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Abstract

We establish new oscillation theorems for the nonlinear dif-
ferential equation

[a(t)ψ(x(t))|x′(t)|α−1x′(t)]′ + q(t)f(x(t)) = 0, α > 0

where a, q : [t0,∞) → R, ψ, f : R→ R are continuous, a(t) > 0
and ψ(x) > 0, xf(x) > 0 for x 6= 0. These criteria involve the
use of averaging functions.

1. Introduction

In this paper we are interested in obtaining results on the oscillatory
behaviour of solutions of second order nonlinear differential equation

(E) [a(t)ψ(x(t))|x′(t)|α−1x′(t)]′ + q(t)f(x(t)) = 0
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where a, q : [t0,∞) → R, ψ, f : R → R are continuous, α > 0 is a
constant, a(t) > 0 and ψ(x) > 0, xf(x) > 0 for x 6= 0.

This nonlinear equation can be considered as a natural general-
ization of the half-linear equation

(HL) [a(t)|x′(t)|α−1x′(t)]′ + q(t)|x(t)|α−1x(t) = 0,

which has been the object of intensive studies in recent years.
By a solution of (E) we mean a function x ∈ C1[Tx,∞), Tx ≥ t0,

which has the property |x′(t)|α−1x′(t) ∈ C1[Tx,∞) and satisfies (E). A
solutions is said to be global if it exists on the whole interval [t0,∞).
The existence and uniqueness of solutions of (HL) subject to the initial
condition x(T ) = x0, x

′(T ) = x1 has been investigated by Kusano
and Kitano [12]. They have shown that the initial value problem has
a unique global solution for any given values x0, x1 provided q(t) is
positive and locally of bounded variation on [t0,∞).

The solution x of (E) which exists on some interval (T1,+∞) ⊂
[t0,∞) is singular solution of the first kind, x ∈ S1, if there exists
t∗ ∈ (T1,∞) such that max{(x(s)| : t ≤ s ≤ t∗} > 0 for t0 < t < t∗

and x(t) = 0 for all t ≥ t∗. The solution x of (E) which exists on
some interval (T1, T2) ⊂ [t0,∞) is singular solution of the second kind,
x ∈ S2, if lim supt→T2

x(t) = +∞. On the other hand, the solution
x of (E) which exists on some interval (Tx,+∞), Tx ≥ t0 is called
proper if

sup{ |x(t)| : t ≥ T} > 0 for all T ≥ Tx.

The existence of proper and singular solutions for the semilinear equa-
tions was investigated by Mirzov [24] and for the nonlinear second
order equation by Kiguradze and Chanturia [11]. They estab-
lished sufficient conditions that nonlinear and semilinear differential
equation of the second order does not have singular solutions as well
as that it has a proper solution and sufficient conditions for all global
solutions to be proper. So, we shall suppose that the equation (E) has
the proper solutions and our attention will be restricted only to those
solutions.

A nontrivial solution of (E) is called oscillatory if it has arbitrarily
large zeroes, otherwise it is said to be nonoscillatory. Equation (E) is
called oscillatory if all its solution are oscillatory.

EJQTDE, 2000 No. 1, p. 2



During the last two decades there has been a great deal of work
on the oscillatory behavior of solutions of the equation (HL) (see
Hsu, Yeh [10], Kusano, Naito [13], Kusano, Yoshida [14],
Li, Yeh [16], [17], [18], [19], [20], Lian, Yeh, Li [22]). Wang in
[27], [28] established oscillation criteria for the more general equation
[a(t)|x′(t)|α−1x′(t)]′ + Φ(t, x(t)) = 0. Wong, Agarwal [30] consid-
ered a special case of this equation for Φ(t, x(t)) = q(t) f(x(t)). We
refer to that equation as to the equation (A). Afterward, in 1998.
Hong in [9] generalized criteria of oscillation of half-linear differential
equation due to Hsu, Yeh [10] to the nonlinear differential equation
(E). Thereafter, our purpose here is to develop oscillation theory for
a general case of the equation (E) in which f(x) is not necessarily of
the form | x |α−1x, α > 0 and ψ(x) 6= 1, without any restriction on the
sign of q(t), which is of particular interest.

Some of the very important oscillation theorems for second order
linear and nonlinear differential equations involve the use of averaging
functions. As recent contribution to this study we refer to the papers
of Grace, Lalli and Yeh [2], [3], Grace and Lalli [5], Grace [4],
[6], [7], Li and Yeh [21], Philos [26], Wong and Yeh [29] and Yeh
[31]. Using a general class of continuous functions

H : D = { (t, s) | t ≥ s ≥ t0 } → R,

which is such that

H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for all (t, s) ∈ D
and has a continuous and nonpositive partial derivative on D with
respect to the second variable, Philos [26] presented oscillation the-
orems for linear differential equations of second order

x′′(t) + q(t)x(t) = 0.

His results has been extended by Grace [7] and Li and Yeh [21] to
the nonlinear differential equation

[a(t)ψ(x(t))x′(t)]′ + q(t)f(x(t)) = 0.

In this paper, we are interested in extending the results of Grace
to a broad class of second order nonlinear differential equations of type
(E) by using a well-known inequality stated in Lemma 2.1.
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2. Main results

Throughout this paper we assume that

(C1)
f ′(x)

(ψ(x)|f(x)|α−1)
1

α

≥ K > 0, x 6= 0,

and in order to simplify notation we denote by

β =
1

αKα

(

α

α + 1

)α+1

.

Notice that in the special case of the equation (HL), for ψ(x) ≡ 1 and
f(x) = |x|α−1x, the condition (C1) is satisfied.

We also need the following well-known inequality which is due to
Hardy, Little and Polya [8].

Lemma 2.1 If X and Y are nonnegative, then

Xq + (q − 1)Y q − qXY q−1 ≥ 0, q > 1,

where equality holds if and only if X = Y .

Theorem 2.1 Let condition (C1) holds. Suppose that there exists a

continuous function

H : D = { (t, s) | t ≥ s ≥ t0 } → R

such that

(H1) H(t, t) = 0, t ≥ t0, H(t, s) > 0, (t, s) ∈ D

(H2) h(t, s) = −∂H(t, s)

∂s
is nonnegative continuous function on D.

If

(C2) lim sup
t→∞

1

H(t, t0)

∫ t

t0

[

q(s)H(t, s) − β a(s)
hα+1(t, s)

Hα(t, s)

]

ds = ∞,

then the equation (E) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of the equation (E).
Without loss of generality, we assume that x(t) 6= 0 for t ≥ t0. We
define

w(t) =
a(t)ψ(x(t))|x′(t)|α−1x′(t)

f(x(t))
for t ≥ t0.

Then, by taking into account (C1), for every s ≥ t0, we obtain

w′(s) = −q(s) − f ′(x(s))|w(s)|α+1

α

(a(s)ψ(x(s))|f(x(s))|α−1)
1

α

(1)

≤ −q(s) −K
|w(s)|α+1

α

a
1

α (s)
.

Multiplying (1) by H(t, s) for t ≥ s ≥ t0 and integrating from t0 to t,
we get

∫ t

t0
w′(s)H(t, s) ds ≤ −

∫ t

t0
q(s)H(t, s) ds−K

∫ t

t0
H(t, s)

|w(s)|α+1

α

a
1

α (s)
ds.

Since,

∫ t

t0
w′(s)H(t, s) ds = −w(t0)H(t, t0) −

∫ t

t0
w(s)

∂H(t, s)

∂s
ds,(2)

we have
∫ t

t0
q(s)H(t, s) ds ≤ w(t0)H(t, t0) +

∫ t

t0
|w(s)|h(t, s) ds(3)

−K
∫ t

t0
H(t, s)

|w(s)|α+1

α

a
1

α (s)
ds.

Taking

X = (KH(t, s))
α

α+1
|w(s)|
a

1

α+1 (s)
, q =

α + 1

α

Y =
(

α

α + 1

)α a
α

α+1 (s)hα(t, s)

[KH(t, s)]
α
2

α+1

,
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according to Lemma 2.1, we obtain for t > s ≥ t0

|w(s)|h(t, s)−KH(t, s)
|w(s)|α+1

α

a
1

α (s)
≤ β a(s)

hα+1(t, s)

Hα(t, s)
.

Hence, (3) implies

1

H(t, t0)

∫ t

t0
q(s)H(t, s) ds ≤ w(t0)(4)

+
β

H(t, t0)

∫ t

t0
a(s)

hα+1(t, s)

Hα(t, s)
ds,

for all t ≥ t0. Consequently,

1

H(t, t0)

∫ t

t0

[

q(s)H(t, s) − β a(s)
hα+1(t, s)

Hα(t, s)

]

ds ≤ w(t0), t ≥ t0.

Taking the upper limit as t → ∞, we obtain a contradiction, which
completes the proof.

Corollary 2.1 Let condition (C2) in Theorem 2.1 be replaced by

lim sup
t→∞

1

H(t, t0)

∫ t

t0
a(s)

hα+1(t, s)

Hα(t, s)
ds <∞,

lim sup
t→∞

1

H(t, t0)

∫ t

t0
q(s)H(t, s) ds = ∞

then the conclusion of Theorem 2.1 holds.

Remark 2.1 For a(t) ≡ 1, ψ(x) ≡ 1, H(t, s) = t− s from Theorem
2.1. we derive Corollary 3.2. in [28]. Taking H(t − s)λ for some
constant λ > 1, which obviously satisfies the conditions (H1), (H2), in
the case of the equation (HL) as a special case of (E), Theorem 2.1.
reduces to the oscillation criterion of Li and Yeh [16].

For illustration we consider the following example.
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Example 2.1 Consider the differential equation

(E1)

(

|x(t)|3−α

tν
|x′(t)|α−1x′(t)

)′

+ tλ
(

λ
2 − cos t

t
+ sin t

)

x3(t) = 0,

for t ≥ t0, where ν, λ, α are arbitrary positive constants and α 6= 2.
Then,

f ′(x)

(ψ(x)|f(x)|α−1)
1

α

= 3 for x 6= 0.

On the other hand, for any t ≥ t0, we have
∫ t

t0
q(s) ds =

∫ t

t0
d[sλ(2 − cos s)] = tλ(2 − cos t) − tλ0(2 + cos t0)

= tλ(2 − cos t) − k0 ≥ tλ − k0.

Taking H(t, s) = (t− s)2, for t ≥ s ≥ t0, we have

1

t2

∫ t

t0

[

(t− s)2q(s) − β 2α+1 (t− s)1−α

sν

]

ds

=
1

t2

∫ t

t0

[

2 (t− s)
(∫ s

t0
q(u) du

)

− β 2α+1 (t− s)1−α

sν

]

ds

≥ 2

t2

∫ t

t0
(t− s)

(

sλ − k0

)

ds− β 2α+2

tν0 t
2

∫ t

t0
(t− s)1−α ds

=
2 tλ

(λ+ 1)(λ+ 2)
+
k1

t2
+
k2

t
− k0 −

k3

tα

(

1 − t0
t

)2−α

,

where

k1 =
2 tλ+2

0

λ+ 2
− k0t

2
0, k2 = 2k0t0 −

2 tλ+1
0

λ+ 1
, k3 =

β 2α+2

tν0(2 − α)
.

Consequently, condition (C2) is satisfied. Hence, the equation (E1) is
oscillatory by Theorem 2.1.

Remark 2.2 We note that since
∫∞

0 q(s) ds is not convergent the os-
cillation criteria in [9] fail to apply to the equation (E1).

In the case of the half–linear differential equation we have the
following corollary:
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Corollary 2.2 The equation (HL) is oscillatory if the condition (C2)
is satisfied for some continuous function H(t, s) on D which satisfies

(H1) and (H2).

Remark 2.3 As in the previous example, we conclude that (HL)

for q(s) = tλ
(

λ 2−cos t
t

+ sin t
)

, a(s) = s−ν is oscillatory for λ and ν

positive and α 6= 0. On the other hand, criteria in [10], [13] and
[18] (Section 2) can not be applied, since q(t) is not positive function
(assumed in [13]) and

∫∞

t q(s) ds <∞.

Theorem 2.2 Let condition (C1) holds and let the functions H and

h be defined as in Theorem 2.1 such that conditions (H1), (H2),

(H3) 0 < inf
s≥t0

[

lim inf
t→∞

H(t, s)

H(t, t0)

]

≤ ∞,

and

(C3) lim sup
t→∞

1

H(t, t0)

∫ t

t0
a(s)

hα+1(t, s)

Hα(t, s)
ds <∞

are satisfied. If there exists a continuous function ϕ on [t0,∞) such

that for every T ≥ t0

(C4) lim sup
t→∞

1

H(t, T )

∫ t

T

[

q(s)H(t, s) − β a(s)
hα+1(t, s)

Hα(t, s)

]

ds ≥ ϕ(T ),

and

(C5)
∫ ∞

t0

ϕ
α

α+1

+ (s)

a
1

α (s)
ds = ∞,

where ϕ+(s) = max{ϕ(s), 0}, then the equation (E) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of the equation (E), say
x(t) 6= 0 for t ≥ t0. Next, we define the function w as in the proof of
Theorem 2.1, so that we have (3) and (4). Then, for t > T ≥ t0 we
have

lim sup
t→∞

1

H(t, T )

∫ t

T

[

q(s)H(t, s) − β a(s)
hα+1(t, s)

Hα(t, s)

]

ds ≤ w(T ).
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Therefore, by conditions (C4), we have

ϕ(T ) ≤ w(T ) for every T ≥ t0(5)

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0
q(s)H(t, s) ds ≥ ϕ(t0).(6)

We define functions

F (t) =
1

H(t, t0)

∫ t

t0
|w(s)|h(t, s) ds,

G(t) =
K

H(t, t0)

∫ t

t0
H(t, s)

|w(s)|α+1

α

a
1

α (t)
ds.

From (3), we get for t ≥ t0

G(t) − F (t) ≤ w(t0) −
1

H(t, t0)

∫ t

t0
q(s)H(t, s) ds,(7)

so that (6) implies that

lim inf
t→∞

[G(t) − F (t)] ≤ w(t0) − lim sup
t→∞

1

H(t, t0)

∫ t

t0
q(s)H(t, s) ds(8)

≤ w(t0) − ϕ(t0) <∞.

Now, consider a sequence {Tn}∞n=1 in (t0,∞) with
limn→∞ Tn = ∞ and such that

lim
n→∞

[G(Tn) − F (Tn)] = lim inf
t→∞

[G(t) − F (t)].

Because of (8), there exists a constant M such that

G(Tn) − F (Tn) ≤M, n = 1, 2, . . .(9)

We shall next prove that

∫ ∞

t0

|w(s)| α

α+1 (s)

a
1

α (s)
ds <∞.(10)
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If we suppose that (10) fails, there exists a t1 > t0 such that

∫ t

t0

|w(s)| α

α+1 (s)

a
1

α (s)
ds ≥ µ

K ξ
, for t ≥ t1,

where µ is an arbitrary positive number and ξ is a positive constant
such that

inf
s≥t0

[

lim inf
t→∞

H(t, s)

H(t, t0)

]

> ξ > 0.(11)

Therefore, for all t ≥ t1

G(t) =
K

H(t, t0)

∫ t

t0
H(t, s)d





∫ s

t0

|w(τ)|α+1

α

a
1

α (τ)
dτ





= − K

H(t, t0)

∫ t

t0

∂H

∂s
(t, s)





∫ s

t0

|w(τ)|α+1

α

a
1

α (τ)
dτ



 ds

≥ − K

H(t, t0)

∫ t

t1

∂H

∂s
(t, s)





∫ s

t0

|w(τ)|α+1

α

a
1

α (τ)
dτ



 ds

≥ − µ

ξH(t, t0)

∫ t

t1

∂H

∂s
(t, s) ds =

µH(t, t1)

ξH(t, t0)

By (11), there is a t2 ≥ t1 such that H(t,t1)
H(t,t0)

≥ ξ for all t ≥ t2, and

accordingly G(t) ≥ µ for all t ≥ t2. Since µ is arbitrary,

lim
t→∞

G(t) = ∞,

which ensures that
lim

n→∞
G(Tn) = ∞.(12)

Hence, (9) gives
lim

n→∞
F (Tn) = ∞.(13)

From (9) we derive for n sufficiently large

F (Tn)

G(Tn)
− 1 ≥ − M

G(Tn)
> −1

2
.
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Therefore,
F (Tn)

G(Tn)
>

1

2
for all large n,

which by (13) ensures that

lim
n→∞

F α+1(Tn)

Gα(Tn)
= ∞.(14)

On the other hand, by Hölder’s inequality, we have for all n ∈ N

F (Tn) =
1

H(Tn, t0)

∫ Tn

t0
|w(s)|h(Tn, s) ds,

=
∫ Tn

t0





K
α

α+1

H
α

α+1 (Tn, t0)

|w(s)|H α

α+1 (Tn, s)

a
1

α+1 (s)





×




K− α

α+1

H
1

α+1 (Tn, t0)

h(Tn, s)a
1

α+1 (s)

H
α

α+1 (Tn, s)



 ds

≤




K

H(Tn, t0)

∫ Tn

t0

|w(s)|α+1

α H(Tn, s)

a
1

α (s)
ds





α

α+1

×
(

K−α

H(Tn, t0)

∫ Tn

t0
a(s)

hα+1(Tn, s)

Hα(Tn, s)
ds

) 1

α+1

and accordingly

F α+1(Tn)

Gα(Tn)
≤ K−α

H(Tn, t0)

∫ Tn

t0
a(s)

hα+1(Tn, s)

Hα(Tn, s)
ds.

So, because of (14), we have

lim
n→∞

1

H(Tn, t0)

∫ Tn

t0
a(s)

hα+1(Tn, s)

Hα(Tn, s)
ds = ∞,

which gives

lim
t→∞

1

H(t, t0)

∫ t

t0
a(s)

hα+1(t, s)

Hα(t, s)
ds = ∞,
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contradicting the condition (C3). So, (10) holds. Now, from (5), we
obtain

∫ ∞

t0

ϕ
α

α+1

+ (s)

a
1

α (s)
ds ≤

∫ ∞

t0

|w(s)| α

α+1 (s)

a
1

α (s)
ds <∞,

which contradicts (C5). This completes the proof.

Theorem 2.3 Let condition (C1) holds and let the functions H and

h be defined as in Theorem 2.1 such that conditions (H1), (H2), (H3)
and

(C6) lim sup
t→∞

1

H(t, t0)

∫ t

t0
|q(s)|H(t, s) ds <∞

are satisfied. If there exists a continuous function ϕ on [t0,∞) such

that for every T ≥ t0

(C7) lim inf
t→∞

1

H(t, T )

∫ t

T

[

q(s)H(t, s) − β a(s)
hα+1(t, s)

Hα(t, s)

]

ds ≥ ϕ(T ),

and condition (C5) holds, then the equation (E) is oscillatory.

Proof. For the nonoscillatory solution x(t) of the equation (E), as in
the proof of Theorem 2.1, (3) and (4) are fulfilled. Thus, for t > T ≥
t0, we have

lim inf
t→∞

1

H(t, T )

∫ t

T

[

q(s)H(t, s) − β a(s)
hα+1(t, s)

Hα(t, s)

]

ds ≤ w(T ),

so that, according to condition (C7), (5) is satisfied. By conditions
(C7) is

ϕ(t0) ≤ lim inf
t→∞

1

H(t, t0)

∫ t

t0
q(s)H(t, s) ds

− lim inf
t→∞

β

H(t, t0)

∫ t

t0
a(s)

hα+1(t, s)

Hα(t, s)
ds,

so that (C6) implies

lim inf
t→∞

β

H(t, t0)

∫ t

t0
a(s)

hα+1(t, s)

Hα(t, s)
ds <∞.
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Condition (C6) together with (7) implies

lim sup
t→∞

[G(t) − F (t)] ≤ w(t0) − lim inf
t→∞

1

H(t, t0)

∫ t

t0
q(s)H(t, s) ds <∞.

This shows that there exists a sequence {Tn}∞n=1 in (t0,∞) with
limn→∞ Tn = ∞, such that

lim
n→∞

[G(Tn) − F (Tn)] = lim sup
t→∞

[G(t) − F (t)].

Following the procedure of the proof of Theorem 2.2, we conclude that
(10) is satisfied. Then, we come to the contradiction as in the proof
of Theorem 2.2.

We observe that Theorem 2.2 can be applied in some cases in
which Theorem 2.1 is not applicable. Such a case is described in the
following example.

Example 2.2 Consider the differential equation

(E2)
(

tν|x(t)|3−α|x′(t)|α−1x′(t)
)′

+ tλ cos t x3(t) = 0,

for t ≥ t0, where ν, λ, α are constants such that λ < 0, α > 0, α 6= 2
and ν < α. Then, condition (C1) is satisfied. Moreover, taking

H(t, s) = (t− s)2, for t > s ≥ t0, we have

1

t2

∫ t

t0
sν(t− s)1−α ds ≤



























tν

t2
(t− t0)

2−α

2 − α
, ν > 0

tν0
t2

(t− t0)
2−α

2 − α
, ν < 0

=



























tν−α

2 − α

(

1 − t0
t

)2−α

, ν > 0

tν0
2 − α

1

tα

(

1 − t0
t

)2−α

, ν < 0
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Therefore, condition (C3) is satisfied and for arbitrary small constant
ε > 0, there exists a t1 ≥ t0 such that for T ≥ t1

lim sup
t→∞

1

t2

∫ t

T
[(t− s)2sλ cos s− β sν (t− s)1−α] ds ≥ −T λ sinT − ε.

Now, set ϕ(T ) = −T λ sin T − ε and consider an integer N such that
2Nπ + 5π/4 ≥ max{t1, (1 +

√
2ε)1/λ}. Then, for all integers n ≥ N ,

we have

ϕ(T ) ≥ 1√
2

for every T ∈
[

2nπ +
5π

4
, 2nπ +

7π

4

]

.

Taking into account that ν < α, we obtain

∫ ∞

t0

ϕ
α

α+1

+ (s)

a
1

α (s)
ds ≥

∞
∑

n=N

(
√

2)−
α

α+1

∫ 2nπ+7π/4

2nπ+5π/4
s

ν

α ds

≥ (
√

2)−
α

α+1

∞
∑

n=N

∫ 2nπ+7π/4

2nπ+5π/4

ds

s

= (
√

2)−
α

α+1

∞
∑

n=N

ln

(

1 +
π
2

2nπ + 5π
4

)

= ∞.

Accordingly, all conditions of Theorem 2.2 are satisfied and hence the
equation (E2) is oscillatory.

On the other hand, the condition (C2) is not satisfied for λ < −1,
so that by Theorem 2.1 we conclude that (E2) is oscillatory only for
−1 ≤ λ < 0.

Remark 2.4 It is interesting to note that by Corollary 3.1. in [28]
we have that (E2), where ψ(x) ≡ 1, is oscillatory for λ ≥ 0 and ν < α.
Therefore, by the previous deduction, we have that such equation is
oscillatory for ν < α and all λ.

Theorem 2.4 Suppose that condition (C1) holds and let the functions

H and h be defined as in Theorem 2.1, such that conditions (H1) and

(H2) hold. If there exists a differentiable function ρ : [t0,∞) → (0,∞)
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such that ρ′(t) ≥ 0 for all t ≥ t0 and

(C8)

lim sup
t→∞

1

H(t, t0)

∫ t

t0
ρ(s)

[

q(s)H(t, s) − β a(s)

Hα(t, s)
Gα+1(t, s)

]

ds = ∞,

where G(t, s) = h(t, s) +
ρ′(s)

ρ(s)
H(t, s), then the equation (E) is oscil-

latory.

Proof. Let x be a solution on [t0,∞) of the differential equation (E)
with x(t) 6= 0 for all t ≥ t0. Now, we define

W (t) = ρ(t)
a(t)ψ(x(t))|x′(t)|α−1x′(t)

f(x(t))
for t ≥ t0.

Then, for every t ≥ t0, we obtain

W ′(t) = −q(t)ρ(t) +
ρ′(t)

ρ(t)
W (t) − f ′(x(t))|W (t)|α+1

α

(a(t)ρ(t)ψ(x(t))|f(x(t))|α−1)
1

α

.

Therefore,
∫ t

t0
W ′(s)H(t, s) ds ≤ −

∫ t

t0
q(s)ρ(s)H(t, s) ds

+
∫ t

t0

ρ′(s)

ρ(s)
W (s)H(t, s) ds−K

∫ t

t0
H(t, s)

|W (s)|α+1

α

(a(s)ρ(s))
1

α

ds.

Using (2), we have

(15)

∫ t

t0
q(s)ρ(s)H(t, s) ds ≤ W (t0)H(t, t0)

+
∫ t

t0
G(t, s)|W (s)| ds−K

∫ t

t0
H(t, s)

|W (s)|α+1

α

(a(s)ρ(s))
1

α

ds.

If we take

X = (KH(t, s))
α

α+1
|W (s)|

(a(s)ρ(s))
1

α+1

, q =
α + 1

α

Y =
(

α

α + 1

)α [a(s)ρ(s)]
α

α+1

[KH(t, s)]
α
2

α+1

(

h(t, s) +
ρ′(s)

ρ(s)
H(t, s)

)α

,
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according to Lemma 2.1, we get

(16)

|W (s)|
(

h(t, s) +
ρ′(s)

ρ(s)
H(t, s)

)

−KH(t, s)
|W (s)|α+1

α

[a(s)ρ(s)]
1

α

≤ β
a(s)ρ(s)

Hα(t, s)

(

h(t, s) +
ρ′(s)

ρ(s)
H(t, s)

)α+1
.

From (15) and (16) we obtain

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[

q(s)ρ(s)H(t, s) − β
a(s)ρ(s)

Hα(t, s)

×
(

h(t, s) +
ρ′(s)

ρ(s)
H(t, s)

)α+1
]

ds ≤ W (t0),

which contradicts (C8).

Remark 2.5 For α = 1 Theorem 2.4 reduces to Theorem 1 in Grace
[7].

Remark 2.6 If α = 1 and H(t, s) = (t−s)γ for some constant γ > 1,
Theorem 2.4 include as a special case Theorem 2 in Grace [4].

Corollary 2.3 Let condition (C8) in Theorem 2.4 be replaced by

(C9) lim sup
t→∞

1

H(t, t0)

∫ t

t0

a(s)ρ(s)

Hα(t, s)

(

h(t, s) +
ρ′(s)

ρ(s)
H(t, s)

)α+1
ds <∞,

(C10) lim sup
t→∞

1

H(t, t0)

∫ t

t0
q(s)ρ(s)H(t, s) ds = ∞,

then the conclusion of Theorem 2.4 holds.

Example 2.3 Consider the differential equation
(E3)
(

tν|x(t)|3−α|x′(t)|α−1x′(t)
)′

+ [λ tλ−3(2 − cos t) + tλ−2 sin t]x3(t) = 0,

for t ≥ t0 > 0, where λ is arbitrary positive constant and ν, α are
constants such that ν < α − 2, α < 1. Here, we choose ρ(t) = t2 and
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H(t, s) = (t−s)2 for t ≥ s ≥ t0. Then, since ρ(t)q(t) = d
ds

[sλ(2−cos s)],
as in Example 2.1, we get

∫ t

t0
ρ(s)q(s) ds ≥ tλ − k0

and therefore,

1

t2

∫ t

t0
(t− s)2ρ(s)q(s) ds ≥ 2tλ

(λ+ 1)(λ+ 2)
+
k1

t2
+
k2

t
− k0,

where

k1 =
2 tλ+2

0

λ+ 2
− k0t

2
0, k2 = 2k0t0 −

2 tλ+1
0

λ+ 1
.

Hence, condition (C10) is satisfied. On the other hand,

1

t2

∫ t

t0

sν+2

(t− s)2α

(

2(t− s) +
2

s
(t− s)2

)α+1
ds

= tα−12α+1
∫ t

t0
sν−α+1(t− s)1−α ds

≤ 2α+1
(

1 − t0
t

)1−α tν−α+2 − tν−α+2
0

ν − α + 2
,

so that condition (C9) is also satisfied. Consequently, by Corollary
2.3, the equation (E3) is oscillatory.

Using Theorem 2.4 and the same technique as in the proof of
Theorem 2.2 and 2.3, we have the following two theorems which extend
two Grace’s theorems [7, Theorem 3 and 4].

Theorem 2.5 Let condition (C1) holds and let the functions H and

h be defined as in Theorem 2.1 such that conditions (H1), (H2), (H3)
are satisfied. If there exists a nonnegative, differentiable, increasing

function ρ(t) such that

lim sup
t→∞

1

H(t, t0)

∫ t

t0

a(s)ρ(s)

Hα(t, s)

(

h(t, s) +
ρ′(s)

ρ(s)
H(t, s)

)α+1
ds <∞,
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and there exists a continuous function ϕ on [t0,∞) such that for every

T ≥ t0

lim sup
t→∞

1

H(t, T )

∫ t

T

[

q(s)ρ(s)H(t, s) − β
a(s)ρ(s)

Hα(t, s)

×
(

h(t, s) +
ρ′(s)

ρ(s)
H(t, s)

)α+1
]

ds ≥ ϕ(T ),

and condition (C5) is satisfied, then the equation (E) is oscillatory.

Theorem 2.6 Let condition (C5) holds and let the functions H and

h be defined as in Theorem 2.1 such that conditions (H1), (H2), (H3)
are satisfied. If there exists a nonnegative, differentiable, increasing

function ρ(t) such that

lim sup
t→∞

1

H(t, t0)

∫ t

t0
|q(s)|ρ(s)H(t, s) ds <∞

and there exists a continuous function ϕ on [t0,∞) such that for every

T ≥ t0

lim inf
t→∞

1

H(t, T )

∫ t

T

[

q(s)H(t, s) − β
a(s)ρ(s)

Hα(t, s)

×
(

h(t, s) +
ρ′(s)

ρ(s)
H(t, s)

)α+1
]

ds ≥ ϕ(T ),

and condition (C5) holds, then the equation (E) is oscillatory.
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