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In this paper the problem of chaos synchronization, and the related phenomena of
riddling, blowout and on—off intermittency, are considered for discrete time com-
petition models with identical competitors. The global properties which determine
the different effects of riddling and blowout bifurcations are studied by the method
of critical curves, a tool for the study of the global dynamical properties of two-
dimensional noninvertible maps. These techniques are applied to the study of a dynamic

market-share competition model.
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1. INTRODUCTION

Dynamic models of strategic interaction between
two competitors are often represented by a map
of the plane into itself T:(x,y,)— (X4 1,V:41)s
defined as

Xt+1 = Tl(xt,yz) (1)
Ye+1 = T2(xt7yt)7

where x, and y, represent the state variables which
characterize, at time ¢, the behavior of the two
competitors. The iteration of 7 gives the time
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evolution of the system: Given an initial condition
(0, ¥o) € R?, the repeated application of the map T
uniquely defines the trajectory

7(X0,¥0) = {(xt’yt) = Tt(xO,y()),tE N} (2)
Models of this form are often used for the
description of biological, social or economic
systems where two individuals, or two popula-
tions, compete in the environment where they
operate. For example, in ecologic modeling x, and
y, may represent the densities of two populations
which live in the same territory and compete for
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resources; in economic modeling x, and y, may
represent the choices (such as, productions or
investments) of two firms which produce the same
goods and compete in order to maximize their
profits by acquiring greater portions of a given
market. The long run (or asymptotic) evolution
of such systems may be characterized by the co-
existence of the two competitors, generally with
some degree of dominance (or prevalence) of
one of them, or by the complete elimination of
a competitor, which may be seen as an extreme
form of dominance. In a deterministic framework,
the final outcome depends on the values of the
parameters which characterize the competitors
and, in some cases, on the initial condition (x,
¥o), whose influence may be crucial when several
coexisting attractors of the dynamical systems
are present, each with its own basin of attraction.
If the two competitors are very different, then one
of them generally dominates in the long run, and
the outcome of the competition may be inde-
pendent of the initial point, i.e., the stronger
competitor may win even starting from a dis-
advantageous starting condition. More interesting
situations may occur if the two competitors are
similar or, at the limit, if they are absolutely
identical. In this paper we investigate some par-
ticular properties of competition models with iden-
tical competitors.

In the case of identical competitors, the dyna-
mical system must remain the same if the variables
x and y are interchanged, i.e., To S=S o T, where
S:(x,y)—(y,x) is the reflection through the
diagonal

A= {(x,y)€R*|x = y}. (3)

This symmetry property implies that the diagonal
is mapped into itself, ie., T(A)CA, which
corresponds with the obvious statement that, in a
deterministic framework, identical competitors,
starting from identical initial conditions, behave
identically for each time. The trajectories em-
bedded into A, i.e., characterized by x,=y, for
every ¢, are called synchronized trajectories, and

they are governed by the one-dimensional map
given by the restriction of T to the invariant sub-
manifold A
X1 =f(x) withf=T|p,: A=A, (4)

In [8] the one-dimensional model (4) has been
considered as the model of a representative agent
whose dynamics summarize the common behavior
of the two synchronized competitors.

A trajectory starting out of A, i.e., with xy # yo,
is said to synchronize if |x,—y,| — 0ast —+o00. A
question which naturally arises, in the case of
symmetric competition models, is whether iden-
tical competitors starting from different initial
conditions will synchronize, so that the asymptotic
behavior is governed by the simpler one-dimen-
sional model (4). This question can be reformu-
lated as follows. Let 4, be an attractor of the
one-dimensional map (4). Is it also an attractor for
the two-dimensional map 77 Of course, an attrac-
tor A, of the restriction f is stable with respect
to perturbations along A, so an answer to the
question raised above can be given through a
study of the stability of A, with respect to per-
turbations transverse to A (transverse stability).
If 4, is a cycle, then the study of the transverse
stability is the usual one, based on the modulus
of the eigenvalues of the cycle in the direction
transverse to A, whereas the problem becomes
more interesting when the dynamics restricted to
the invariant submanifold are chaotic. In this case
the phenomenon of chaos synchronization may
occur (see e.g. [13,29,15)), i.e., the time evolution
of the two competitors synchronize in the long run
even if each of them behaves chaotically.

Dynamical systems with chaotic trajectories
embedded into an invariant submanifold of
lower dimensionality than the total phase space
have raised an increasing interest in the scienti-
fic community (see e.g. [5,10]). Milnor attractors
(see [22]) which are not stable in Lyapunov sense
appear quite naturally in this context, together
with phenomena like on-off intermittency and
riddled basins (see e.g. [4,28,20]). In the recent
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literature on chaos synchronization, stability
statements are given in terms of the transverse
Lyapunov exponents, by which the “average’ local
behavior of the trajectories in a neighborhood of
the invariant set 4; can be understood, and new
kinds of bifurcations can be detected, such as
the riddling bifurcation, through which A, is
transformed from a Lyapunov attractor into
an attractor in the weaker Milnor sense, or the
blowout bifurcation, through which A4, is trans-
formed from a Milnor attractor into a chaotic
saddle.

However, as noticed by many authors (see e.g.
[5,10,15,20]), even if the occurrence of riddling
and blowout bifurcations is detected through the
transverse Lyapunov exponents, i.e., from a local
analysis of the linear approximation of the map
near A, their effects are determined by the global
properties of the map. In fact, the effect of these
bifurcations is related to the fate of the trajectories
which are locally repelled away from a neighbor-
hood of the Milnor attractor A, since they may
reach another attractor or they may be folded
back toward A, by the action of the nonlinearities
acting far from A. In the models with one-
dimensional chaos synchronization the map (1) is
often a noninvertible map of the plane, because
its one-dimensional restriction f must be a non-
invertible map in order to have chaotic motion
along the invariant subspace A. In this case, the
global dynamical properties of the map T can
be described by the method of critical curves (see
[14, 24, 3]) and, in particular, the reinjection of the
locally repelled trajectories can be described in
terms of their folding action (see e.g. [24] or [25]
for a description of the geometric properties of
a noninvertible map related to the folding, or
foliation, of its phase space). This idea has been
recently proposed in [9] for the study of symme-
tric maps arising in game theory, and in [8] for
the study of the effects of small asymmetries due
to parameters mismatches. In these two papers, the
critical curves have been used to obtain the
boundary of a compact trapping region, call-
ed absorbing area following [24], inside which

intermittency and blowout phenomena are con-
fined. These methods have been recently intro-
duced in the physical literature, for the study of a
system of coupled chaotic oscillators, in [21] and
[6]. In particular, in [6] the concept of minimal
invariant absorbing area is defined in order to give
a global characterization of the different dy-
namical scenarios related to riddling and blowout
bifurcations.

The main purposes of this paper are to explain
the relations between the problems related to
chaos synchronization and the properties of
critical curves, and to illustrate their application
to the study of symmetric competition models.
These relations may be important in practical
problems because they can be used to define
compact regions of the phase plane that acts as
trapping bounded vessels inside which the trajec-
tories starting near A are confined, thus giving an
upper bound for the oscillations (bursts) which
characterize both the transient dynamics of the
trajectories which eventually synchronize, and the
persistent oscillations (on—off intermittency)
which characterize the dynamics just after a blow-
out bifurcation. Moreover, contacts between the
portions of critical curves bounding the minimal
absorbing area surrounding a Milnor attractor
and the basin boundaries may mark the transition
between local and global riddling phenomena (see
[21, 6)).

The paper is organized as follows. In Section 2
we recall some definitions and results related to
the study of transverse stability, and related local
bifurcations, revealed by the study of transverse
Lyapunov exponents. In Section 3 we present
some properties of noninvertible maps of the
plane, and in particular we describe a procedure
to obtain the boundary of an invariant absorbing
area. In Section 4 the results described in Sections
2 and 3 are applied to the study of a brand com-
petition model for market share. In Section 5
we conclude with a brief outline of some possible
extensions to higher dimensional models and to
models where the symmetry is broken by small
parameters’ mismatches.
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2. CHAOTIC SYNCHRONIZATION
AND RELATED LOCAL
BIFURCATIONS

In this section we recall some definitions and
results related to the problem of chaos synchroni-
zation, see [10] for a more complete treatment. Let
T be a map of the plane, A a one-dimensional
trapping subspace and A4, a chaotic attractor (with
absolutely continuous invariant measure on it) of
the restriction (4) of T to A. The key property for
the study of the transverse stability of A, is that
it includes infinitely many periodic orbits which
are unstable in the direction along A. For any of
these cycles it is easy to compute the associated
eigenvalues. In fact, due to the symmetry of the
map, the Jacobian matrix of 7 computed at any
point of A, say DT(x,x)={T;(x)}, is such that
Ty =Ty and Ty, = T3;. The two orthogonal eigen-
vectors of such a symmetric matrix are one paral-
lel to A, say vy =(1, 1), and one perpendicular to it,
say v, =(1, —1), with related eigenvalues given by

)\” (x) = T“(x) + le(x) and
)\l(x) = T11(x) — le(x)

respectively. Of course, A\ (x)=/"(x). Since the
product of matrices with the structure of
DT(x, x) has the same structure as well, a k-cycle
{x1,...,x;} embedded into A has eigenvalues )\ﬁ =
TT, A () and X = [T, A, (x;), with eigenvec-
tors v and v, respectively. So, for a chaotic set
A, C A, infinitely many transverse Lyapunov ex-
ponents can be defined as

1Y
AL ZI}B&N;IHML(MH (5)

where {x;=f"(xy), i>0} is a trajectory embedded
in A,. If xy belongs to a k-cycle then A, =In|)t|,
so that the cycle is transversely stable if A <0,
whereas if x, belongs to a generic aperiodic tra-
jectory embedded inside the chaotic set A4, then
A, is the natural tramnsverse Lyapunov exponent
AT, where by the term “natural” we mean the

Lyapunov exponent associated to the natural, or
SBR (Sinai-Bowen-Ruelle), measure, i.e., com-
puted for a typical trajectory taken in the chaotic
attractor A;. Since infinitely many cycles, all
unstable along A, are embedded inside a chaotic
attractor A, a spectrum of transverse Lyapunov
exponents can be defined, see [10]

ATinS"'SAiatS"'SATaX (6)

The meaning of the inequalities in (6) can be
intuitively understood on the basis of the property
that A" expresses a sort of “weighted balance”
between the transversely repelling and transversely
attracting cycles (see [27]). If AT** <0, i.e., all the
cycles embedded in A, are transversely stable, then
A; 1s asymptotically stable, in the usual Lyapunov
sense, for the two-dimensional map 7. However, it
may occur that some cycles embedded in the
chaotic set 4; become transversely unstable, i.e.,
AT >0, while A7 <0. In this case, A, is no
longer Lyapunov stable, but it continues to be a
Milnor attractor [22] i.e., it attracts a positive
(Lebesgue) measure set of points of the two-
dimensional phase space. The transition from
asymptotic stability to attractivity only in Milnor
sense, marked by a change of sign of AT#* from
negative to positive, is denoted as the riddling
bifurcation in [18] (or bubbling bifurcation in [32]).

Even if the occurrence of such bifurcations is
detected through the study of the transverse
Lyapunov exponents, their effects depend on the
action of the nonlinearities far from A, that is, on
the global properties of the dynamical system. In
fact, after the riddling bifurcation two possible
scenarios can be observed according to the fate of
the trajectories that are locally repelled along (or
near) the local unstable manifolds of the trans-
versely repelling cycles:

(L) they can be reinjected towards A, so that the
dynamics of such trajectories are characterized by
some bursts far from A before synchronizing on it
(a very long sequence of such bursts, which can be
observed when A | is close to zero, has been called
on-off intermittency in [28]);
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(G) they may belong to the basin of another
attractor, in which case the phenomenon of riddled
basins ([4]) is obtained.

Some authors call local riddling the situation (L)
and, by contrast, global riddling the situation (G)
(see [5,19,21]). When also A7 becomes positive,
due to the fact that the transversely unstable
periodic orbits embedded into A4, have a greater
weight as compared with the stable ones, a blowout
bifurcation occurs, after which A is no longer a
Milnor attractor, because it attracts a set of points
of zero measure, and becomes a chaotic saddle,
see [10]. In particular, for AT" > 0 all the cycles
embedded into A are transversely repelling, and
Ay is called normally repelling chaotic saddle see
[10]. Also the macroscopic effect of a blowout
bifurcation is strongly influenced by the behavior
of the dynamical system far from the invariant
submanifold A: The trajectories starting close to
the chaotic saddle may be attracted by some
attracting set far from A or remain inside a two-
dimensional compact set located around the cha-
otic saddle A;, thus giving on-off intermittency.
The study of transverse Lyapunov exponents says
nothing about the fate of the locally repelled
trajectories, and the occurrence of the different
scenarios described above is determined by the
global properties of the map. When T is a non-
invertible map, these global properties can be
described by the method of critical curves, which
may be used to obtain the minimal invariant
absorbing area inside which intermittency phenom-
ena are confined.

3. GLOBAL PROPERTIES
OF NONINVERTIBLE MAPS
AND ABSORBING AREAS

Noninvertible map means “many-to-one”, that is,
distinct points p; # p, may have the same image,
i.e., T(p1) = T(p,) = p. Geometrically, the action of
a noninvertible map of the plane can be expressed

by saying that it “folds and pleats” the plane, so
that the two distinct points p; and p, are mapped
into the same point p. This is formally expressed
by saying that p has several distinct rank-1
preimages, i.e., several inverses are defined in p,
and that these inverses “unfold” the plane.

More formally, a two-dimensional map
T:(x,y)—(x',)), defined by (1), is said to be
noninvertible if the rank-1 preimages (x,y)=
T~ '(x',)'), obtained by solving the system (1)
with respect to x and y, may be more than one. In
this case, the plane can be subdivided into regions
Zr, k>0, whose points have k distinct rank-1
preimages. Generally, as the point (x/, y’) varies in
the plane R? pairs of preimages appear or dis-
appear as it crosses the boundaries separating
different regions, hence such boundaries are char-
acterized by the presence of at least two coincident
(merging) preimages. This leads to the definition of
the critical curves, one of the distinguishing fea-
tures of noninvertible maps. Following the nota-
tions of [14,24,3], the critical set LC (from the
French “Ligne Critique”) is defined as the locus of
points having two, or more, coincident rank-1
preimages, located on a set (set of merging pre-
images) called LC _,. LC is the two-dimensional
generalization of the notion of critical value (when
it is a local minimum or maximum value) of a one-
dimensional map,' LC_, is the generalization of
the notion of critical point (when it is a local ex-
tremum point). Arcs of LC separate the regions
of the phase plane characterized by a different
number of real rank-1 preimages (see [14, 24, 3]).

Points of LC_, in which the map is differenti-
able are necessarily points where the Jacobian
determinant vanishes: in fact in any neighborhood
of a point of LC _ there are at least two distinct
points which are mapped by 7T in the same point,
hence the map is not locally invertible in points
of LC_ . This implies, for a differentiable map,
that

LC_1 C Jo = {(x,y) € R*|det DT (x,y) = 0}  (7)

!This terminology, and notation, originates from the notion of critical points as it is used in the classical works of Julia and Fatou.
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More generally, since 7 is locally an orientation
preserving map near points (x,y) such that det
DT(x,y)>0 and orientation reversing if det
DT(x,y) <0, then for a continuous map T the
fold LC _ is included in the set where det DT(x, y)
changes sign.

The critical sets of rank k are the images of
rank k of LC_, denoted by LC,_ ,=TF
(LC_)=T*""'" (LC), LC, being LC. Segments
of critical curves of rank-k, k=0,1,..., can be
used in order to define trapping regions of the
phase plane. An absorbing area A is a bounded
region of the plane whose boundary is given by
critical curve segments (segments of the critical
curve LC and its images) such that a neighbor-
hood U D A exists whose points enter A after a
finite number of iterations and then never escape
it, i.e., T(A) C A (see [24], Chapter 4, or [6], for
more details).

Following [24] or [3] a practical procedure can
be outlined in order to obtain the boundary of an
absorbing area (although it is difficult to give a
general method). Starting from a portion of LC _,
approximately taken in the region occupied by the
area of interest, its images of increasing rank are
computed until a closed region is obtained. When
such a region is mapped into itself, then it is an
absorbing area .A. The length of the initial segment
is to be taken, in general, by a trial and error
method, although several suggestions are given in
the books referenced above. Once an absorbing
area A is found, in order to see if it is invariant (or
strictly mapped into itself) the same procedure
must be repeated by taking only the portion

v=ANLC_, (8)

as the starting segment. Then one of the following
two cases occurs:

(i) the union of m iterates of v (for a suitable m)
covers the whole boundary of A; in which case
A is an invariant absorbing area, and

BA C L"J T*(y) )
k=1

(ii) no natural m exists such that |J!" | T'(v) covers
the whole boundary of A, in which case A is
not invariant but strictly mapped into itself.
An invariant absorbing area is obtained by
Ny~ oT"(A) (and may be obtained by a finite
number of images of A).

The minimal invariant absorbing area is the
smallest absorbing area that includes the Milnor
attractor on which the synchronized dynamics
occur. Indeed, boundaries of trapping regions can
also be obtained by the union of segments of
critical curves and portions of unstable sets of
saddle cycles, and in this case we have a so called
absorbing areas of mixed type (see [24]). We don’t
enter here in such details, as in the examples given
in this paper only standard absorbing areas (i.e.,
completely bounded by critical arcs) are used.
However, the arguments given in the following
remain substantially unchanged if absorbing areas
of mixed type are met.

4. A COMPETITION MODEL
FOR MARKET SHARE

As an example, we consider a dynamic brand
competition model proposed in [5]. This model
describes a market where a population of con-
sumers can choose between two brands of homo-
geneous goods, produced by two competing firms.
Let x, y represent the marketing efforts of two
firms (advertising, R&D, etc.) and B the total sales
potential of the market (in terms of customer
market expenditures). If firm 1 spends x dollars of
effort and firm 2 spends y dollars, then the share of
the market (sales revenue) accruing to firm 1 and
to firm 2 is Bs; and Bs,= B— Bs;, respectively,
where

B B2
ax by

= - Sy = ——FF+. 10
51 axﬁl + byﬂz ’ 2 axﬁl -+ byﬂz ( )
The terms A, =ax” and A,=by™ represent the
recruitment of customers by firm 1 and 2,
respectively, given x and y units of effort, and
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the parameters ¢ and b denote the relative
effectiveness of the effort made by the firms. Since
(dA,/dx)(x/Ay) =B and (dA>/dx)(x/A>)= [, the
parameters (; and (3, denote the elasticities of
the attraction of firm (or brand) i with regard to
the effort of firm i. Market share attraction models
have been used frequently in empirical work;
(see, e.g. [11,26]). The dynamic model given in
[7] is obtained by assuming that the two competi-
tors change their marketing efforts adaptively, in
response to the profits achieved in the previous
period:

Xyl = X+ A (B, — X)X

Vsl = Yi + Ao (Bsa — yi)yi (1
The decision rule the firms use is an adaptive
adjustment (a type of anchoring attitude) widely
used in decision theory (see [31,30]). The param-
eters \; > 0, i=1,2, measure the rate of adjust-
ment. If we insert the market shares from Eq. (10),
the competition model becomes

B
Xyl = Xt + )\1xt <B;‘ﬁ|iny£ﬁ — xt)
) (12)

k 2
Vel = Yo+ Aoy (Bx—yi'Tyﬁf - )’t)

where k:=b/a. A general study of the dynamic
properties of the map (12) is given in [7].

The map (12) is a noninvertible map of
Z4—2Zy— 7, type. The set of points for which det
DT(x, y)=0is given by the union of two branches,
denoted by L and L) in Figure la. Also LC
is the union of two branches, denoted by LC@ =
T(LC) and LC®) = T(LC")), see Figure 1b. The
branch LC® separates the region Z,, whose points
have no preimages, from the region Z,, whose
points have two distinct rank-1 preimages. LC@
separates the region Z, from Z,4, where the points
in Z4 have four distinct preimages.

Here we consider the symmetric case of identical
firms, obtained for

A==\ Bi=Hh=08 k=1

This case has already been considered by Kopel
et al. [16], where it is argued that the parameter
[ measures the degree of competition between
the firms. We now use this example to show
some applications of the methods described in
Section 3.

The restriction (4) of the symmetric map to the
invariant diagonal is given by

flx) = <l+%>\B>x—)\x2. (13)

which is conjugate to the standard logistic map
z=pz(l —z), with

M:I—I—%)\B (14)

by the linear transformation x=z(14+AB/2)/A.
For the symmetric map, the Jacobian matrix,
computed at a point of the diagonal A, is

DT (x,x; A\, B, 3)
[ 1 — 2Ax + 2802) — 288 }
= AB AB(A+2) |
g 1 —2x 28642
(15)

Hence, the eigenvalues are Ay=1+(1/2)AB—2\x
and A =14(1/2)AB(1+3)—2\x, and the trans-
verse Lyapunov exponents are readily obtained:

1
L+ 5 AB(1+ ) = 22%.

1Y
A :l\}glgoﬁ;:()ln

It is important to note that the parameter 8 only
appears in the transverse eigenvalue A, i.e., f1is a
normal parameter: it has no influence on the
dynamics along the invariant submanifold A,
and only influences the transverse stability. This
allows us to consider fixed values of the param-
eters A and B, such that a chaotic attractor 4; C
A of the map (13) exists, with an absolutely
continuous invariant measure on it. So, we can
study the transverse stability of A4, as the degree of
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c®

(a) ¥

0 (b) x 10

FIGURE 1 (a) Critical curves of rank-0, LC _, for the map (12), numerically obtained as the locus of points where the Jacobian
det(DT(x,y))=0, for \y=X\,=0.5, f1=£,=0.2, B=10 and k=1. (b) Critical curves of rank-1, LC=T(LC _;). These curves
separate the plane into the regions Z4, Z, and Z,, whose points have four, two, and no rank-1 preimages respectively.

competition between the two firms, measured by
the parameter 3, varies. Suitable values of the
aggregate parameter AB, at which chaotic inter-
vals for the restriction (13) exist, are obtained
from the well known properties of the logistic
map (see e.g. [12,23]). For example, at the param-
eter value fip = 3.5748049387592--- the period-4
cycle of the logistic map undergoes the homoclinic
bifurcation, at which four cyclic chaotic intervals
are obtained by the merging of 8 cyclic chaotic
intervals. By using AB=2(ji, — 1) we get a four-
band chaotic set A; along the diagonal A, as
shown in Figure 2a. With the parameters used
in Figure 2, i.e., B=10 and §=0.16, we have
AP* > 0and AT = —2.6 x 1072 < 0. Hence, 4, is
a Milnor attractor and local riddling occurs. The
generic trajectory starting from initial conditions
taken in the white region of Figure 2a leads to
synchronization, and the points of the dark re-
gion generate interrupted trajectories, involving
negative values of the state variables. The Milnor
attractor A, is included inside a minimal invariant
absorbing area whose boundary can be easily
obtained by five iterations of an arc of LC 4, as
shown in Figure 2b. This absorbing area consti-
tutes a trapping region inside which the bursts
observed during the transient are contained. This

is clearly seen in Figure 2c¢, where the points
of the transient part of a typical trajectories
which synchronizes are represented. During the
transient, the time evolution of the system is char-
acterized by several bursts away from A before
synchronization occurs, as shown in Figure 2d,
where the difference x,—y,, computed along the
trajectory of Figure 2c, is represented versus time.

In such a situation, a method to obtain trajec-
tories which never synchronize, so that the bursts
never stop and the iterated points fill up the
whole minimal absorbing area, consists in the
introduction of a small parameters’ mismatch (see
e.g. [6]), such as A; slightly different from X, or 3,
slightly different from f3,, so that the symmetry is
broken. This implies that the invariance of A is
lost, and consequently the one-dimensional Milnor
attractor embedded in no longer exists. The study
of the effects of small parameters’ mismatches may
be important in economic dynamic modelling, as
stressed in [8, 16].

A similar effect is obtained even in the
symmetric case, if the value of g is increased so
that A7*" increases until it changes sign, i.e., a
blowout bifurcation occurs. After this bifurcation
the bursts which characterize the first part of the
trajectory of Figures 2c¢ and 2d, never stop, i.e.,
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FIGURE 2 Numerical explorations of the dynamic behaviors of the symmetric brand competition model (12) with parameters
By=03=0.16, B=10, k=1 and X\ =X, =0.51496098...=2(ji — 1)/B. (a) The white region represents the sct of points that
generate trajectories which synchronize on the 4-cyclic chaotic set A,; the points of the grey region generate interrupted trajectories,
involving negative values of the state variables. (b) Boundary of the absorbing areca around the Milnor attractor 4,, obtained by the
segments of critical curves LC=T(y), LC,=T(LC),...,LC,=T(LC, ), k=2,...,4, images of the arc v € LC_;. (c) Points of the
transient part of a typical trajectories which synchronizes. (d) The difference x,— y,, computed along the trajectory of Figure 2c, is

represented versus time during the first 500 periods.

the firms never synchronize. A, is now a chaotic
saddle, and on-off intermittency is observed. This
is what happens in the situation shown in Figure
3, obtained for $=0.19, at which A" = 1.6 x
1072 > 0. Now the point of a generic trajectory
starting from the white region fill the whole ab-
sorbing area, still bounded by segments of critical
arcs.

Another situation, obtained with $=0.09, is
shown in Figure 4. In Figure 4a the 4-cyclic
chaotic set A, which is a Milnor attractor with
AT >0 and AT = —0.15<0, coexists with an
attracting cycle C, of period 2, with periodic
points out of A: the white region represents the set
of points generating trajectories that synchronize

to A,, the light grey regions represent the basin of
the cycle C,. The locally repelled trajectories
cannot reach C, because of the presence of an
absorbing area surrounding A,. This is shown in
Figure 4a. The locally repelled trajectories are
folded back by the boundaries of the absorbing
area, and after some bursts away from A they
synchronize. An increase of ( causes a contact
between the absorbing area and the basin of C,
which leads to the destruction of the absorbing
area, so that some of the trajectories that are
repelled from A4, can converge to C,, and the basin
of A, becomes riddled (Fig. 4b). This example
shows a transition from a locally riddled to a
globally riddled dynamics caused by a contact
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0 X 9

FIGURE 3 With the same parameters A, B and k as in Figure 2, and 8 = 8, =0.19, A7 > 0, hence a generic trajectory starting
from the white region fills the whole absorbing arca, bounded by segments of critical arcs.

FIGURE 4 (a) With the same parameters A, B and k as in Figure 2, and 3| = 3, =0.09, the 4-cyclic chaotic set A,, which is a
Milnor attractor with AT** > 0 and A" = —0.15 < 0, coexists with an attracting cycle C;, of period 2, with periodic points out of A.
The points of the white region generate trajectorics which synchronize on A, whereas points in the light-grey region converge to C;.
The boundaries of the minimal absorbing arca including A, are also shown. (b) For 8; = 8,=0.1 the basin of A, is riddled with the

basin of C,.
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between the boundary of a minimal invariant
absorbing area and the boundary of its basin of
attraction.

5. CONCLUSIONS

We have analyzed a particular type of two-
dimensional discrete dynamical systems that one
can meet in the modeling of competition between
two economic agents. Due to the assumed
symmetry between the agents, the phenomenon
of chaos synchronization can be observed.

The critical curves, a tool for the study of the
global properties of noninvertible maps of the
plane, have been used to obtain the boundary of
compact trapping regions, called absorbing areas,
inside which intermittency and blowout phenom-
ena are confined.

Many of these concepts can be generalized to
the case of more than two competitors. In general,
a linear transformation M is called a symmetry of
amap T if MoT=ToM. In this case, the set of
fixed points of M is an invariant subspace for
the dynamical system. For example, with three
identical competitors, whose time evolution is
modeled by the iteration of the map T:(x,, y;, z,)
—(X;s 1,V 1,2:01), an  evident group of
symmetries is represented by the set of permuta-
tions of the coordinates. This implies, for example,
that the planes II,, II, and II3, of equations y =z,
x=z; and x = y respectively, are invariant, and the
trajectories embedded inside them, are governed
by the two-dimensional restrictions of T to II,,
represent partial synchronization, since they are
characterized by the fact that two of the three
competitors behave in a synchronized way. The
intersection of the three invariant planes is
the invariant line S= {(x, x, x) € R*} where rotal
synchronization occurs. Examples of models
describing the competition among three com-
petitors are the Cournot triopoly games recently
studied in [1,2]. For higher dimensional models,
such as oligopoly models with n identical com-
petitors, it may be interesting to study the

formation of clusters of k<n synchronized
competitors, coexisting with other clusters or with
non-synchronized competitors. The extension of
the global methods described in this paper involves
critical surfaces (or hypersurfaces) in order to
bound compact regions where intermittency
phenomena are confined.

The delimitation of minimal absorbing regions,
which include the Milnor attractors embedded in
invariant subspaces of lower dimensionality, also
allows one to understand the effects of asymme-
tries causes by small parameters mismatches, that
is, the consequences of the presence of quasi-
identical economic agents. In this case, as shown in
[6,9] for the two-dimensional case, on-off inter-
mittency phenomena are observed, and the
boundaries of the minimal absorbing area behave
as a vessel inside which the intermittent busts are
confined (see also [8,16] for a discussion on the
economic implications).
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