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ESSENTIAL DECOMPOSITION OF POLYNOMIALLY NORMAL
MATRICES IN REAL INDEFINITE INNER PRODUCT SPACES∗

CHRISTIAN MEHL†

Abstract. Polynomially normal matrices in real indefinite inner product spaces are studied, i.e.,
matrices whose adjoint with respect to the indefinite inner product is a polynomial in the matrix.
The set of these matrices is a subset of indefinite inner product normal matrices that contains all
selfadjoint, skew-adjoint, and unitary matrices, but that is small enough such that all elements
can be completely classified. The essential decomposition of a real polynomially normal matrix is
introduced. This is a decomposition into three parts, one part having real spectrum only and two
parts that can be described by two complex matrices that are polynomially normal with respect to
a sesquilinear and bilinear form, respectively. In the paper, the essential decomposition is used as a
tool in order to derive a sufficient condition for existence of invariant semidefinite subspaces and to
obtain canonical forms for real polynomially normal matrices. In particular, canonical forms for real
matrices that are selfadjoint, skewadjoint, or unitary with respect to an indefinite inner product are
recovered.

Key words. Indefinite inner products, Normal matrices, Selfadjoint matrices, Skewadjoint
matrices, Unitary matrices, Essential decomposition.
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1. Introduction. Let H ∈ Rn×n be invertible and (skew-)symmetric. Then H
induces a nondegenerate (skew-)symmetric bilinear form on Rn via [x, y] := yTHx for
x, y ∈ Rn. This form can be extended to Cn either as a (skew-)Hermitian sesquilinear
form via [x, y] := y∗Hx for x, y ∈ C

n or as a (skew-)symmetric bilinear form via
[x, y] := yTHx for x, y ∈ Cn. In the paper, we will use both extensions in order to
obtain canonical forms for several classes of real matrices that are normal with respect
to the real indefinite inner product induced by H .

In the following let F denote one of the fields R or C, and for M ∈ Fm×n let M�

denote either MT , the transpose, or M∗, the conjugate transpose of M , respectively.
Moreover, let H ∈ F

n×n be invertible and satisfy H� = ±H . Then H induces a
nondegenerate (skew-)symmetric bilinear form (in the case � = T ) or a nondegenerate
(skew-)Hermitian sesquilinear form (in the case � = ∗) via [x, y] := y�Hx for x, y ∈ Fn.
For a matrix M ∈ Fn×n, the H-adjoint of M is defined to be the unique matrix M [�]

satisfying

[x,My] = [M [�]x, y] for all x, y ∈ F
n.

The matrix M ∈ Fn×n is called H-selfadjoint, H-skew-adjoint, or H-unitary, respec-
tively, if M [�] = M , M [�] = −M , or M [�] = M−1, respectively. H-selfadjoint,
H-skewadjoint, and H-unitary matrices have been widely discussed in the literature,
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see [1, 6, 7, 13, 18] and the references therein, both from the viewpoint of theory and
the viewpoint of numerical analysis. In particular, the case F = R and

H := J :=
[

0 1
−1 0

]
has been intensively studied. Canonical forms for H-selfadjoint and H-skewadjoint
matrices have been developed in various sources, see [4, 6, 7, 13] for the case F = C

and H being Hermitian, and [4, 5, 6, 7, 13] for the case F = R and H being symmetric
or skew-symmetric. These canonical forms are obtained under transformations of the
form

(M,H) �→ (P−1MP,P�HP ), P ∈ Fn×n nonsingular.(1.1)

that correspond to a change of bases x �→ Px in the space Fn. It is easy to check that
M is H-selfadjoint, H-skewadjoint, or H-unitary, respectively, if and only if P−1MP
is P�HP -selfadjoint, P�HP -skewadjoint, or P�HP -unitary, respectively.

Canonical forms for the case F = C and H being symmetric or skew-symmetric
have been developed in [15], but have been implicitly known by the canonical forms
for pairs of complex symmetric or skew-symmetric matrices given in [22]. (Observe
that, for example, for symmetric H , a matrixM ∈ Cn×n is H-selfadjoint if and only if
HM is symmetric. Thus, a canonical form for the pair (M,H) under transformations
of the form (1.1) can be easily obtained from the canonical form for the pair (HM,H)
of symmetric matrices under simultaneous congruence.)

Canonical forms for H-unitary matrices have been developed in [9] for the case
of sesquilinear forms on Cn. For F = R and the case of skew-symmetric bilinear
forms, they can be obtained from [21, Theorem 5]. For the case F = R and symmetric
H , a canonical form is given in [20] in general and in [2] for the special case that
M is diagonalizable (over the complex field). In addition, canonical forms for H-
unitary matrices for some particular choices of H have been developed in [14, 19]
under similarity transformations that leave H invariant.

Also, attempts have been made to obtain a more general theory by investigating
H-normal matrices, i.e., matrices M satisfying M [�]M = MM [�]. (It is easy to
see that H-normality is invariant under transformations of the form (1.1) as well.)
However, it has been observed in [8] that the problem of classifyingH-normal matrices
is wild and so far, canonical forms have been obtained for some special cases only, see
[8, 11, 12]. In [9] and [10], canonical forms for a subclass of H-normal matrices, the
so-called block-Toeplitz H-normal matrices, have been obtained for the case F = C

and H induces a sesquilinear form. However, it has been explained in [15] that it does
not make sense to generalize this concept to bilinear forms, because even H-selfadjoint
matrices fail to be block-Toeplitz H-normal in general.

Therefore, the class of polynomially H-normal matrices has been studied in [17]
and [15]. Recall that a matrix X ∈ Fn×n is polynomially H-normal if there exists a
polynomial p ∈ F[t] such that X� = p(X). It easy to check that H-selfadjoint, H-
skewadjoint, and H-unitary matrices are polynomially H-normal. For H-selfadjoint
and H-skewadjoint matrices this is trivial and for H-unitary matrices U , this follows
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because the inverse of a matrix is a polynomial of the matrix, i.e., U� = U−1 = p(U)
for some polynomial p ∈ F[t]. On the other hand, polynomial H-normality implies
H-normality, because any square matrix M commutes with any polynomial of M . In
[15] canonical forms for complex polynomiallyH-normal matrices have been developed
both for the case of sesquilinear forms and bilinear forms.

It is the aim of this paper to extend the results of [15] to the real case. This could
be done by starting “from scratch”, i.e., decomposing polynomiallyH-normal matrices
into indecomposable blocks (for the concept of decomposability see Section 2) and
then reducing these blocks towards canonical form. Instead, we introduce a special
representation of real polynomially H-normal matrices in this paper, the so-called
essential decomposition. In this representation a real polynomially H-normal matrix
is decomposed into three parts: the real part, i.e., a part with real spectrum only, the
complex sesquilinear part that can be described with the help of a complex matrix
that is polynomially H-normal matrix with respect to a sesquilinear form, and the
complex bilinear part that can be described with the help of a complex matrix that
is polynomially H-normal with respect to a bilinear form. It is then shown that
canonical forms can be obtained by computing canonical forms for all three parts of
the essential decomposition separately. In particular, the canonical forms of the two
latter parts are implicitly given by corresponding canonical forms for the complex
case.

Although the essential decomposition has been designed having in mind the com-
putation of canonical forms for real polynomially normal matrices in indefinite inner
products, it is of independent interest and appears to be a convenient tool in the inves-
tigation of real polynomially normal matrices. Instead of proving results by starting
from canonical forms, one may use the essential decomposition to reduce the prob-
lem to the corresponding problem in the complex cases. We give an example for this
strategy by using the essential decomposition for the proof of existence of semidefinite
invariant subspaces for polynomially normal matrices of special type.

The remainder of the paper is organized as follows. In Section 2, we discuss
some basic properties of real polynomially H-normal matrices. In Section 3, we re-
call the well-known algebra isomorphism that identifies the complex numbers with a
set of particular 2 × 2-matrices and discuss several properties of this isomorphism.
In Section 4, we state and prove the main result of this paper, i.e., existence of the
essential decomposition. Then, we show in Section 5 how this result can be applied
to obtain canonical forms for real H-selfadjoint, H-skewadjoint, and H-unitary ma-
trices. In Section 6, the essential decomposition is used in order to prove existence of
semidefinite invariant subspaces for some polynomially H-normal matrices.

Throughout the paper, we use the following notation. N is the set of natural
numbers (excluding zero). If it is not explicitly stated otherwise, H ∈ F

n×n always
denotes an invertible matrix satisfying H� = ±H and induces a bilinear, respectively,
sesquilinear form [ ·, ·]. A matrix A = A1 ⊕ · · · ⊕Ak denotes a block diagonal matrix
A with diagonal blocks A1, . . . , Ak (in that order) and ei is the i-th unit vector in Fn.
The spectrum of a matrix A ∈ Fn×n is denoted by σ(A). If A = [aij ]i,j ∈ Fn×m and
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B ∈ Fk×l, then A⊗B denotes the Kronecker product

A⊗B := [aijB]i,j ∈ F
(nk)×(ml).

The symbols Rn, Σn, and Jn(λ) denote the n × n reverse identity, the n × n re-
verse identity with alternating signs, and the upper triangular Jordan block of size n
associated with the eigenvalue λ, respectively, i.e.,

Rn =

 0 1

. .
.

1 0

 , Σn =

 0 (−1)0

. .
.

(−1)n−1 0

 , Jn(λ) =


λ 1 0
. . .

. . .

. . . 1
0 λ

 .
Finally, we use the abbreviation M−� := (M�)−1 = (M−1)�.

2. Preliminaries. In this section, we collect some basic results for polynomially
H-normal matrices. We start with the following proposition. Recall that the sizes of
Jordan blocks associated with an eigenvalue λ of a matrix A are also called the partial
multiplicities of λ.

Proposition 2.1. Let X ∈ F
n×n be such that X [�] = p̃(X) for some p̃ ∈ F[t].

1) There is a unique polynomial p ∈ F[t] of minimal degree so that X [�] = p(X).
2) p′(λ) 
= 0 for all eigenvalues λ ∈ C of X having partial multiplicities larger

than one.
3) If [·, ·] is a sesquilinear form, then p

(
p(X)

)
= X. If [·, ·] is a bilinear form,

then p
(
p(X)

)
= X.

Proof. See [15].
Definition 2.2. Let X ∈ Fn×n be such that X [�] = p̃(X) for some p̃ ∈ F[t].

Then the unique polynomial p ∈ F[t] of minimal degree such that X [�] = p(X) is
called the H-normality polynomial of X .

An important notion in the context of classification of matrices that are structured
with respect to indefinite inner products is the notion ofH-decomposability. A matrix
X ∈ Fn×n is called H-decomposable if there exists a nonsingular matrix P ∈ Fn×n

such that

P−1XP = X1 ⊕X2, P�HP = H1 ⊕H2,

where X1, H1 ∈ Cm×m and 0 < m < n. Clearly, any matrix X can always be
decomposed as

P−1XP = X1 ⊕ · · · ⊕Xk, P�HP = H1 ⊕ · · · ⊕Hk,(2.1)

where Xj is Hj-indecomposable, j = 1, . . . , k. Thus, it remains to classify indecom-
posable matrices.

Proposition 2.3. Let H ∈ Rn×n be nonsingular and symmetric or skew-sym-
metric. Furthermore, let X ∈ Rn×n be an H-indecomposable polynomially H-normal
matrix. Then σ(X) ⊆ R or σ(X) ∩ R = ∅.
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Proof. Clearly, for any real matrix X there exists a similarity transformation with
a nonsingular transformation matrix P ∈ Rn×n such that X̃ := P−1XP = X1 ⊕X2,
where σ(X1) ⊆ R and σ(X2)∩R = ∅, for instance, let X̃ be the real Jordan canonical
form of X (see, e.g., Section 3). Since X is polynomially H-normal, say with H-
normality polynomial p ∈ R[t], it follows that σ

(
p(X1)

)
⊆ R, because p has real

coefficients. We claim that σ
(
p(X2)

)
∩R = ∅. Indeed, assume that µ ∈ σ

(
p(X2)

)
∩R.

Then there exists an eigenvalue z ∈ C \ R of X2 such that µ = p(z). But then,
Proposition 2.1 item 3) implies z = p

(
p(z)

)
which identifies z as a real number, a

contradiction. Hence, the claim follows. Now set H̃ := PTHP . Then the identity(
p(X1)⊕ p(X2)

)T
H̃ = p(X̃)T H̃ = H̃X̃ = H̃(X1 ⊕X2)

together with the information on the spectra of Xj and p(Xj), j = 1, 2 implies that
H̃ = H1 ⊕ H2 has a block structure conformable with X̃. (Here, we used that the
Sylvester equation AY = Y B has only the trivial solution Y = 0 if the spectra of
A and B are disjoint.) But then, the H-indecomposability assumption on X implies
X̃ = X1 or X̃ = X2 and the assertion follows.

In view of Proposition 2.3, it is sufficient to develop canonical forms for polyno-
mially H-normal matrices that have either real spectrum only or nonreal spectrum
only. We start with the case of a real spectrum. The following result has been proved
in [15].

Theorem 2.4 ([15, Theorem 9.1]). Let δ = ±1 be such that HT = δH and
X ∈ Rn×n be polynomially H-normal with H-normalily polynomial p ∈ R[t]. If
σ(X) ⊆ R, then there exists a nonsingular matrix P ∈ Rn×n such that

P−1XP = X1 ⊕ · · · ⊕Xp, PTHP = H1 ⊕ · · · ⊕Hp,(2.2)

where Xj is Hj-indecomposable, and Xj and Hj have one of the following forms:
i) blocks associated with λj ∈ R satisfying p(λj) = λj and p′(λj) = 1 if nj > 1:

if δ = +1 : Xj = Jnj (λj), Hj = εjRnj ,(2.3)

if δ = −1 : Xj =
[ Jmj (λj) 0

0 p
(
Jmj (λj)

)T] , Hj =
[

0 Imj

−Imj 0

]
,(2.4)

where εj = ±1 and nj ∈ N if δ = +1 and nj = 2mj ∈ N is even if δ = −1;
ii) blocks associated with λj ∈ R satisfying p(λj) = λj and p′(λj) = −1:

Xj = T (λj , 1, aj,2, . . . , aj,nj−1), Hj = εjΣnj ,(2.5)

where nj > 1 is odd if δ = 1 and even if δ = −1, aj,2, . . . , aj,nj−1 ∈ R,
aj,k = 0 for odd k, and εj = ±1;

iii) blocks associated with λj ∈ R satisfying p(λj) = λj and satisfying p′(λj) = −1
if mj > 1:

Xj =
[ Jmj (λj) 0

0 p
(
Jmj (λj)

)T ] , Hj =
[

0 Imj

δImj 0

]
,(2.6)

where mj ∈ N is even if δ = +1 and odd if δ = −1;
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iv) blocks associated with a pair (λj , µj) ∈ R×R with µj = p(λj) < λj = p(µj):

Xj =
[ Jmj (λj) 0

0 p
(
Jmj (λj)

)T ] , Hj =
[

0 Imj

δImj 0

]
,(2.7)

where mj ∈ N.
The form (2.2) is unique up to permutation of blocks and the nonzero parameters aj,k

in (2.5) are uniquely determined by λj and the coefficients of p and can be computed
from the identity T (λj ,−1, aj,2, 0, aj,4, 0, . . .) = p

(
T (λj, 1, aj,2, 0, aj,4, 0, . . .)

)
.

Observe that both cases ii) and iii) describe Jordan blocks associated with eigen-
values λj satisfying p(λj) = λj and satisfying p′(λj) = −1 if the corresponding partial
multiplicity is larger than one. Then the theorem tells us that if δ = 1 then even-
sized Jordan blocks must occur in pairs while odd-sized blocks need not. Analogously,
odd-sized Jordan blocks must occur in pairs, but even-sized blocks need not, if δ = −1.

Theorem 2.4 settles the case that the matrix under consideration has real spec-
trum only and it remains to investigate the case of nonreal spectrum only. This will
be done in the following sections.

3. Relating real and complex matrices. Assume that X ∈ Rn×n is a poly-
nomially H-normal matrix with nonreal spectrum. Instead of developing a canonical
form for such matrices directly, it is our aim to construct these forms by applying the
known results for the complex case obtained in [15]. As a tool, we use the well-known
algebra isomorphism that relates complex matrices with real matrices of double size
that have a special structure. Indeed, it is well known that the set

MC =
{[

α β
−β α

]
: α, β ∈ R

}
equipped with the usual matrix addition and matrix multiplication is a field that is
isomorphic to the field C of complex numbers. The corresponding field isomorphism

φ : C →MC, (α+ iβ) �→
[
α β
−β α

]
can be easily extended to an algebra isomorphism (that we will also denote by φ) from
the matrix algebra Cn×n onto the matrix algebra Mn×n

C
consisting of n× n matrices

with entries in MC by

φ
(
(zij)

)
:=
(
φ(zij)

)
=
([

Re zij Im zij
−Im zij Re zij

])n

j,k=1

, (zij) ∈ C
n×n.

If scalar multiplication in Mn×n
C

is restricted to multiplication by diagonal matri-
ces from MC (which are images of real numbers under φ), then we can (and do)
canonically identify Mn×n

C
with a subalgebra of R2n×2n.

With the help of the isomorphism φ the real Jordan canonical form of a real
matrix can be conveniently described. Indeed, recall that a Jordan block associated
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with a pair of conjugate nonreal eigenvalues α± iβ, α, β ∈ R has the form

Jn(α, β) := In ⊗
[
α β
−β α

]
+Jn(0)⊗ I2 =



α β 1 0 0
−β α 0 1

α β
.. .

−β α
.. . 1 0

0 1
α β

0 −β α


.

(3.1)
Clearly Jn(α, β) is in the range of φ, because φ

(
Jn(α + iβ)

)
= Jn(α, β) for all

α, β ∈ R. Other properties of φ are listed in the following remark and can be verified
by straightforward calculations.

Remark 3.1. Let Z ∈ Cn×n and M ∈ Mn×n
C

.

a) If λ ∈ C is an eigenvalue of Z, then λ, λ are eigenvalues of φ(Z).
b) φ(Z)T = φ(Z∗) and φ−1(MT ) = φ−1(M)∗.
c) (In ⊗ R2)φ(Z)(In ⊗R2) = φ

(
Z
)
.

d) φ
(
RnZRn

)
= R2n φ

(
Z
)
R2n.

e) If T ∈ Cn×n is upper triangular Toeplitz, then φ(T ) = R2n φ(T )TR2n .
f) p

(
φ(Z)

)
= φ
(
p(Z)

)
for any polynomial p ∈ R[t].

Note that each Jordan block Jn(α, β) = φ
(
Jn(α + iβ)

)
in (3.1) is similar to

the block Jn(α,−β) = φ
(
Jn(α − iβ)

)
and thus, Jn(α, β) can be represented by a

complex matrix either having the eigenvalue α+ iβ or α− iβ. This observation easily
generalizes to the following lemma.

Lemma 3.2. If X ∈ R2n×2n has no real eigenvalues and if σ1 ⊆ σ(X) satisfies
σ1 ∩ σ1 = ∅ and σ1 ∪ σ1 = σ(X), then there exists a nonsingular P ∈ R2n×2n and a
matrix X ∈ Cn×n such that σ(X ) = σ1 and P−1XP = φ(X ).

Let us assume that M ∈ Mn×n
C

is a polynomially H-normal matrix with H-
normality polynomial p, that is, the identity p(M)TH = HM holds true. By, Re-
mark 3.1 items b) and f), we immediately obtain that also p(M)T ∈ Mn×n

C
. The

question arises if also H is contained inMn×n
C

, or, equivalently, if the Sylvester equa-
tion p(M)TH = HM has a solution in Mn×n

C
. A sufficient condition is given in the

following result.
Proposition 3.3. Let A,B ∈ C

n×n such that σ(A) ∩ σ(B) = ∅. If Y ∈ R
2n×2n

satisfies φ(A)Y = Y φ(B), then Y ∈Mn×n
C

.
Proof. Define the permutation matrix Π = [e1, en+1, e2, en+2, . . . , en, e2n], where

ej denotes the jth unit column vector of length 2n. Then for any Z ∈ Cn×n the
transformation with Π has the following effect:

Π−1φ(Z)Π =
[

Re(Z) Im(Z)
−Im(Z) Re(Z)

]
,
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where Re(Z) := 1
2 (Z + Z) and Im(Z) := 1

2 (Z − Z). Moreover,

Q−1φ(Z)Q =
[
Z 0
0 Z

]
, where Q :=

1√
2
Π
[
−iIn In
In −iIn

]
.

Next consider

Π−1Y Π =
[
Y1 Y2

Y3 Y4

]
,(3.2)

where Yj ∈ Rn×n, j = 1, 2, 3, 4. Then

Q−1Y Q =
[
Y1 + Y4 + i(Y2 + Y3) Y2 + Y3 + i(Y1 − Y4)
Y2 + Y3 + i(Y4 − Y1) Y1 + Y4 + i(Y3 + Y2)

]
and φ(A)Y = Y φ(B) implies[

A 0
0 A

]
Q−1Y Q = Q−1Y Q

[
B 0
0 B

]
.(3.3)

Since σ(A)∩σ(B) = ∅, the Sylvester equation AX = XB has only the trivial solution
X = 0. Thus, we obtain from (3.3) that Y2+Y3+i(Y1−Y4) = 0 which implies Y3 = −Y2

and Y4 = Y1. Inserting this in (3.2), it follows that Y = φ(Y1 + iY2) ∈Mn×n
C

.

4. Essential decomposition of polynomially H-normal matrices. In this
section, we prove the main result of the paper that shows the existence of a de-
composition of a real polynomially H-normal matrix X that we will call essential
decomposition. As a first step, we recall that in view of Proposition 2.3, it remains
to investigate polynomially H-normal matrices X that have nonreal spectrum only.
Since any real matrix with nonreal spectrum only is similar to a matrix in Mn×n

C
, we

may assume without loss of generality that X = φ(X ), where X ∈ C
n
2 ×n

2 . In addition,
we know that X is polynomially H-normal, i.e., p(X)TH = HX for some polynomial
p ∈ F[t]. It is natural to ask if this property is inherited by X , i.e., we ask whether
there exists some complex (skew-)Hermitian matrix H such that p(X )∗H = HX .
Since

φ
(
p(X )∗H

)
= φ
(
p(X )∗

)
φ(H) = φ

(
p(X )

)T
φ(H) = p

(
φ(X )

)T
φ(H) = p(X)Tφ(H)

and φ(HX ) = φ(H)φ(X ) = φ(H)X,

we obtain that the answer is affirmative if H is in the range of φ, that is, H = φ(H)
for some H ∈ Cn×n. (It is easy to check that in this case H is (skew-)Hermitian if
and only if H is (skew-)symmetric.) By Proposition 3.3, we know that a sufficient
condition is given by σ(X )∩σ

(
p(X )

)
= ∅. The following example illustrates this fact.

Example 4.1. Let H ∈ R4×4 be nonsingular and consider the matrix

S =
[

0 1
−1 0

]
⊕
[

0 1
−1 0

]
= φ
([

i 0
0 i

]
︸ ︷︷ ︸

=:S

)
.
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Assume that −STH = HS, that is, S is H-skewadjoint, or, equivalently, S is polyno-
mially H-normal with H-normality polynomial p(t) = −t. Since the only eigenvalue
of S is i, we have σ(S) ∩ σ

(
p(S)

)
= ∅. Thus, H ∈ M2×2

C
by Proposition 3.3. Indeed,

a straightforward computation reveals that S is H-skewadjoint if and only if H has
the form

H =


h1 0 h3 h4

0 h1 −h4 h3

h3 −h4 h2 0
h4 h3 0 h2

 = φ
([

h1 h3 + ih4

h3 − ih4 h2

]
︸ ︷︷ ︸

=:H

)
,

where h1, h2, h3, h4 ∈ R. It is easy to check that S is skewadjoint with respect to the
sesquilinear form induced by the Hermitian matrix H.

Unfortunately, the trick in Example 4.1 does not work if σ(X ) ∩ σ
(
p(X )

)

= ∅.

We illustrate this with the help of another example.
Example 4.2. Let H ∈ R4×4 be nonsingular and consider the matrix

A =
[

0 1
−1 0

]
⊕
[

0 1
−1 0

]
= φ
([

i 0
0 i

]
︸ ︷︷ ︸

=:A

)
.

Assume that A is H-selfadjoint, or, equivalently, that A is polynomially H-normal
with H-normality polynomial p(t) = t. Then a straightforward computation reveals
that this is the case if and only if H has the form

H =


h1 h2 h3 h4

h2 −h1 h4 −h3

h3 h4 h5 h6

h4 −h3 h6 −h5

 ,
where h1, h2, h3, h4, h5, h6 ∈ R. Thus, since H 
= 0, we obtain that H is not in the
range of φ. However, observe that

(I2 ⊗R2)H =


h2 −h1 h4 −h3

h1 h2 h3 h4

h4 −h3 h6 −h5

h3 h4 h5 h6

 = φ
([

h2 − ih1 h4 − ih3

h4 − ih3 h6 − ih5

]
︸ ︷︷ ︸

=:H

)
.

It is interesting to note that H is not Hermitian, but complex symmetric, and that A
is selfadjoint with respect to the bilinear form induced by H as it follows easily from
a straightforward computation.

Examples 4.1 and 4.2 suggest the following strategy for the investigation of a
matrix X = φ(X ). If σ(X ) ∩ σ

(
p(X )

)
= ∅ then we interpret X as a polynomially

normal matrix with respect to a sesquilinear form. If this is not the case, then we
will try to interpret X as a polynomially normal matrix with respect to a bilinear
form along the lines of Example 4.2. This is the main idea that leads to the essential
decomposition of polynomially H-normal matrices.
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Theorem 4.3 (Essential decomposition). Let δ = ±1 be such that HT = δH
and let X ∈ Rn×n be a polynomially H-normal matrix with H-normality polynomial
p ∈ R[t]. Then there exists a nonsingular matrix P ∈ Rn×n such that

P−1XP = X1 ⊕X2 ⊕X3, PTHP = H1 ⊕H2 ⊕H3,(4.1)

where for j = 1, 2, 3 the matrices Xj and Hj have the same size nj × nj and satisfy
the following conditions:

(1) σ(X1) ⊆ R;
(2) X2 = φ(X2) and H2 = φ(H2), where H∗

2 = δH2 and where

p(X2)∗H2 = H2X2,

i.e., X2 is polynomially H2-normal with respect to the sesquilinear form in-
duced by H2; moreover, X2 satisfies

σ(X2) ⊆ {λ ∈ C \ R | p(λ) 
= λ}, σ(X2) ∩ σ
(
p(X2)

)
= ∅,

(3) X3 = φ(X3) and (I ⊗R2)H3 = φ(H3), where HT
3 = δH3 and where

p(X3)TH3 = H3X3,

i.e., X3 is polynomially H3-normal with respect to the bilinear form induced
by H3; moreover, X3 satisfies

σ(X3) ⊆ {λ ∈ C \ R | p(λ) = λ}, σ(X3) ∩ σ
(
p(X3)

)
= ∅.

Furthermore, the decomposition (4.1) is unique up to equivalence of the factors Xj,
Hj in the sense (Xj , Hj) ∼ (P−1XjP, P

THjP ) for some nonsingular P ∈ Rnj×nj .
Proof. Clearly C = R ∪̇ {λ ∈ C \ R | p(λ) 
= λ} ∪̇ {λ ∈ C \ R | p(λ) = λ}. Thus,

the spectrum of X can be split analogously into three disjoint parts and there exists
a nonsingular matrix P such that P−1XP = X1 ⊕ X̃2 ⊕ X̃3 where

σ(X1)⊆R, σ(X̃2)⊆{λ ∈ C\R | p(λ) 
= λ}, σ(X̃3)⊆{λ ∈ C\R | p(λ) = λ}.(4.2)

Observe that if λ ∈ σ(X) is from one of the spectra in (4.2), then p(λ) is from the
same spectrum. (This follows easily from the property p

(
p(λ)

)
= λ which holds for

all eigenvalues λ ∈ C of X .) Consequently, the identity

p(X1 ⊕ X̃2 ⊕ X̃3)T (PTHP ) = (PTHP )(X1 ⊕ X̃2 ⊕ X̃3)

implies that PTHP has a block structure H1 ⊕ H̃2 ⊕ H̃3 corresponding to P−1XP ,
where we used that the Sylvester equation AY = Y B only has the trivial solution
Y = 0 when the spectra of A and B are disjoint. Clearly, the decomposition of X
into the three parts X1, X̃2, and X̃3 is then unique in the sense of the theorem.

Next, we focus our attention on the blocks X̃2 and H̃2. Since X̃2 is polynomially
H̃2-normal and since X̃2 has no eigenvalues satisfying p(λ) = λ, it follows from Propo-
sition 2.1, item 3) that the eigenvalues of X̃2 occur in pairs (λ, µ), where p(λ) = µ and
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p(µ) = λ. Since X̃2 is furthermore real and, hence, all eigenvalues occur in conjugate
pairs, we obtain that

σ(X̃2) =
m⋃

j=1

{λj , λj} ∪
r⋃

j=m+1

{λj , λj , µj , µj},(4.3)

for some λj , µj ∈ C \ R, where p(λj) = λj for j = 1, . . . ,m and p(λj) = µj 
= λj for
j = m+ 1, . . . , r, and λi 
= λj , λj for i 
= j. Setting

σ2 :=
m⋃

j=1

{λ1} ∪
r⋃

j=m+1

{λj , µj},(4.4)

we obtain that σ2 ∩ σ2 = ∅ and σ2 ∪ σ2 = σ(X̃2). Hence, by Lemma 3.2, there exists
a real nonsingular matrix P̃2 such that X2 := P̃−1

2 X̃2P̃2 = φ(X2), where σ(X2) = σ2.
Observe that, by construction, we also have σ(X2) ∩ σ

(
p(X2)

)
= ∅. Now denote

H2 := P̃T
2 H̃2P̃2. Then X2 is polynomially H2-normal and in view of Proposition 3.3,

we obtain from the identity

φ
(
p(X2)

T )
H2 = φ

(
p(X2)

)T
H2 = p(X2)TH2 = H2X2 = H2 φ(X2)(4.5)

that H2 ∈ Mm2×m2
C

, where m2 = n2/2, i.e., there exists H2 ∈ Cm2×m2 such that
H2 = φ(H2). From HT

2 = δH2, we easily obtain H∗
2 = δH2. Moreover, identity (4.5)

implies that

φ
(
p(X2)∗H2

)
= φ
(
p(X2)∗

)
H2 = H2 φ(X2) = φ(H2X2),

and since φ is an isomorphism, it follows that p(X2)∗H2 = H2X2.
Next, consider the blocks X̃3 and H̃3. Since the spectrum of X̃3 is nonreal, there

exists a real nonsingular matrix P̃3 such that X3 := P̃−1
3 X̃3P̃3 = φ(X3) and where X3

is chosen such that

σ(X3) ∩ σ(X3) = ∅.(4.6)

(For example, we may choose σ(X3) ⊆ {λ |Re(λ) > 0}.) Denote H3 := P̃T
3 H̃3P̃3.

Then X3 is polynomially H3-normal and from Remark 3.1, we obtain that

(I ⊗R2)H3 φ(X3) = (I ⊗R2) p
(
φ(X3)

)T
H3 = (I ⊗R2)φ

(
p(X3)∗

)
H3

= (I ⊗R2)φ
(
p(X3)∗

)
(I ⊗R2)(I ⊗R2)H3

= φ
(
p(X3)T

)
(I ⊗R2)H3.

Recall that all eigenvalues λ of X̃3 satisfy p(λ) = λ. Thus, in view of (4.6), we have
σ(X3) ∩ σ

(
p(X3)

)
= ∅. Then Proposition 3.3 implies (I ⊗ R2)H3 ∈ Mm3×m3

C
, where

m3 = n3/2, that is, (I ⊗ R2)H3 = φ(H3) for some H3 ∈ C
m3×m3 . Moreover, we

obtain from HT
3 = δH3 that

φ(H3) = (I ⊗R2)H3 = δ(I ⊗R2)HT
3 = δ(I ⊗R2)

(
(I ⊗R2)H3

)T (I ⊗R2)

= δ(I ⊗R2)φ(H3)T (I ⊗R2) = δ(I ⊗R2)φ(H∗
3)(I ⊗R2) = δφ(HT

3 ),

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 84-106, February 2006

http://math.technion.ac.il/iic/ela



ELA

Essential Decomposition of Normal Matrices 95

that is, HT
3 = δH3. Finally, we have that

φ
(
p(X3)TH3

)
= φ
(
p(X3)T

)
(I ⊗R2)H3 = (I ⊗R2)H3 φ(X3) = φ(H3X3)

which implies p(X3)TH3 = H3X3 and concludes the proof.
The uniqueness property of Theorem 4.3 justifies the following definition.
Definition 4.4. Let X ∈ Rn×n be polynomially H-normal and let

P−1XP = X1 ⊕X2 ⊕X3, PTHP = H1 ⊕H2 ⊕H3,

be its essential decomposition. Then X1 is called the real part of X , X2 is called the
complex sesquilinear part of X , and X3 is called the complex bilinear part of X .

In view of Theorem 4.3, it seems natural to compute the canonical form for the
pair (X,H) by computing the canonical forms for the pairs (Xj , Hj) in the essen-
tial decomposition. The following theorem justifies that the combination of these
canonical forms does indeed yield a canonical form for the pair (X,H).

Theorem 4.5. Let δ = ±1 be such that H, H̃ ∈ Rn×n satisfy HT = δH and
H̃T = δH̃. Moreover, let X ∈ Rn×n be polynomially H-normal and let X̃ ∈ Rn×n

be polynomially H̃-normal such that the two pairs (X,H) and (X̃, H̃) are essentially
decomposed

X = X1 ⊕X2 ⊕X3, H = H1 ⊕H2 ⊕H3,

X̃ = X̃1 ⊕ X̃2 ⊕ X̃3, H̃ = H̃1 ⊕ H̃2 ⊕ H̃3,

in the sense of Theorem 4.3, in particular, X1, H1 ∈ Rn1×n1 , X̃1, H̃1 ∈ Rñ1×ñ1 ,

X2 = φ(X2), H2 = φ(H2), X3 = φ(X3), H3 = (I ⊗R2)φ(H3),
X̃2 = φ(X̃2), H̃2 = φ(H̃2), X̃3 = φ(X̃3), H̃3 = (I ⊗R2)φ(H̃3),

where Xj ,Hj ∈ C
mj×mj , X̃j , H̃j ∈ C

m̃j×m̃j , j = 2, 3 and where all blocks satisfy the
assumptions of Theorem 4.3. Assume further that the blocks M = X2, X̃2,X3, X̃3 have
been chosen so that their spectra satisfy the condition

λ ∈ σ(M) ⇒ λ 
∈ σ(M).(4.7)

Then the following conditions are equivalent.
(1) The identities n1 = ñ1, m2 = m̃2, m3 = m̃3 hold and there exist nonsingular

matrices P1 ∈ Rn1×n1 , Pj ∈ Cmj×mj , j = 2, 3 such that
(1a) P−1

1 X̃1P1 = X1 and PT
1 H̃1P1 = H1,

(1b) P−1
2 X̃2P2 = X2 and P∗

2 H̃2P2 = H2,
(1c) P−1

3 X̃3P3 = X3 and PT
3 H̃3P3 = H3.

(2) The identities σ(X2) = σ(X̃2), σ(X3) = σ(X̃3) hold and there exists a non-
singular matrix P ∈ Rn×n such that P−1X̃P = X and PT H̃P = H.
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Proof. ’(1) ⇒ (2)’: From (1b) and (1c), we immediately obtain σ(X2) = σ(X̃2)
and σ(X3) = σ(X̃3). Let P := P1 ⊕φ(P2)⊕φ(P3). Then P satisfies the requirements
of the theorem, because we clearly have

P−1
j X̃jPj = φ(Pj)−1 φ(X̃j)φ(Pj) = φ(P−1

j X̃jPj) = φ(Xj) = Xj for j = 2, 3,

PT
2 H̃2P2 = φ(P2)Tφ(H̃2)φ(P2) = φ(P∗

2 H̃2P2) = φ(H2) = H2, and(4.8)

PT
3 H̃3P3 = φ(P∗

3 )(I ⊗R2)φ(H̃3)φ(P3)(4.9)

= (I ⊗R2)φ(PT
3 )(I ⊗R2)(I ⊗R2)φ(H̃3)φ(P3)

= (I ⊗R2)φ(PT
3 H̃3P3) = (I ⊗R2)φ(H3) = H3.

’(2) ⇒ (1)’: Applying the uniqueness statement of Theorem 4.3, we obtain from
the existence of P as in (2) that n1 = ñ1, m2 = m̃2, and m3 = m̃3, and that
there exists nonsingular matrices P1 ∈ Rn1×n1 , Pj ∈ R2mj×2mj , j = 2, 3 such that
P−1

j X̃jPj = Xj and PT
j H̃jPj = Hj for j = 1, 2, 3. In particular, this implies (1a).

Then from (4.7), from σ(Xj) = σ(X̃j), j = 2, 3, and from Proposition 3.3, we obtain
that Pj ∈Mmj×mj

C
, j = 2, 3, that is, there exist (nonsingular) matrices Pj ∈ C

mj×mj

such that Pj = φ(Pj), j = 2, 3. Then analogously to the calculations in (4.8) and (4.9),
we show that

φ(P−1
j X̃jPj) = φ(Xj), j = 2, 3, φ(P∗

2 H̃2P2) = φ(H2), φ(PT
3 H̃3P3) = φ(H3).

Then using the fact that φ is an isomorphism implies (1b) and (1c).
Remark 4.6. Combining Theorem 4.3 and Theorem 4.5, the problem of com-

puting a real canonical form for a real polynomially H-normal matrix X is finally
reduced to computing one real canonical form as in Theorem 2.4 and two complex
canonical forms as in [15, Theorem 6.1] and [15, Theorem 7.1]. Since these three
canonical forms are unique up to permutation of blocks, by Theorem 4.5 we obtain
an analogous uniqueness statement for the real canonical form of a real polynomially
H-normal matrix X once we have specified the spectra of the matrices X2 and X3 in
essential decomposition of X . For X3, this could be easily achieved, e.g., by requiring
that σ(X3) ⊆ {λ |Re(λ) > 0}. For X2 this is not as easy, because we have to choose
a subset σ2 as in (4.4) from a set σ(X̃2) as in (4.3). In general, we cannot require
σ(X2) ⊆ {λ |Re(λ) > 0}, because σ2 must contain pairs {λj , µj} = {λj , p(λj)} and
it is not guaranteed that with λj also µj = p(λj) is in the open upper half plane
of the complex numbers. However, we may specify the spectrum of X2 as follows.
Introducing the following relation of the complex numbers

c1 < c2 :⇔
(
|c1| < |c2| or

(
|c1| = |c2| and arg(c1) < arg(c2)

))
,

let the elements of the set in (4.3)

σ(X̃2) =
m⋃

j=1

{λj , λj} ∪
r⋃

j=m+1

{λj , λj , µj, µj}
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be ordered such that λj < λj for j = 1, . . . ,m and λj < λj , µj , µj for j = m+1, . . . , r.
Then we choose

σ2 :=
m⋃

j=1

{λ1} ∪
r⋃

j=m+1

{λj , µj},

as the spectrum of X2. With this specification, the real canonical form for a real
polynomially H-normal matrix X is unique up to permutation of blocks.

5. H-selfadjoint, H-skewadjoint, and H-unitary matrices. In this section,
we derive real canonical forms for real H-selfadjoint, H-skewadjoint, and H-unitary
matrices by applying Theorem 4.3. As before, H ∈ Rn×n always denotes a symmetric
or skew-symmetric, nonsingular matrix.

Theorem 5.1 (Canonical forms for H-selfadjoint matrices). Let δ = ±1 be such
that HT = δH and let A ∈ Rn×n be H-selfadjoint. Then there exists a nonsingular
matrix P ∈ Rn×n such that

P−1AP = A1 ⊕ · · · ⊕Ap, PTHP = H1 ⊕ · · · ⊕Hp,(5.1)

where Aj is Hj-indecomposable and where Aj and Hj have one of the following forms:
a) in the case δ = +1:

i) blocks associated with real eigenvalues λj ∈ R:

Aj = Jnj (λj), Hj = εjRnj ,(5.2)

where nj ∈ N, εj = ±1;
ii) blocks associated with a pair αj ± iβj of conjugate complex eigenvalues:

Aj = Jmj (αj , βj), Hj = R2mj ,(5.3)

where mj ∈ N, αj ∈ R, and βj > 0.
b) in the case δ = −1:

i) paired blocks associated with real eigenvalues λj ∈ R:

Aj =
[
Jmj (λj) 0

0 Jmj (λj)T

]
, Hj =

[
0 Imj

−Imj 0

]
,(5.4)

where mj ∈ N;
ii) blocks associated with a pair αj ± iβj of conjugate complex eigenvalues:

Aj =
[
Jmj (αj , βj) 0

0 Jmj (αj , βj)T

]
, Hj =

[
0 I2mj

−I2mj 0

]
,(5.5)

where mj ∈ N, αj ∈ R, and βj > 0.
Moreover, the form (5.1) is unique up to the permutation of blocks.

Proof. Since A is H-selfadjoint, we have that A is polynomially H-normal with
H-normality polynomial p(t) = t. Without loss of generality, we may assume that A
and H are already essentially decomposed in the sense of Theorem 4.3. Observe that
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A has no complex sesquilinear part, due to the special structure of the polynomial p.
Thus, we have

A = Ã1 ⊕ Ã3, H = H̃1 ⊕ H̃3,

where σ(Ã1) ⊆ R and Ã3 = φ(A3), H̃3 = (I ⊗ R2)φ(H3), and where A3 is H3-
selfadjoint with respect to the bilinear form induced by the complex (skew-)symmetric
matrix H3. For the sake of uniqueness, we choose the eigenvalues of A3 such that
σ(A3) ⊆ {λ ∈ C \ R | Im(λ) > 0}. In view of Theorem 4.5, we may furthermore
assume that the pairs (Ã1, H̃1) and (A3,H3) are in canonical form.

The canonical form of the pair (Ã1, H̃1) can be read off Theorem 2.4. If δ = 1
then only blocks of the form (2.3) occur. This gives blocks of the form (5.2). On the
other hand if δ = −1, then only blocks of the form (2.4) occur. This gives blocks of
the form (5.4).

The canonical form of the pair (A3,H3) in the case δ = 1 can be read off [15,
Theorem 7.2] and is

A3 = Jm1(α1 + iβ1)⊕ · · · ⊕ Jmk
(αk + iβk), H3 = Rm1 ⊕ · · · ⊕Rmk

,

where mj ∈ N, αj ∈ R, and βj > 0 for j = 1, . . . , k. Using (I ⊗ R2)φ(Rmj ) = R2mj

this gives the blocks of the form (5.3) (after eventually renaming indices).
The canonical form of the pair (A3,H3) in the case δ = −1 can be read off [15,

Theorem 8.2] and is block diagonal with diagonal blocks of the form

Aj =
[
Jmj (αj + iβj) 0

0 Jmj (αj + iβj)T

]
, Hj =

[
0 Imj

−Imj 0

]
,

where mj ∈ N, αj ∈ R, and βj > 0, or, equivalently,

Aj =
[
Jmj (αj + iβj) 0

0 Jmj (αj + iβj)

]
, Hj =

[
0 Rmj

−Rmj 0

]
which follows easily by applying a transformation with the transformation matrix
Imj ⊕ Rmj . Using the fact that (I ⊗R2)φ(Rmj ) = R2mj this gives the blocks of the
form (5.5) (after renaming of indices and after applying a transformation with the
transformation matrix I2mj ⊕R2mj ).

Remark 5.2. The canonical form given in Theorem 5.1 is well known see, e.g.,
[13] for the case δ = +1 and [5] for the case δ = −1.

Concerning the corresponding result for H-skewadjoint matrices, we will need
additional notation. Let En denote the diagonal matrix with increasing powers of i,
that is, En := diag(1, i, i2, . . . , in−1). Observe that the following identities hold:

E−1
n Jn(iλ)En = iJn(λ), E−1

n RnEn = in−1Σn, EnRnE
−1
n = (−i)n−1Σn.

Theorem 5.3 (Canonical forms forH-skewadjoint matrices). Let δ = ±1 be such
that HT = δH and let S ∈ Rn×n be H-skewadjoint. Then there exists a nonsingular
matrix P ∈ R

n×n such that

P−1SP = S1 ⊕ · · · ⊕ Sp, PTHP = H1 ⊕ · · · ⊕Hp,(5.6)

where Sj is Hj-indecomposable and where Sj and Hj have one of the following forms:
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i) blocks associated with the eigenvalue λj = 0:

Sj = Jnj (0), Hj = εjΣnj ,(5.7)

where εj = ±1 and where nj ∈ N is odd if δ = 1 and even if δ = −1;
ii) paired blocks associated with the eigenvalue λj = 0:

Sj =
[
Jmj (0) 0

0 −Jmj (0)T

]
, Hj =

[
0 Imj

δImj 0

]
,(5.8)

where mj ∈ N is even if δ = 1 and odd if δ = −1;
iii) blocks associated with a pair (λj ,−λj) ∈ R2 of real nonzero eigenvalues:

Sj =
[
Jmj (λj) 0

0 −Jmj (λj)T

]
, Hj =

[
0 Imj

δImj 0

]
,(5.9)

where mj ∈ N, and λj > 0.
iv) blocks associated with a pair (iλj ,−iλj) ∈ iR2 of purely imaginary eigenval-

ues:

Sj = Jmj (0, λj), Hj = εjΣmj ⊗ I2,(5.10)

where mj ∈ N is odd if δ = 1 and even if δ = −1, and εj = ±1, and λj > 0;
or

Sj = Jmj (0, λj), Hj = εjΣmj ⊗Σ2,(5.11)

where mj ∈ N is even if δ = 1 and odd if δ = −1, and εj = ±1, and λj > 0;
v) blocks associated with a quadruplet ±αj±iβj of nonreal, non purely imaginary

eigenvalues, where mj ∈ N and αj < 0 < βj:

Sj =
[
Jmj (αj , βj) 0

0 −Jmj (αj , βj)T

]
, Hj =

[
0 I2mj

δI2mj 0

]
.(5.12)

Moreover, the form (5.6) is unique up to the permutation of blocks.
Proof. Since S is H-skewadjoint, S is polynomially H-normal with H-normality

polynomial p(t) = −t. Without loss of generality, we may assume that S and H are
essentially decomposed in the sense of Theorem 4.3. Observe that the real number
λ = 0 is the only number satisfying λ = p(λ) (= −λ). Consequently, S has no complex
bilinear part. Thus, we have

S = S̃1 ⊕ S̃2, H = H̃1 ⊕ H̃2,

where σ(S̃1) ⊆ R and S̃2 = φ(S2), H̃2 = φ(H2), where S2 is H2-skewadjoint with
respect to the sesquilinear form induced by the complex (skew-)Hermitian matrix
H2. Here, we choose the eigenvalues of S2 such that σ(S2) ⊆ {λ ∈ C\R | Im(λ) > 0}.
In view of Theorem 4.5, we may furthermore assume that the pairs (S̃1, H̃1) and
(S2,H2) are in canonical form.
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The canonical form of the pair (S̃1, H̃1) can be read off Theorem 2.4. If δ = 1
then only blocks of the forms (2.5)–(2.7) and of the form (2.3) for nj = 1 occur.
These give the blocks of the form (5.7)–(5.9) in (5.6). (Observe that the parameters
aj,2, . . . , aj,nj−1 in (2.5) are zero. Indeed, this follows immediately from the identity
S̃T

1 H̃1 = −H̃1S̃1.) On the other hand if δ = −1, then only blocks of the forms (2.5)–
(2.7) occur. This gives again blocks of the form (5.7)–(5.9) in (5.6). (Again, the
parameters aj,2, . . . , aj,nj−1 in (2.5) are seen to be zero.)

The canonical form of the pair (S2,H2) in the case δ = 1 can be read off [15,
Theorem 6.3]. (The canonical form is explicitly given for H-selfadjoints only, but
contains implicitly the canonical form ofH-skewadjoint matrices, because multiplying
anH-selfadjoint matrix with the imaginary unit i results in anH-skewadjoint matrix.)
Having in mind that the spectrum of S2 is a subset of the open upper half plane, we
see that this form consists of blocks of the form

Sj = iJmj (λj), Hj = εjRmj

where λj > 0 and εj = ±1, or

Sj =
[
iJmj(βj + iαj) 0

0 iJmj (βj + iαj)∗

]
, Hj =

[
0 Imj

Imj 0

]
,

where αj , βj > 0. Applying a transformation with the matrix E−1
mj

or (Emj ⊕Emj)
−1,

respectively, we obtain the alternative representations

Sj = Jmj (iλj), Hj = (−i)mj−1εjΣmj , or(5.13)

Sj =
[
Jmj (−αj + iβj) 0

0 −Jmj (−αj + iβj)∗

]
, Hj =

[
0 Imj

Imj 0

]
,(5.14)

respectively. Observe that

φ
(
(−i)mj−1Σmj

)
=
{
±Σmj ⊗ I2 if mj is odd
±Σmj ⊗Σ2 if mj is even.

Thus, we obtain from (5.13) blocks of the forms (5.10) and (5.11), respectively, (after
eventually replacing εj with −εj and after possibly renaming some indices). Anal-
ogously, we obtain from (5.14) blocks of the forms (5.12) (after possibly renaming
some indices). The case δ = −1 is completely analogous and follows again from [15,
Theorem 6.3]. The only difference is that each block Hj has to be multiplied with −i.
After applying a transformation with the matrix E−1

mj
or (iEmj⊕Emj )

−1, respectively,
we obtain

Sj = Jmj (iλj), Hj = (−i)mjεjΣmj , or(5.15)

Sj =
[
Jmj (−αj + iβj) 0

0 −Jmj (−αj + iβj)∗

]
, Hj =

[
0 Imj

−Imj 0

]
.(5.16)
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This gives us blocks of the forms (5.11), (5.11), and (5.12), respectively (after replacing
αj with −αj , eventually replacing εj with −εj, and after possibly renaming some
indices).

Remark 5.4. Again, the result of Theorem 5.3 is not new, but can be found, e.g.,
in [13]. It should also be noted that the results of this and the previous subsection are
related to canonical forms for pairs of real symmetric and skew-symmetric matrices
under simultaneous congruence that have been obtained by Weierstraß and Kronecker,
see [22] and the references therein.

In the following, let T (a0, a1, . . . , an−1) denote the upper triangular Toeplitz ma-
trix with first row

[
a0 a1 . . . an−1

]
, i.e.,

T (a0, . . . , an−1) =


a0 a1 . . . an−1

0 a0
. . .

...

0 0
. . . a1

0 0 0 a0

 .
Theorem 5.5 (Canonical forms for H-unitary matrices). Let H ∈ Rn×n and

δ = ±1 such that HT = δH. Furthermore, let U ∈ Rn×n be H-unitary. Then there
exists a nonsingular matrix P ∈ Rn×n such that

P−1UP = U1 ⊕ · · · ⊕ Up, PTHP = H1 ⊕ · · · ⊕Hp,(5.17)

where Uj is Hj-indecomposable and where Uj and Hj have one of the following forms:
i) blocks associated with λj = η = ±1:

Uj = T (η, 1, r2, . . . , rnj−1), Hj = εjΣnj ,(5.18)

where nj ∈ N is odd if δ = 1 and even if δ = −1. Moreover, εj = ±1, rk = 0
for odd k and the parameters rk for even k are real and uniquely determined
by the recursive formula

r2 =
1
2
η, rk = −1

2
η

k
2−1∑
ν=1

r2·νr2·( k
2−ν)

 , 4 ≤ k ≤ nj ;(5.19)

ii) paired blocks associated with λj = ±1:

Uj =

[ Jmj (λj) 0

0
(
Jmj (λj)

)−T

]
, Hj =

[
0 Imj

δImj 0

]
,(5.20)

where mj ∈ N is even if δ = 1 and odd if δ = −1.
iii) blocks associated with a pair (λj , λ

−1
j ) ∈ R×R, where λj > λ

−1
j and mj ∈ N:

Uj =

[ Jmj (λj) 0

0
(
Jmj (λj)

)−T

]
, Hj =

[
0 Imj

δImj 0

]
.(5.21)
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iv) blocks associated with a pair (λj , λj) of nonreal unimodular eigenvalues:

Uj =



Λj Θj −r2Λj . . . −rn−1Λj

0
. . .

. . .
. . .

...
...
. . .

. . .
. . . −r2Λj

...
. . .

. . . Θj

0 · · · · · · 0 Λj

 , Hj =
{
εjRj ⊗ I2 if δ = 1
εjRj ⊗Σ2 if δ = −1(5.22)

where |λj | = 1, Im(λj) > 0, mj ∈ N, εj = ±1, and

Λj =
[

Re(λj) Im(λj)
−Im(λj) Re(λj)

]
, Θj =

[
Im(λj) −Re(λj)
Re(λj) Im(λj)

]
.(5.23)

Moreover, rk = 0 for odd k and the parameters rk for even k are real and
uniquely determined by the recursive formula

r2 =
1
2
, rk =

1
2

k
2−1∑
ν=1

r2·νr2·( k
2−ν)

 , 4 ≤ k ≤ mj ;(5.24)

v) blocks associated with a quadruplet (αj ± iβj,
1

αj±iβj
) of nonreal, nonunimod-

ular eigenvalues:

Uj =
[
Jmj (αj , βj) 0

0 Jmj (αj , βj)−T

]
, Hj =

[
0 I2mj

δI2mj 0

]
,(5.25)

where αj ∈ R, βj > 0, α2
j + β

2
j > 0, and mj ∈ N.

Moreover, the form (5.17) is unique up to the permutation of blocks.
Proof. Since U is H-unitary, we have that U is polynomially H-normal with H-

normality polynomial p satisfying p(U) = U−1. In particular, this implies p(λ) = λ−1

for all eigenvalues λ ∈ C of U . Without loss of generality, we may assume that U
and H are already essentially decomposed in the sense of Theorem 4.3. Observe
that the real numbers λ = 1 and λ = −1 are the only numbers satisfying p(λ) = λ.
Consequently, U has no complex bilinear part. Thus, we have

U = Ũ1 ⊕ Ũ2, H = H̃1 ⊕ H̃2,

where σ(Ũ1) ⊆ R and Ũ2 = φ(U2), H̃2 = φ(H2), where U2 is H2-skewadjoint with
respect to the complex sesquilinear form induced by the complex (skew-)Hermitian
matrix H2. Here, we choose the eigenvalues of U2 such that

λ ∈ σ(U2) and |λ| ≥ 1 ⇒ Im(λ) > 0.

Since the eigenvalues of U2 are either unimodular or occur in pairs (λ, λ
−1

), see, e.g.,
[15, Theorem 6.5], this implies in particular that Im(λ) < 0 for all eigenvalues λ of U2

with modulus smaller than one. In view of Theorem 4.5, we may furthermore assume
that the pairs (Ũ1, H̃1) and (U2,H2) are in canonical form.
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The canonical form of the pair (Ũ1, H̃1) can be obtained from Theorem 2.4 giving
the blocks of the forms (5.18)–(5.21). The detailed argument follows exactly the
lines of the proof of Theorem 7.5 in [15] and will therefore not be repeated here.
The canonical form of the pair (U2,H2) in the case δ = ±1 can be read off [15,
Theorem 6.5]. (The canonical form is explicitly given for Hermitian H2 only, but the
result for H2 skew-Hermitian can be obtained by considering the Hermitian matrix
iH2 =

√
−1H2 instead.) Having in mind the assumption on the spectrum of U2, this

form consists either of blocks of the forms

Uj =
[
Jmj (λj) 0

0 Jmj (λj)−∗

]
, Hj =

[
0

√
δImj√

δImj 0

]
,(5.26)

or of blocks of the forms

Uj = ωjImj + iωjT (0, 1, ir2, . . . , irmj−1), Hj = εj
√
δRmj ,(5.27)

where |ωj| = 1, Im(ωj) > 0, mj ∈ N, and εj = ±1. Moreover, rk = 0 for odd k
and the parameters rk for even k are real and uniquely determined by the recursive
formula

r2 =
1
2
, rk =

1
2

k
2−1∑
ν=1

r2·νr2·( k
2−ν)

 , 4 ≤ k ≤ mj ;

The blocks (5.27) results in blocks of the form (5.22). Concerning the blocks (5.26),
we immediately obtain blocks of the form (5.25) in the case δ = 1. For the case
δ = −1, observe that a transformation with the matrix Q := Imj ⊕ (−iImj ) yields

Q−1UjQ = Uj =
[
Jmj (λj) 0

0 Jmj (λj)−∗

]
, Q∗HjQ =

[
0 Imj

−Imj 0

]
,

which results again in blocks of the form (5.25).
Remark 5.6. A result in the direction of Theorem 5.5 for the case δ = −1 has

been obtained in [21] concerning existence of a decomposition of H-unitary matrices
into indecomposable blocks. Also, the possible Jordan canonical forms of the inde-
composable blocks have been fully described. The part in what Theorem 5.5 differs
from the result in [21] is that not only the H-unitary matrix U , but also H has been
reduced to a canonical form and that the form of Theorem 5.5 is unique up to per-
mutation of blocks. Canonical forms for H-unitary matrices for the case δ = 1 have
been developed in [20] and for some special cases in [2].

Remark 5.7. We note that it follows from the proofs of the Theorems 5.1–
5.5 that H-selfadjoint matrices have no complex sesquilinear part and that H-skew-
adjoint and H-unitary matrices have no complex bilinear part.

6. Semidefinite invariant subspaces. In this section, we apply the essential
decomposition to prove existence of semidefinite invariant subspaces for polynomially
H-normal matrices. Let H ∈ Fn×n be Hermitian. Then a subspace S ⊆ Fn is called
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H-nonnegative if [x, x] ≥ 0 for all x ∈ S. An H-nonnegative subspace M ⊆ Fn

is called maximal H-nonnegative if H is not contained in a larger H-nonnegative
subspace. It is well known and easy to verify that anH-nonnegative subspaceM⊆ Fn

is maximal H-nonnegative if and only if dimM = ν+(H), where ν+(H) is the number
of positive eigenvalues of H, see, e.g., [16]. It is also well known that if X ∈ Cn×n is
H-normal, then X has an invariant subspace M that is also maximal H-nonnegative,
see [3, Corollary 3.4.12] for a more general result in Krein spaces or [16] for a proof
depending on finite dimensionality. However, the corresponding statement for the
case F = R is not true as the following example shows.

Example 6.1. Let α ∈ R and β ∈ R \ {0}, and consider the matrices

A =
[
α β
−β α

]
, H =

[
0 1
1 0

]
.

Then A is H-selfadjoint and H has one positive eigenvalue. However, A has no
real nontrivial invariant subspaces and thus, no invariant subspace that is also H-
nonnegative.

In the following, we give a sufficient condition for a polynomiallyH-normal matrix
to have an invariant subspace M⊆ R

n that is also maximal H-nonnegative.
Theorem 6.2. Let H ∈ Rn×n be symmetric and let X ∈ Rn×n be polynomially

H-normal such that X has no complex bilinear part in its essential decomposition.
Then X has an invariant subspace M⊆ Rn that is also maximal H-nonnegative.

Proof. Without loss of generality, we may assume that X and H are in the
form (4.1). Thus, since X has no complex bilinear part, we find that

X = X̃1 ⊕ X̃2, H = H̃1 ⊕ H̃2,

where σ(X̃1) ⊆ R and X̃2 = φ(X2), H̃2 = φ(H2), where X2 is polynomially normal
with respect to the sesquilinear form induced by H2. In view of Theorem 4.5 we may
furthermore assume that X̃1 and H̃1 are in the canonical form (2.2). It is sufficient to
consider the case that X equals either X̃2 or one of the indecomposable blocks in (2.2),
because if each such block has an invariant subspace that is maximal H-nonnegative
then an invariant maximal H-nonnegative subspace for X can be obtained as the
direct sum of all those subspaces.

If X and H are in the form (2.3) or (2.5), then we choose

M =


Span(e1, . . . , en

2
) if n is even

Span(e1, . . . , en+1
2
) if n is odd and ε = 1

Span(e1, . . . , en−1
2
) if n is odd and ε = −1.

Indeed, it is easily seen thatM is X-invariant and maximal H-nonnegative. If X and
H are in the form (2.6) or (2.7), then M = Span(e1, . . . , en

2
) is the desired invariant

subspace that is also maximal H-nonnegative.
Next consider the case that X = X̃2 = φ(X2) and H = H̃2 = φ(H2). Since

X2 is polynomially H2-normal (and thus, X2 is in particular H2-normal), X2 has an
invariant subspace MC that is maximal H2-nonnegative. Let k be the number of
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positive eigenvalues of H2 and let MC be spanned by the columns of the matrix
T ∈ Cn×k. Then there exists a k × k matrix B ∈ Ck×k such that X2T = T B.
Applying φ to this identity, we obtain

X̃2 φ(T ) = φ(X2T ) = φ(T B) = φ(T )φ(B),

that is, M := Rangeφ(T ) is an invariant subspace for X̃2. The dimension of M is
2k, because φ doubles the rank of matrices. (This follows easily by considering the
singular value decomposition and using that φ is an isomorphism.) Finally, M is
H̃2-nonnegative (and, consequently, maximal H̃2-nonnegative, because H̃2 = φ(H2)
necessarily has 2k positive eigenvalues which follows by diagonalizing H2 and then
using that φ is an isomorphism), because

φ(T )T H̃2 φ(T ) = φ(T ∗H2T )

is positive semidefinite if and only if T ∗H2T is. (Again, diagonalize T ∗H2T and
use that φ is an isomorphism.) Thus, the H2-nonnegativity of RangeT implies the
H̃2-nonnegativity of Rangeφ(T ).

In view of Remark 5.7, we immediately obtain the following corollary.
Corollary 6.3. Let X ∈ R

n×n be H-skew-adjoint or H-unitary. Then X has
an invariant subspace M⊆ Rn that is also maximal H-nonnegative.

Remark 6.4. The hypothesis of X having no complex bilinear part is essential
in Theorem 6.2. Indeed, this fact is illustrated by Example 6.1. Thus, in contrast
to H-skewadjoint and H-unitary matrices, H-selfadjoint matrices need not have an
invariant maximal H-nonnegative subspace, because H-selfadjoint matrices may have
a non-vanishing complex bilinear part.

7. Conclusions. We have introduced the essential decomposition of polyno-
mially H-normal matrices. With the help of this decomposition, real polynomially
H-normal matrices can be described by a polynomially H-normal matrix having real
spectrum only and two complex matrices that are polynomially normal with respect
to a sesquilinear form and bilinear form, respectively. The main motivation for the
development of the essential decomposition is the construction of canonical forms for
real polynomially H-normal matrices, but it is expected to be useful for the investiga-
tion of polynomially H-normal matrices in general, in particular, for the investigation
of H-selfadjoint, H-skewadjoint, and H-unitary matrices, because the real part, the
complex sesquilinear part, and the complex bilinear part of a polynomially H-normal
matrix can be considered separately.
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