z-pair (P,Gb,c) is P = 1− (2b2 + 4c)En + 4c2En
2 and

Gb,c(n,k)=
(

1
2n+1b2

)(
b

2c

)2n+2(
1+

4c
b2

)k−1
(
− (3n− 2k+ 6)b2

2k− 3

(
2n+ 1
2k− 4

)
+ 2c

(
2n

2k− 3

))
.

(3.9)
�

Proof of Theorem 2.3. Since
(
n+k+1

2k

)
= 0 for k > n+ 1 and k < 0, the identity in Theorem

2.3 can be rewritten as

∑

k∈Z

b2k

(b+ 1)n+k+1

(
n+ k+ 1

2k

)
= b+ 1

b+ 2

(
1 +

1
(b+ 1)2n+3

)
. (3.10)

The Z-pair (P,Gb) associated with the summand Fb(n,k) of the left-hand side of (3.10) is

P = 1− (b2 + 2b+ 2)En + (b+ 1)2En
2, Gb(n,k)=− b2k

(b+ 1)n+k+1

(
n+ k+ 1
2k− 2

)
.

(3.11)
�

Proof of Theorem 2.4. Since
(

2n+1
2k+1

)
= 0 for k > n and k < 0, the identity in Theorem 2.4

can be rewritten as

∑

k∈Z

(
b

2n−1

)(
b

2c

)2n+1(
1 +

4c
b2

)k+1
(

2n+ 1
2k+ 1

)
=
√
α+

√
β

√
αβ

(
βn+1/2−αn+1/2

)
. (3.12)

The Z-pair (P,Gb,c) associated with the summand Fb,c(n,k) of the left-hand side of (3.12)
is

P = 1− (2b2 + 4c)En + 4c2En
2,

Gb,c(n,k)=
(

b

2n−1

)(
b

2c

)2n+3(
1+

4c
b2

)k+1
(
− (6n− 4k+ 11)b2

8k− 4

(
2n+ 2
2k− 2

)
+

(
2n+ 1
2k− 1

)
c

)
.

(3.13)
�

Proof of Theorem 2.5. Reversing the order of summation, the identity can be rewritten as

2n∑

m=2

�(m−2)/2	∑

k=0

bm

(b+ 1)n+k+1

(
n+ k+ 1

m

)
= b(n+ 1)

b+ 2
− (b+ 1)2

(b+ 2)2

(
1− 1

(b+ 1)2n+2

)
. (3.14)

Let us denote the left-hand side of (3.14) by Sb(n) and its summand by Fb(n,m,k),
that is,

Fb(n,m,k)= bm

(b+ 1)n+k+1

(
n+ k+ 1

m

)
. (3.15)
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Then Fb(n,m,k)= Fb(k,m,n) and Fb(n+ 1,m,k)= Fb(n,m,k+ 1). This implies that

Fb(n+ 1,m,k)−Fb(n,m,k)= Fb(n,m,k+ 1)−Fb(n,m,k). (3.16)

Summing both sides of (3.16) with respect to k and with respect to m, we get

Sb(n+ 1)− b2n+1

(b+ 1)2n+1
− b2n+2

(b+ 1)2n+2
− Sb(n)

=
2n∑

m=2

⎛
⎜⎝
n+

⌊
m

2

⌋
+ 1

m

⎞
⎟⎠

bm

(b+ 1)n+�m/2	+1
−

2n∑

m=2

(
n+ 1
m

)
bm

(b+ 1)n+1
.

(3.17)

But

2n∑

m=2

(
n+ 1
m

)
bm

(b+ 1)n+1
= 1

(b+ 1)n+1

( n+1∑

m=0

(
n+ 1
m

)
bm− 1− (n+ 1)b

)

= 1
(b+ 1)n+1

(
(b+ 1)n+1− 1− (n+ 1) b

)

= 1− 1
(b+ 1)n+1

− (n+ 1)b
(b+ 1)n+1

,

2n∑

m=2

⎛
⎜⎝
n+

⌊
m

2

⌋
+ 1

m

⎞
⎟⎠

bm

(b+ 1)n+�m/2	+1

=
n∑

m=1

(
n+m+ 1

2m

)
b2m

(b+ 1)n+m+1
+

n−1∑

m=1

(
n+m+ 1

2m+ 1

)
b2m+1

(b+ 1)n+m+1

=
n+1∑

m=0

(
n+m+ 1

2m

)
b2m

(b+ 1)n+m+1
− 1

(b+ 1)n+1
− b2n+2

(b+ 1)2n+2

+
n∑

m=0

(
n+m+ 1

2m+ 1

)
b2m+1

(b+ 1)n+m+1
− (n+ 1)b

(b+ 1)n+1
− b2n+1

(b+ 1)2n+1

= b+ 1
b+ 2

(
1 +

1
(b+ 1)2n+3

)
− 1

(b+ 1)n+1
− b2n+2

(b+ 1)2n+2

+
b+ 1
b+ 2

(
1− 1

(b+ 1)2n+2

)
− (n+ 1)b

(b+ 1)n+1
− b2n+1

(b+ 1)2n+1
.

(3.18)

From (3.17) and (3.18), we get that

Sb(n+ 1)− Sb(n)= b

b+ 2

(
1− 1

(b+ 2)2n+2

)
(3.19)
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and Sb(1) = b2/(b+ 1)2. The right-hand side of (3.14) also satisfies this recurrence rela-
tion. Hence

Sb(n)= b(n+ 1)
b+ 2

− (b+ 1)2

(b+ 2)2

(
1− 1

(b+ 1)2n+2

)
∀n∈N. (3.20)

�

Remark 3.3. We would like to mention that the recurrence (3.16) can also be automat-
ically generated by MultiSum [10], a Mathematica package which is available from the
website http://www.risc.uni-linz.ac.at/research/combinat/software/.
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