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Abstract

Infinite sums of i.i.d. random variables discounted by a multiplicative random walk are called
perpetuities and have been studied by many authors. The present paper provides a log-type
moment result for such random variables under minimal conditions which is then utilized for
the study of related moments of a.s. limits of certain martingales associated with the supercritical
branching random walk. The connection arises upon consideration of a size-biased version of
the branching random walk originally introduced by Lyons. As a by-product, necessary and
sufficient conditions for uniform integrability of these martingales are provided in the most
general situation which particularly means that the classical (LlogL)-condition is not always
needed.
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1 Introduction and results

This article provides conditions for the finiteness of certain log-type moments for the limit of iterated
i.i.d. random linear functions, called perpetuities. The result is stated as Theorem 1.2 in the following
subsection along with all necessary facts about the model. Then a similar result (Theorem 1.4) will
be formulated for the a.s. limit of a well-known martingale associated with the branching random
walk introduced in Subsection 1.2. The main achievement is that necessary and sufficient moment-
type conditions are given in a full generality. The latter means that, for the first time, we have
dispensed with condition (7) below in the case of perpetuities and with condition (A1) stated after
Theorem 1.3 in the case of branching random walks. Under these more restrictive assumptions
the results are more easily derived and have in fact been obtained earlier (see below for further
details). For the proof, we will describe and exploit an interesting connection between these at
first glance unrelated models which emerges when studying the weighted random tree associated
with the branching random walk under the so-called size-biased measure. For this being a crucial
ingredient, a thorough description of all necessary details will be provided in Section 5.

1.1 Perpetuities

Given a sequence {(Mn,Qn) : n = 1,2, ...} of i.i.d. R2-valued random vectors with generic copy
(M ,Q), put

Π0
def
= 1 and Πn

def
= M1M2 · · ·Mn, n= 1,2, ...

and

Zn
def
=

n∑

k=1

Πk−1Qk, n= 1,2, ...

The random discounted sum
Z∞

def
=
∑

k≥1

Πk−1Qk, (1)

obtained as the a.s. limit of Zn under appropriate conditions (see Proposition 1.1 below), is called
perpetuity and is of interest in various fields of applied probability like insurance and finance, the
study of shot-noise processes or, as will be seen further on, of branching random walks. The law
of Z∞ appears also quite naturally as the stationary distribution of the (forward) iterated function
system

Φn
def
= Ψn(Φn−1) = Ψn ◦ ... ◦Ψ1(Φ0), n= 1,2...,

where Ψn(t)
def
= Qn + Mn t for n = 1,2, ... and Φ0 is independent of {(Mn,Qn) : n = 1,2, ...}. Due to

the recursive structure of this Markov chain, it forms a solution of the stochastic fixed point equation

Φ
d
= Q+MΦ

where as usual the variable Φ is assumed to be independent of (M ,Q). Let us finally note that Z∞
may indeed be obtained as the a.s. limit of the associated backward system when started at Φ0 ≡ 0,
i.e.

Z∞ = lim
n→∞

Ψ0 ◦ ... ◦Ψn(0).
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Goldie and Maller [13] gave the following complete characterization of the a.s. convergence of the
series in (1). For x > 0, define

A(x)
def
=

∫ x

0

P{− log |M |> y} d y = Emin
�

log− |M |, x
�

(2)

and then J(x)
def
= x/A(x). In order to have J(x) defined on the whole real line, put J(x)

def
= 0 for

x < 0 and J(0)
def
= limx↓0 J(x) = 1/P{|M |< 1}.

Proposition 1.1. ([13], Theorem 2.1) Suppose

P{M = 0}= 0 and P{Q = 0}< 1. (3)

Then

lim
n→∞
Πn = 0 a.s. and EJ

�
log+ |Q|

�
< ∞, (4)

and

Z∗∞
def
=
∑

n≥1

|Πn−1Qn| < ∞ a.s. (5)

are equivalent conditions, and they imply

lim
n→∞

Zn = Z∞ a.s. and |Z∞| < ∞ a.s.

Moreover, if

P{Q+Mc = c}< 1 for all c ∈ R, (6)

and if at least one of the conditions in (4) fails to hold, then lim
n→∞
|Zn|=∞ in probability.

Condition (4) holds true, in particular, if

E log |M | ∈ (−∞, 0) and E log+ |Q|<∞, (7)

and for this special case results on the finiteness of certain log-type moments of Z∞ were derived
in [16] and [18]. To extend those results to the general situation with (3) being the only basic
assumption is one purpose of the present paper.

Let the function b : R+ → R+ be measurable, locally bounded and regularly varying at ∞ with
exponent α > 0. Functions b of interest in the following result are, for instance, b(x) = xα logk x or
b(x) = xα exp(β logγ x) for β ≥ 0, 0 < γ < 1 and k ∈ N, where logk denotes k-fold iteration of the
logarithm.

Theorem 1.2. Suppose (3). Then limn→∞Πn = 0 a.s.,

Eb
�

log+ |M |
�
J
�

log+ |M |
�
<∞ (8)

and

Eb
�

log+ |Q|
�
J
�

log+ |Q|
�
<∞ (9)

together imply

Eb(log+ |Z∞|)<∞. (10)

Conversely, if Z∞ is a.s. finite and nondegenerate, then (10) implies (8) and (9).
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Replacing limn→∞Πn = 0 a.s. with the stronger condition E log |M | ∈ (−∞, 0), this result is stated
as Theorem 3 in [16].

Since (8) and (9) are conditions in terms of the absolute values of M and Q, the first conclusion of
Theorem 1.2 remains valid when replacing (10) with the stronger assertion

Eb(log+ Z∗∞)<∞. (11)

IfΠn→ 0 a.s. and if Z∞ and Z∗∞ are both a.s. finite and nondegenerate, this leads us to the conclusion
that (10) and (11) are actually equivalent. A similar conclusion has been obtained in [2] for the
case of ordinary moments (viz. b(log x) = x p for some p > 0), see Theorem 1.4 there.

1.2 The branching random walk and its intrinsic martingales

In the following we give a short description of the standard branching random walk, its intrinsic
martingales and an associated multiplicative random walk.

Consider a population starting from one ancestor located at the origin and evolving like a Galton-
Watson process but with the generalization that individuals may have infinitely many children. All
individuals are residing in points on the real line, and the displacements of children relative to

their mother are described by a point process Z =
∑N

i=1δX i
on R. Thus N

def
= Z (R) gives the

total number of offspring of the considered mother and X i the displacement of the i-th child. The
displacement processes of all population members are supposed to be independent copies of Z . We
further assume Z ({−∞}) = 0 and EN > 1 (supercriticality) including the possibility P{N =∞}> 0
as already stated above. If P{N < ∞} = 1, then the population size process forms an ordinary
Galton-Watson process. Supercriticality ensures survival of the population with positive probability.

For n = 0,1, ... let Zn be the point process that defines the positions on R of the individuals of
the n-th generation, their total number given by Zn(R). The sequence {Zn : n = 0,1, ...} is called
branching random walk (BRW).

Let V
def
=
⋃∞

n=0N
n be the infinite Ulam-Harris tree of all finite sequences v = v1...vn (shorthand for

(v1, ..., vn)), with root ∅ (N0 def
= {∅}) and edges connecting each v ∈ V with its successors vi, i =

1,2, ... The length of v is denoted as |v|. Call v an individual and |v| its generation number. A BRW
{Zn : n= 0,1, ...}may now be represented as a random labeled subtree of V with the same root. This
subtree T is obtained recursively as follows: For any v ∈ T, let N(v) be the number of its successors

(children) and Z (v)
def
=
∑N(v)

i=1 δX i(v)
denote the point process describing the displacements of the

children vi of v relative to their mother. By assumption, the Z (v) are independent copies of Z . The
Galton-Watson tree associated with this model is now given by

T
def
= {∅} ∪ {v ∈ V\{∅} : vi ≤ N(v1...vi−1) for i = 1, ..., |v|},

and X i(v) denotes the label attached to the edge (v, vi) ∈ T× T and describes the displacement of
vi relative to v. Let us stipulate hereafter that

∑
|v|=n means summation over all vertices of T (not

V) of length n. For v = v1...vn ∈ T, put S(v)
def
=
∑n

i=1 X vi
(v1...vi−1). Then S(v) gives the position of v

on the real line (of course, S(∅) = 0), and Zn =
∑
|v|=nδS(v) for all n= 0,1, ...

Suppose there exists γ > 0 such that

m(γ)
def
= E

∫

R

eγx Z (d x) ∈ (0,∞). (12)
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For n= 1,2, ..., define Fn
def
= σ(Z (v) : |v| ≤ n− 1), and let F0 be the trivial σ-field. Put

Wn
def
= m(γ)−n

∫

R

eγx Zn(d x) = m(γ)−n
∑

|v|=n

eγS(v) =
∑

|v|=n

L(v), (13)

where L(v)
def
= eγS(v)/m(γ)|v|. Notice that the dependence of Wn on γ has been suppressed. The

sequence {(Wn,Fn) : n = 0,1, ...} forms a non-negative martingale with mean one and is thus a.s.
convergent with limiting variable W , say, satisfying EW ≤ 1. It has been extensively studied in the
literature, but first results were obtained in [22] and [5]. Note that P{W > 0} > 0 if, and only
if, {Wn : n = 0,1, ...} is uniformly integrable. While uniform integrability is clearly sufficient, the
necessity hinges on the well known fact that W satisfies the stochastic fixed point equation

W =
∑

|v|=n

L(v)W (v) a.s. (14)

for n = 1,2, ..., where the W (v), |v| = n, are i.i.d. copies of W that are also independent of {L(v) :

|v| = n}, see e.g. [7]. In fact W (v) is nothing but the a.s. limit of the martingale {
∑
|w|=m

L(vw)

L(v)
:

m= 0,1, ...} which forms the counterpart of {Wn : n= 0,1, ...}, but for the subtree of T rooted at v.

Our goal is to study certain moments of W in the nontrivial situation where {Wn : n = 0,1, ...} is
uniformly integrable. For the latter to hold, Theorem 1.3 below provides us with a necessary and
sufficient condition, again under no additional assumptions on the BRW beyond the indispensable
(12). In order to formulate it, we first need to introduce a multiplicative random walk associated
with our model. This will in fact be done on a suitable measurable space under a second probability
measure bP related to P, for details see Subsection 5.1. Let M be a random variable with distribution
defined by

bP{M ∈ B}
def
= E



∑

|v|=1

L(v)δL(v)(B)


 , (15)

for any Borel subset B of R+. Notice that the right-hand side of (15) does indeed define a probability
distribution because E

∑
|v|=1 L(v) = EW1 = 1. More generally, we have (see e.g. [7], Lemma 4.1)

bP{Πn ∈ B} = E



∑

|v|=n

L(v)δL(v)(B)


 , (16)

for each n = 1,2, ..., whenever {Mk : k = 1,2, ...} is a family of independent copies of M and

Πn
def
=
∏n

k=1 Mk. It is important to note that

bP{M = 0}= 0 and bP{M = 1}< 1. (17)

The first assertion follows since, by (15), bP{M > 0} = EW1 = 1. As for the second, observe that
bP{M = 1} = 1 implies E

∑
|v|=1 L(v)1{L(v) 6=1} = 0 which in combination with EW1 = 1 entails that

the point process Z consists of only one point u with L(u) = 1. This contradicts the assumed
supercriticality of the BRW.

Not surprisingly, the chosen notation for the multiplicative random walk associated with the given
BRW as opposed to the notation in the previous subsection is intentional, and we also keep the
definitions of J(x) and A(x) from there, see (2) and thereafter.
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Theorem 1.3. The martingale {Wn : n= 0,1, ...} is uniformly (P-)integrable if, and only if, the follow-

ing two conditions hold true:

lim
n→∞

Πn = 0 bP-a.s. (18)

and

EW1J(log+W1) =

∫

(1,∞)

xJ(log x) P{W1 ∈ d x} < ∞. (19)

There are three distinct cases in which conditions (18) and (19) hold simultaneously:
(A1) bE log M ∈ (−∞, 0) and EW1 log+W1 <∞;
(A2) bE log M =−∞ and EW1J(log+W1)<∞;
(A3) bE log+M = bE log−M =+∞, EW1J(log+W1)<∞, and

bEJ
�

log+M
�
=

∫

(1,∞)

log x
∫ log x

0
bP{− log M > y} d y

bP{M ∈ d x} < ∞.

For the case (A1), Theorem 1.3 is due to Biggins [5] and Lyons [26], see also [23]. In the present
form, the result has been stated as Proposition 1 in [18] (with a minor misprint), however without
proof. With some effort one could extract the necessary arguments from the proof of Theorem 2 in
[15], but this result was formulated in terms of fixed points rather than martingale convergence. We
have therefore decided to include a complete (and rather short) proof here. The study of uniform
integrability has a long history, going back to the famous Kesten-Stigum theorem [21] for ordinary
Galton-Watson processes and the pioneering work by Biggins [5] for the BRW, and followed later by
work in [24] and [26].

Restricting to the case (A1), the existence of moments of W was studied in quite a number of
articles, see [3],[5],[9],[16],[18],[25],[28]. The following theorem, which is our second main
moment-type result, goes further by covering the cases (A2) and (A3) as well. The function b(x)

occurring there is of the type stated before Theorem 1.2.

Theorem 1.4. If limn→∞Πn = 0 bP-a.s. and

EW1 b
�

log+W1

�
J(log+W1) < ∞, (20)

then {Wn : n= 0,1, ...} is uniformly integrable and

EW b(log+W )<∞. (21)

Conversely, if (21) holds and P{W1 = 1}< 1, then (20) holds.

An interesting aspect of this theorem is that it provides conditions for the existence of Φ-moments
of W for Φ slightly beyond L1 without assuming the (LlogL)-condition to ensure uniform integra-
bility. A similar but more general result (as regarding the functions Φ) is proved as Theorem 1.2 by
Alsmeyer and Kuhlbusch [3], but the (LlogL)-condition is a standing assumption there.

There are basically two probabilistic approaches towards finding conditions for the existence of
EΦ(W ) for suitable functions Φ. The method of this paper, worked out in [15] and [18], hinges
on getting first a moment-type result for perpetuities (here Theorem 1.2) and then translating it
into the framework of branching random walks. This is accomplished by an appropriate change
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of measure argument (see the proof of Theorem 1.3). The second approach, first used in [4] for
Galton-Watson processes and further elaborated in [3], relies on the observation that BRW’s bear
a certain double martingale structure which allows the repeated application of the convex function
inequalities due to Burkholder, Davis and Gundy (see e.g. [11]) for martingales. Both approaches
have their merits and limitations. Roughly speaking, the double martingale argument requires as
indispensable ingredients only that Φ be convex and at most of polynomial growth. On the other
hand, it also comes with a number of tedious technicalities caused by the repeated application of
the convex function inequalities. The basic tool of the method used here is only Jensen’s inequality
for conditional expectations, but it relies heavily on the existence of a nonnegative concave function
Ψ that is equivalent at ∞ to the function Φ(x)/x . This clearly imposes a strong restriction on the
growth of Φ.

The rest of the paper is organized as follows. Section 2 collects the relevant properties of the
functions involved in our analysis, notably b(x), b(log x) and A(x), followed in Section 3 by some
preliminary work needed for the proofs of Theorems 1.2 and 1.4. In particular, a number of moment
results for certain functionals of multiplicative random walks are given there which may be of inde-
pendent interest (see Lemma 3.5). Theorem 1.2 is proved in Section 4, while Section 5 contains the
proofs of Theorems 1.3 and 1.4.

2 Properties of the functions involved

In this section, we gather some relevant properties of the functions b(x), A(x) and J(x) = x/A(x)

needed in later on. Recall from (2) the definition of A(x) and that b : R+→ R+ is measurable, locally
bounded and regularly varying at ∞ with exponent α > 0 and thus of the form b(x) = xαℓ(x) for
some slowly varying function ℓ(x). By the Smooth Variation Theorem (see Thm. 1.8.2 in [10]), we
may assume without loss of generality that b(x) is smooth with nth derivative b(n)(x) satisfying

xn b(n)(x)∼ α(α− 1) · ... · (α− n+ 1)b(x)

for all n ≥ 1, where f ∼ g has the usual meaning that limx→∞ f (x)/g(x) = 1. By Lemma 1 in [1],
b(x) may further be chosen in such a way that

b(x + y) ≤ C
�

b(x) + b(y)
�

(22)

for all x , y ∈ R+ and some C ∈ (0,∞). The smoothness of b(x) (and thus of ℓ(x)) and property
(22) will be standing assumptions throughout without further notice.

Before giving a number of lemmata, let us note the obvious facts that

(P1) A(x) is nondecreasing,
(P2) J(x) is nondecreasing with limx→∞ J(x) =∞, and
(P3) J(x)∼ J(x + a) for any fixed a > 0.

Lemma 2.1. There exist smooth nondecreasing and concave functions f and g on R+ with f (0) =
g(0) = 0, limx→∞ f (x) = limx→∞ g(x) = ∞, f ′(0+) < ∞ and g ′(0+) < ∞ such that b(log x) ∼

f (x) and b(log x) log x ∼ g(x). Moreover,

f (x y)≤ C( f (x) + f (y)) (23)

for all x , y ∈ R+ and some C ∈ (0,∞).
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Proof. For each c > 0, we have that Λc(x)
def
= b(log(c + x))− b(log c) satisfies Λc(0) = 0, Λc(x) ∼

b(log x) and Λ′c(x) =
b′(log(c+x))

c+x
∼
αb(log(c+x))

(c+x) log(c+x)
. We thus see that Λ′c(x) is regularly varying of order

−1 and, for c sufficiently large, nonincreasing on R+ with Λ′c(0+) = c−1 b′(log c) ∈ (0,∞). Similar
statements hold true for Λc(x) log(c + x) ∼ b(log x) log x . Since Λc(e

x) ∼ b(x) and b(x) satisfies
(22), it is readily verified that Λc(x) satisfies (23). Consequently, the lemma follows upon choosing
f (x) = Λc(x) and g(x) = Λc(x) log(c+ x) for sufficiently large c.

Lemma 2.2. Let g be as in Lemma 2.1. Then φ(x)
def
= g(x)/A(log(x + 1)) is subadditive on R+, i.e.

φ(x + y)≤ φ(x) +φ(y) for all x , y ≥ 0, and f (x)J(log x)∼ φ(x).

Proof. Since g is concave, g(αx) ≥ αg(x) for each α ∈ (0,1) and x ≥ 0. Hence we infer with the
help of (P1)

φ(αx)≥ αφ(x) for every α ∈ (0,1) and x ≥ 0 (24)

which implies subadditivity via φ(x) +φ(y) ≥ [ x

x+y
+

y

x+y
]φ(x + y) = φ(x + y). The asymptotic

result follows from g(x)∼ f (x) log x ∼ f (x) log(x + 1) (see Lemma 2.1) which implies

φ(x) ∼ f (x)J(log(x + 1)) ∼ f (x)J(log x)

having utilized (P2) and (P3) for the last asymptotic equivalence.

Lemma 2.3. The function φ in Lemma 2.2 is slowly varying at ∞ and satisfies φ(x) ∼ φ(x + b) for

any fixed b ∈ R. Furthermore,

φ(x y) ≤ C(φ(x) +φ(y)) (25)

for all x , y ∈ R+ and a suitable constant C ∈ (0,∞).

Proof. We must check lim
x→∞
φ(x y)/φ(x) = 1 for y > 1. By the previous lemma, we have

φ(x y)

φ(x)
∼

f (x y)

f (x)

J(log x + log y)

J(log x)
,

which yields the desired conclusion because f (x)∼ b(log x) is slowly varying and, by (P3), J(log x+

log y) ∼ J(log x) for any fixed y . The second assertion follows as a simple consequence so that we

turn directly to (25). Fix K ∈ N so large that φ(x)

f (x)J(log x)
∈ [1/2,2] for all x ≥ K and use the

subadditivity of φ to infer in the case x ∧ y ≤ K

φ(x y) ≤ φ(K(x ∨ y)) ≤ K(φ(x)∨φ(y)) ≤ K(φ(x) +φ(y)). (26)

Note next that J as a nondecreasing sublinear function satisfies J(x + y) ≤ C(J(x) + J(y)) for all
x , y ∈ R+. By combining this with the monotonicity of f , J and inequality (23), we obtain if x > K

and y > K (thus x y > K)

φ(x y) ≤ 2 f (x y)J(log x + log y)

≤ 2C( f (x) + f (y))(J(log x) + J(log y))

≤ 8C( f (x)J(log x)∨ f (y)J(log y))

≤ 16C(φ(x) +φ(y)), (27)

for a suitable constant C ∈ (0,∞). A combination if (26) and (27) yields (25) (with a suitable
C).
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3 Auxiliary results

In the notation of Subsection 1.1 and always assuming (3), let us consider the situation where
|Z∞|<∞ and the nondegeneracy condition (6) is in force. Then limn→∞Πn = 0 by Proposition 1.1,
and

Z∞ = Q1+M1Z (1)∞ = Q(m)+ΠmZ (m)∞ , (28)

holds true for each m≥ 1, where (setting Πk:l
def
= Mk · ... ·Ml)

Q(m)
def
=

m∑

k=1

Πk−1Qk and Z (m)∞
def
= Qm+1+

∑

k≥m+2

Πm+1:k−1Qk. (29)

Here Z (m)∞ constitutes a copy of Z∞ independent of (M1,Q1), ..., (Mm,Qm). We thus see that Z∞ may

also be viewed as the perpetuity generated by i.i.d. copies of (Πm,Q(m)) for any fixed m ≥ 1. We
may further replace m by any a.s. finite stopping time σ to obtain

Z∞ =

σ∑

k=1

Πk−1Qk + ΠσZ (σ)∞ , (30)

where Q(σ)
def
=
∑σ

k=1Πk−1Qk and Z (σ)∞ is a copy of Z∞ independent of σ and {(Mn,Qn) : 1 ≤ n ≤ σ}

(and thus of (Πσ,Q(σ))). For our purposes, a relevant choice of σ will be

σ
def
= inf{n≥ 1 : |Πn| ≤ 1}, (31)

which is nothing but the first (weakly) ascending ladder epoch for the random walk Sn
def
= − log |Πn|,

n= 0,1, ...

Lemma 3.1. Let Z∞ be nondegenerate and f be a function as in Lemma 2.1. Define

Q(2)n

def
= Q2n−1 +M2n−1Q2n

for n ≥ 1 and let Q
(2)
n be a conditional symmetrization of Q(2)n given M2n−1M2n. Then E f (|Z∞|) <∞

implies

E f (|Q|)<∞ and E f (|M |)<∞, (32)

E f
�

sup
n≥1
|Πn−1Qn|

�
<∞, (33)

E f
�

sup
n≥1
|Π2n−2Q

(2)
n |
�
<∞, (34)

E f
�

sup
n≥0
|Πn|

�
<∞. (35)

Proof. It has been shown in [2] that, under the given assumptions, the distribution of Q
(2)
n is non-

degenerate,

P

n
sup
k≥1
|Π2k−2Q

(2)
k |> x

o
≤ 4P{|Z∞|> x/2} (36)
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for all x > 0 (see (28) there) and

P

n
sup
k≥0
|Π2k|> x

o
≤ 2P

n
sup
k≥1
|Π2k−2Q

(2)
k |> cx

o
(37)

for all x > 0 and a suitable c ∈ (0,1) (see Lemma 2.1 of [2]). By our standing assumption (3), we

can choose 0< ρ < 1 so small that κ
def
= P{|M |> ρ}> 0. With the help of the above tail inequalities

we now infer (34) and thereupon (35) because

P

n
sup
k≥0
|Π2k|> ρx

o
≥ P

n
sup
k≥1
|Π2k|> ρx , |M1|> ρ

o

≥ P
n

sup
k≥1
|Π2:2k|> x , |M1|> ρ

o

= κP
n

sup
k≥1
|Π2k−1|> x

o

and thus

P

n
sup
k≥0
|Πk|> 2x

o
≤ P

n
sup
k≥0
|Π2k|> x

o
+ P
n

sup
k≥1
|Π2k−1|> x

o

≤ (1+ κ−1)P
n

sup
k≥0
|Π2k|> ρx

o

for all x > 0. Next, E f (|M |) <∞ follows from (35) and |M1| ≤ supn≥0 |Πn|. As for E f (|Q|) <∞,
we recall from (28) that Z∞ =Q1+M1Z (1)∞ . Hence

E f (|Q1|) ≤ E f (|Z∞|) +E f (|M1Z (1)∞ |) ≤ C
�
E f (|Z∞|) +E f (|M1|)

�
< ∞

for a suitable C ∈ (0,∞), where subadditivity of f has been used for the first inequality and (23)
for the second one.

Finally, we must verify (33). With m0 denoting a median of Z∞, Goldie and Maller (see [13], p.
1210) showed that

P

n
sup
n≥1
|Zn+Πnm0|> x

o
≤ 2P{|Z∞| ≥ x}

for all x > 0. Hence E f (supn≥1 |Zn+Πnm0|)≤ 2E f (|Z∞|)<∞. Now

Πn−1Qn = (Zn+Πnm0)− (Zn−1 +Πn−1m0) +m0(Πn−1 −Πn)

implies (as Z0 = 0 and Π0 = 1)

sup
n≥1
|Πn−1Qn| ≤ 2

�
sup
n≥0
|Zn+Πnm0|+ |m0| sup

n≥0
|Πn|

�
+ |m0|,

and this gives the desired conclusion by (35) and the fact that f is subadditive and satisfying (23).

Remark 3.2. Let Qn be a conditional symmetrization of Qn given Mn. Then a tail inequality similar

to (36) holds for supk≥1 |Πk−1Qk| as well. However, in contrast to the Q
(2)
k , the Qk may be degenerate

in which case an analog of (37) does not follow. This is the reason for considering supk≥1 |Π2k−2Q
(2)
k |

in the above lemma.
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Lemma 3.3. If 0< P{|M |< 1} ≤ P{|M | ≤ 1}= 1, then

Eσ(x) = 1+
∞∑

n=1

P{|Πn|> x} ≤ 2J
�
| log x |

�
, (38)

for each x ∈ (0,1], where σ(x)
def
= inf{n≥ 1 : |Πn| ≤ x}. Furthermore, for any η > 0 such that

α
def
= P

n
sup
n≥1
|Πn−1Qn| ≤ η

o
> 0,

the function V (x)
def
= 1+

∑∞
n=1 P

n
max

1≤k≤n
|Πk−1Qk| ≤ η, |Πn|> x

o
satisfies

V (x) ≥ αJ
�
| log x |

�
(39)

for each x ∈ (0,1].

Proof. Inequality (38) was proved in [12]. Below we use the idea of an alternative proof of this
result given on p. 153-154 in [11].

Given our condition on M , the sequence Sn = − log |Πn|, n = 0,1, ..., forms a random walk with

nondegenerate increment distribution P{ζ ∈ ·}, ζ
def
= − log |M |. For x > 0, put further S

(x)

0
def
= 0 and

S(x)n

def
=
∑n

k=1(ζk ∧ x) for n= 1,2, ..., where the ζk are independent copies of ζ. Let

Tx
def
= inf

n
n≥ 1 : Sn ≥ x or max

1≤k≤n
|Πk−1Qk|> η

o
.

Then
ETx =

∑

n≥1

P{Tx ≥ n} = V (e−x)

and Wald’s identity provide us with

ES
(x)
Tx
= E(ζ∧ x)ETx = A(x)V (e−x). (40)

Putting B
def
= {supk≥1 |Πk−1Qk| ≤ η}, we also have

x 1B ≤ (STx
∧ x)1B ≤ STx

∧ x ≤ S
(x)
Tx

.

Consequently,

ES
(x)
Tx
≥ αx ,

which in combination with (40) implies (39).

Lemma 3.4. Suppose M ,Q ≥ 0 a.s. and 0< P{M < 1} ≤ P{M ≤ 1}= 1. Let f be the function defined

in Lemma 2.1. Then

E f
�

sup
n≥1
Πn−1Qn

�
<∞ ⇒ E f (Q)J(log+Q)<∞.
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Proof. We first note that the moment assumption and limx→∞ f (x) = ∞ together ensure
supn≥1Πn−1Qn <∞ a.s. Therefore, there exists an η > 1 such that α = P{supn≥1Πn−1Qn ≤ η} > 0.
We further point out that the monotonicity of f and (23) imply f (Q1/2) ≥ C f (Q/2) for some
C ∈ (0,1).

Now fix any γ > η and infer for x ≥ η (with V as in the previous lemma)

P

n
sup
n≥1
Πn−1Qn > x

o

= P{Q1 > x}+
∑

n≥1

P

n
max

1≤k≤n
Πk−1Qk ≤ x , ΠnQn+1 > x

o

≥ P{Q1 > γx}+
∑

n≥1

P

n
max

1≤k≤n
Πk−1Qk ≤ η, ΠnQn+1 > x , Qn+1 > γx

o

≥

∫ ∞

γx

 
1+
∑

n≥1

P

n
max

1≤k≤n
Πk−1Qk ≤ η, Πn > x/y

o!
P{Q ∈ d y}

= EV (x/Q)1{Q>γx}

≥ αEJ
�
| log(x/Q)|

�
1{Q>γx},

the last inequality following by Lemma 3.3. With this at hand, we further obtain

∞ > E f
�

sup
n≥1
Πn−1Qn

�

≥

∫ ∞

η

f ′(x)P
n

sup
n≥1
Πn−1Qn > x

o
d x

≥ α

∫ ∞

η

f ′(x)EJ
�
| log(x/Q)|

�
1{Q>γx} d x

= αE

 ∫ Q/γ

η

f ′(x)J
�
| log(x/Q)|

�
d x

!

≥ αE


1{Q>γ2}

∫ Q1/2

η

f ′(x)J
�
| log(x/Q)|

�
d x




≥ αE

�
1{Q>γ2} f (Q

1/2)J

�
logQ

2

��

≥ αC E

�
1{Q>γ2} f (Q/2)J

�
logQ

2

��

and this proves the assertion because f (x)J(log x) is slowly varying at infinity by Lemma 2.3.

Lemma 3.5. Suppose limn→∞Πn = 0 a.s. Let f be the function defined in Lemma 2.1, σ the ladder

epoch defined in (31) and σ∗
def
= inf{n ≥ 1 : |Πn| > 1} its dual. Then the following assertions are
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equivalent:

E f
�
|M |
�
J
�

log+ |M |
�
<∞. (41)

E f (|Πσ∗ |)1{σ∗<∞} <∞, (42)

E f
�

sup
n≥0
|Πn|

�
<∞, (43)

E f
�

sup
0≤n<σ

|Πn|
�

J
�

sup
0≤n<σ

log+ |Πn|
�
<∞, (44)

Remark 3.6. Rewriting Lemma 3.5 in terms of Sn = − log |Πn|, n = 0,1, ... and the function b

(recalling that b(log x) ∼ f (x)), the result appears to be known under additional restrictions on
{Sn : n = 0,1, ...} and/or b, see Theorem 1 of [19] for the case ES1 ∈ (−∞, 0) and b an(increa-
sing) power function, Theorem 3 of [1] for the case ES1 ∈ (−∞, 0) and regularly varying b, and
Proposition 4.1 of [20] for the case Sn → −∞ a.s. and b again a power function. In view of these
results, our main contribution is the proof of "(43)⇒(44)" with the help of Lemma 3.4.

Proof. The equivalence "(41)⇔ (42)⇔ (43)", rewritten in terms of {Sn : n= 0,1, ...} and b, takes
the form

Eb(S1)J(S1)<∞ ⇔ Eb(Sσ∗)1{σ∗<∞} <∞

⇔ Eb
�

sup
n≥0

Sn

�
<∞,

where b is regularly varying with index α > 0. A proof for the special case b(x) = xα can be found
in [20], as mentioned above. But the arguments given there are easily seen to hold for regularly
varying b as well whence further details are omitted here.

"(43)⇒(44)". Define the sequence (σn)n≥0 of ladder epochs associated with σ, given by σ0
def
= 0,

σ1
def
= σ and (recalling Πk:l = Mk · ... ·Ml)

σn
def
= inf{k > σn−1 : |Πσn−1:k| ≤ 1}

for n≥ 2. Put further

bΠ∗n
def
= sup{|Πσn−1

|, |Πσn−1+1|, ..., |Πσn−1|},

bMn
def
=

σn∏

j=σn−1+1

|M j |,

bΠn
def
=

n∏

j=1

bM j = Πσn

eQn
def
= 1∨ sup

�
|Πσk−1+1:σk−1+k| : 1≤ k ≤ σn−σn−1

	
.

for n = 1,2, ... The random vectors ( bMn, eQn), n = 1,2, ... are independent copies of ( bM , eQ) def
=

(|Πσ|, sup0≤k<σ |Πk|). Moreover, bΠ∗n = |Πσn−1
|eQn = bΠn−1

eQn and

sup
n≥0
|Πn| = sup

n≥1
|bΠ∗n| = sup

n≥1

bΠn−1
eQn.
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As, by construction, P{ bM ≤ 1} = 1 and P{ bM = 1} = 0, Lemma 3.4 enables us to conclude that
E f (supn≥0 |Πn|) = E f (supn≥1

bΠn−1
eQn) < ∞ implies E f

�eQ
�
J
�

log+ eQ
�
< ∞ which is the desired

result.

Finally, "(44)⇒(41)" follows from the obvious inequality sup0≤n<σ |Πn| ≥ |M1| ∨ 1 and the fact that
f (x)J(log x) is nondecreasing.

4 Proof of Theorem 1.2.

Sufficiency. As condition (9) clearly implies EJ
�

log+ |Q|
�
< ∞ we infer Z∗∞ < ∞ a.s. from Propo-

sition 1.1. Notice that our given assumption limn→∞Πn = 0 a.s. is valid if, and only if, one of the
following cases holds true:

(C1) P{|M | ≤ 1}= 1 and P{|M |< 1}> 0.

(C2) P{|M |> 1}> 0 and limn→∞Πn = 0 a.s.

We will consider these cases separately, in fact Case (C2) will be handled by reducing it to the first
case via an appropriate stopping argument.

Case (C1): We will prove (11) or, equivalently, E f (Z∗∞) < ∞. According to Lemma 2.1, (9) is
equivalent to

E f (|Q|)J
�

log+ |Q|
�
<∞ (45)

which in view of (P2) ensures E f (|Q|)<∞.

Using the properties of f stated in Lemma 2.1 (which, in particular, ensure subadditivity) and
supn≥0 |Πn|= |Π0|= 1, we obtain for fixed a ∈ (0,1)

E f (Z∗∞) = lim
n→∞
E f

 
n∑

k=1

|Πk−1Qk|

!

≤ lim
n→∞

n∑

k=1

E f (|Πk−1Qk|)

≤

∫ ∞

0

f ′(x)
∑

k≥1

P{|Πk−1Qk|> x} d x

=

∫ ∞

0

f ′(x)
∑

k≥1

P{|Πk−1Qk|> x , |Qk|> x/a} d x

+

∫ ∞

0

f ′(x)
∑

k≥1

P{|Πk−1Qk|> x , x < |Qk| ≤ x/a} d x

= I1+ I2

The second integral is easily estimated with the help of (38) as

I2 ≤

 ∑

k≥1

P{|Πk−1|> a}

!∫ ∞

0

f ′(x)P{|Q|> x} d x

≤ 2J(| log a|)E f (|Q|) < ∞,
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so that we are left with an estimation of I1.

The concavity of f in combination with f (0) = 0 and f ′(0+) <∞ (see Lemma 2.1) gives f (x) ≤

f ′(0+)x for all x > 0. As in Lemma 3.3, let σ(t) = inf{n ≥ 1 : |Πn| < t} for t > 0 and recall
from there that Eσ(t) ≤ 2J(| log t|) for t ≤ 1. For t > 1, we trivially have σ(t) ≡ 1. Finally, put

ρ
def
= E|M |, so that ρ ∈ (0,1) and furthermore

∑
k≥1E|Πk|= (1−ρ)

−1. Hence

∑

k≥1

E f (|Πk|) ≤ Λ
def
=

f ′(0+)

1−ρ
< ∞.

By combining these facts, we infer

I1 =

∫ ∞

0

f ′(x)

∫

(x/a,∞)

∑

k≥1

P{|Πk−1|> x/y} P{|Q| ∈ d y} d x

=

∫

(0,∞)

∫ a

0

y f ′(x y)
∑

k≥0

P{|Πk|> x} d x P{|Q| ∈ d y}

≤

∫

(0,∞)

∑

k≥0

E f
�

y(|Πk| ∧ a)
�
P{|Q| ∈ d y}

≤

∫

(1,∞)

∑

k≥0

E f
�

y(|Πk|)
�
P{|Q| ∈ d y} +

∑

k≥0

E f (|Πk|)

≤

∫

(1,∞)


 f (y)Eσ(1/y) +E

� ∑

k≥σ(1/y)

f (y |Πk|)

�
 P{|Q| ∈ d y} + Λ

≤

∫

(1,∞)


 f (y)Eσ(1/y) +E

� ∑

k≥σ(1/y)

f (|Πσ(1/y)+1:k|)

�
 P{|Q| ∈ d y} + Λ

=

∫

(1,∞)


 f (y)Eσ(1/y) +E

 ∑

k≥0

f (|Πk|)

!
 P{|Q| ∈ d y} + Λ

≤

∫

(1,∞)

2 f (y)J(| log y |) P{|Q| ∈ d y} + 2Λ

≤ 2E f (|Q|)J(log+ |Q|) + 2Λ.

But the final line is clearly finite by our given moment assumptions which completes the proof for
Case (C1).

Case (C2): As already announced, we will handle this case by using a stopping argument based on
the ladder epoch σ given in (31). We adopt the notation of the proof of Lemma 3.5, in particular
(σn)n≥0 denotes the sequence of successive ladder epochs associated with σ. Put further

bQn
def
=

σn∑

k=σn−1+1

|Πσn−1+1:k−1Qk|
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for n≥ 1 which are independent copies of bQ def
= bQ1 =Q(σ). Notice that

Z∗∞ =
∑

k≥1

bΠk−1
bQk. (46)

It will be shown now that condition (45) holds true with bQ instead of Q. Since bM = |Πσ| ∈ (0,1) a.s.
and thus satisfies the condition of Case (C1), we then arrive at the desired conclusion E f (Z∗∞)<∞.

By Lemma 2.2, there is a subadditive φ(x) of the same asymptotic behavior as f (x)J(log x), as
x →∞. Hence it suffices to verify Eφ(bQ)<∞. Use the obvious inequality

bQ ≤ sup
1≤k≤σ

|Πk−1|

σ∑

k=1

|Qk| = eQ
σ∑

k=1

|Qk|.

in combination with property (25) and the subadditivity of φ to infer

Eφ(bQ) ≤ C

 
Eφ(eQ) +E

 
σ∑

k=1

φ(|Qk|)

!!
.

But the right hand expression is finite because Eφ(eQ) < ∞ is ensured by (8) and Lemma 3.5 and
because

E

 
σ∑

k=1

φ(|Qk|)

!
= Eφ(|Q|)Eσ < ∞

follows from Wald’s identity, condition (9) and Eσ < ∞ which in turn is a consequence of our
assumption limn→∞Πn = 0 a.s.

Necessity. This is easier. Assuming (10) or, equivalently, E f (|Z∞|)<∞, we infer from Lemma 3.1

E f
�

sup
n≥1
|eΠn−1Qn|

�
≤ E f

�
sup
n≥1
|Πn−1Qn|

�
< ∞,

where eΠn
def
=
∏n

k=1(Mk ∧ 1), and thereupon E f (|Q|)J(log+ |Q|) <∞ by Lemma 3.4 (as P{|M ∧ 1| <
1}= P{|M |< 1}> 0).

Left with the proof of (8), we get E f (supn≥0 |Πn|) <∞ by another appeal to Lemma 3.1 and then
the assertion by invoking Lemma 3.5. This completes the proof of Theorem 1.2. �

5 Size-biasing and the results for Wn

5.1 Modified branching random walk

We adopt the situation described in Subsection 1.2. Recall thatZ denotes a generic copy of the point
process describing the displacements of children relative to its mother in the considered population.
The following construction of the associated modified BRW with a distinguished ray (Ξn)n≥0, called
spine, is based on [8] and [26].

Let Z ∗ be a point process whose law has Radon-Nikodym derivative m(γ)−1
∑

i=1 eγX i with respect
to the law of Z . The individual Ξ0 = ∅ residing at the origin of the real line has children, the
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displacements of which relative to Ξ0 are given by a copy Z ∗0 of Z ∗. All the children of Ξ0 form
the first generation of the population, and among these the spinal successor Ξ1 is picked with a
probability proportional to eγs if s is the position of Ξ1 relative to Ξ0 (size-biased selection). Now,
while Ξ1 has children the displacements of which relative to Ξ1 are given by another independent
copyZ ∗1 ofZ ∗, all other individuals of the first generation produce and spread offspring according to
independent copies of Z (i.e., in the same way as in the given BRW). All children of the individuals
of the first generation form the second generation of the population, and among the children of Ξ1

the next spinal individual Ξ2 is picked with probability eγs if s is the position of Ξ2 relative to Ξ1.
It produces and spreads offspring according to an independent copy Z ∗2 of Z ∗ whereas all siblings

of Ξ2 do so according to independent copies of Z , and so on. Let bZn denote the point process
describing the positions of all members of the n-th generation. We call { bZn : n = 0,1, ...} a modified

BRW associated with the ordinary BRW {Zn : n = 0,1, ...}. Both, the BRW and its modified version,
may be viewed as a random weighted tree with an additional distinguished ray (the spine) in the
second case. On an appropriate measurable space (X,G ) specified below, they can be realized as
the same random element under two different probability measures P and bP, respectively. Let

X
def
= {(t, s,ξ) : t ⊂ V, s ∈ F(t),ξ ∈ R(t)}

be the space of weighted spinal subtrees of V with the same root and a distinguished ray (spine),
where R(t) denotes the set of rays of t and F(t) denotes the set of functions s : V → R ∪ {−∞}

assigning position s(v) ∈ R to v ∈ t and s(v) = −∞ to v 6∈ t. Endow this space with G
def
= σ{Gn :

n= 0,1, ...}, where Gn is the σ-field generated by the sets

[t, s,ξ]n
def
= {(t ′, s′,ξ′) ∈ X : tn = t ′n, s|tn

= s′
|tn

and ξ|tn
= ξ′
|tn
}, (t, s,ξ) ∈ X,

and tn
def
= {v ∈ t : |v| ≤ n}. Let further Fn ⊂ Gn denote the σ-field generated by the sets

[t, s,•]n
def
= {(t ′, s′,ξ′) ∈ X : tn = t ′n and s|tn

= s′
|tn
}.

Then under bP the identity map (T,S,Ξ) = (T, (S(v))v∈V, (Ξn)n≥0) represents the modified BRW with
its spine, while (T,S) under P represents the original BRW (the way how P picks a spine does not
matter and thus remains unspecified). Finally, the random variable Wn : X→ [0,∞), defined as

Wn(t, s,ξ)
def
= m(γ)−n

∑

|v|=n

eγs(v)

is Fn-measurable for each n ≥ 0 and satisfies Wn =
∑
|v|=n L(v), where L(v)

def
= eγS(v)/m(γ)|v| for

v ∈ V. The relevance of these definitions with respect to the P-martingale {(Wn,Fn) : n = 0,1, ...}
to be studied hereafter is provided by the following lemma (see Prop. 12.1 and Thm. 12.1 in [8]
together with Prop. 2 in [14]).

Lemma 5.1. For each n ≥ 0, Wn is the Radon-Nikodym derivative of bP with respect to P on Fn.

Moreover, if W
def
= lim supn→∞Wn, then

(1) Wn is a P-martingale and 1/Wn is a bP-supermartingale.

(2) EW = 1 if and only if bP{W <∞}= 1.
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(3) EW = 0 if and only if bP{W =∞}= 1.

The link between the P-distribution and the bP-distribution of Wn is provided by

Lemma 5.2. For each n= 0,1, ..., bP(Wn ∈ ·) is a size-biasing of P(Wn ∈ ·), that is

EWn f (Wn) = bE f (Wn). (47)

for each nonnegative Borel function f on R. More generally,

EWn g(W0, ...,Wn) = bEg(W0, ...,Wn). (48)

for each nonnegative Borel function g on Rn+1. Finally, if {Wn : n = 0,1, ...} is uniformly P-integrable,

then also

EWh(W0,W1, ...) = bEh(W0,W1, ...). (49)

holds true for each nonnegative Borel function h on R∞.

Proof. Equation (48) is immediate by Lemma 5.1 when noting that (W0, ...,Wn) is Fn-measurable.
In the uniformly integrable case, Wn → W a.s. and in mean with respect to P which immediately

implies that W is the P-density of bP on F
def
= σ{Fn : n= 0,1, ...} and thereupon also (49).

5.2 Connection with perpetuities

Next we have to make the connection with perpetuities. For u ∈ T, let N (u) denote the set of
children of u and, if |u|= k,

Wn(u) =
∑

v:uv∈Tk+n

L(uv)

L(u)
, n= 0,1, ...

Since all individuals off the spine reproduce and spread as in the unmodified BRW, we have that,
under P as well as bP, the {Wn(u) : n = 0,1, ...} for u ∈

⋃
n≥0N (Ξn)\{Ξn+1} are independent copies

of {Wn : n= 0,1, ...} under P. For n ∈ N, define further

Mn
def
=

L(Ξn)

L(Ξn−1)
=

eγ(S(Ξn)−S(Ξn−1))

m(γ)
(50)

and

Qn
def
=

∑

u∈N (Ξn−1)

L(u)

L(Ξn−1)
=

∑

u∈N (Ξn−1)

eγ(S(u)−S(Ξn−1))

m(γ)
. (51)

Then it is easily checked that the {(Mn,Qn) : n = 1,2, ...} are i.i.d. under bP with distribution given
by

bP{(M ,Q) ∈ A} = E

�
N∑

i=1

eγX i

m(γ)
1A

�
eγX i

m(γ)
,

N∑

j=1

eγX j

m(γ)

��

= E

� ∑

|u|=1

L(u)1A

�
L(u),

∑

|v|=1

L(v)

��
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for any Borel set A, where (M ,Q) denotes a generic copy of (Mn,Qn) and our convention
∑
|u|=n =∑

u∈Tn
should be recalled from Section 1. In particular,

bP{Q ∈ B} = E

� ∑

|u|=1

L(u)1B

� ∑

|u|=1

L(u)

��
= EW11B(W1)

for any measurable B, that is
bP{Q ∈ d x} = x P{W1 ∈ d x}. (52)

Notice that this implies
bP{Q = 0}= 0. (53)

As for the distribution of M , we have

bP{M ∈ B} = E

� ∑

|u|=1

L(u)1B(L(u))

�

which is in accordance with the definition given in (15). As we see from (50),

Πn = M1 · ... ·Mn = L(Ξn), n= 0,1, ... (54)

Here is the lemma that provides the connection between the sequence {Wn : n = 0,1, ...} and the
perpetuity generated by {(Mn,Qn) : n = 0,1, ...}. Let A be the σ-field generated by {(Mn,Qn) :
n= 0,1, ...} and the family of displacements of the children of the Ξn relative to their mother, i.e. of
{S(u) : u ∈ N (Ξn), n≥ 0}. For n≥ 1 and k = 1, ..., n, put also

Rn,k
def
=

∑

u∈N (Ξk−1)\{Ξk}

L(u)

L(Ξk−1)

�
Wn−k(u)− 1

�

and notice that bE
�
Rn,k|A

�
= 0 because each Wn−k(u) is independent ofA with mean one.

Lemma 5.3. With the previous notation the following identities hold true for each n≥ 0:

Wn =

n∑

k=1

Πk−1

�
Qk + Rn,k

�
−

n−1∑

k=1

Πk
bP-a.s. (55)

and

bE
�
Wn|A

�
=

n∑

k=1

Πk−1Qk −

n−1∑

k=1

Πk
bP-a.s. (56)

Proof. Each v ∈ Tn has a most recent ancestor in {Ξk : k = 0,1, ...}. By using this and recalling (51)
and (54), one can easily see that

Wn = L(Ξn) +

n∑

k=1

∑

u∈N (Ξk−1)\{Ξk}

L(u)Wn−k(u)

= Πn+

n∑

k=1

Πk−1

�
Qk −

L(Ξk)

L(Ξk−1)
+ Rn,k

�

= Πn+

n∑

k=1

�
Πk−1

�
Qk + Rn,k

�
−Πk

�
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which obviously gives (55). But the second assertion is now immediate as bE(Πk−1Rn,k|A ) =

Πk−1
bE(Rn,k|A ) = 0 a.s.

5.3 Two further auxiliary results

We continue with two further auxiliary results about the random variables Wn under P and bP.

Lemma 5.4. Let {Wn : n = 0,1, ...} be uniformly integrable and put W ∗
def
= supn≥0 Wn. Then, for each

a ∈ (0,1), there exists b = b(a) ∈ R+ such that for all t > 1

P{W > t} ≤ P{W ∗ > t} ≤ bP{W > at}. (57)

As a consequence

E f (W )<∞ ⇔ E f (W ∗)<∞

for any non-negative nondecreasing concave function f . Replacing P with bP, the same conclusions hold

true (with b/a instead of b).

Proof. (57) is due to Biggins [6] for the case of a.s. finite branching (see Lemma 2 there) and has
been obtained without this restriction as Lemma 1 in [17] by a different argument. Its counterpart
under bP can be found as Lemma 3 in [18], but the following argument (for the nontrivial part)
using (57) and Lemma 5.2 is more natural and much shorter:

bP{W ∗ > t} = EW1{W ∗>t} [by (48)]

≤ EW ∗1{W ∗>t} [as W ≤W ∗ P-a.s.]

≤

∫ ∞

0

P{W ∗ > x ∨ t} d x

≤

∫ ∞

0

bP{W > a(x ∨ t)} d x

= (b/a)EW1{W/a>t}

= (b/a)bP{W > at} [by (49)]

for all t > 1, where the last line follows with Fatou’s lemma.

Lemma 5.5. Suppose that {Wn : n = 0,1, ...} is uniformly integrable. Then the following assertions

hold true:

(1) If P{W1 = 1}= 1, then P{W = 1}= bP{W = 1}= 1.

(2) If P{W1 = 1}< 1, then W is nondegenerate under both, P and bP.

Proof. The first statement follows as P{W1 = 1} = 1 implies P{Wn = 1} = 1 for each n ≥ 1 (use
Wn =

∑
|v|=n−1 L(v)W1(v) with independent W1(v) which are copies of W1 and independent of the

L(u), |u| = n − 1) and thereupon bP{Wn = 1} = 1 by (47). Conversely, if W is degenerate (by
(47) necessarily under both, P and bP), then the fixed point equation (14) for n = 1 combined with
EW = 1 yields

1 = W =
∑

|v|=1

L(v)W (v) =
∑

|v|=1

L(v) = W1 P-a.s.

which completes the proof.
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5.4 Proof of Theorem 1.3

Sufficiency. Suppose first that (18) and (19) hold true which, by Proposition 1.1, ensures∑
k≥1Πk−1Qk < ∞ P-a.s. Since Wn is nonnegative and P-a.s. convergent to W , the uniform P-

integrability follows if we can show EW = 1 or, equivalently (by Lemma 5.1), bP{W <∞} = 1. To
this end note that, by (56) and Fatou’s lemma,

bE(lim inf
n→∞

Wn|A ) ≤
∑

k≥1

Πk−1Qk < ∞ bP-a.s.

and thus lim infn→∞Wn < ∞ bP-a.s. As {1/Wn : n = 0,1, ...} constitutes a positive and thus bP-a.s.
convergent supermartingale by Lemma 5.1, we further infer W = lim infn→∞Wn and thereupon the
desired bP{W <∞}= 1.

Necessity. Assume now that {Wn : n = 0,1, ...} is uniformly P-integrable, so that EW = 1 and thus
bP{W <∞}= 1 by Lemma 5.1(2). Furthermore, P{W ∗ <∞}= 1 by Lemma 5.4. The inequality

Wn ≥ L(Ξn−1)
∑

v∈N (Ξn−1)

L(v)

L(Ξn−1)
= Πn−1Qn

bP-a.s. (58)

then shows that
sup
n≥1
Πn−1Qn ≤ W ∗ < ∞ bP-a.s. (59)

which in combination with P{M = 1} < 1 (see (17)) allows us to appeal to Theorem 2.1 in [13] to
conclude validity of (18) and (19). �

Remark 5.6. With a view to the subsequent proof of Theorem 1.4 it is useful to point out that the
previous proof has shown that, if {Wn : n = 0,1, ...} is uniformly P-integrable, then bP{W <∞} = 1
and

bE(W |A ) ≤ Z∞
def
=
∑

k≥1

Πk−1Qk
bP-a.s.

The last inequality has also been obtained by Biggins and Kyprianou, see [8], p. 573. Consequently,
if f : [0,∞) → [0,∞) denotes any nondecreasing and concave function, then an application of
Jensen’s inequality (for conditional expectations) in combination with (47) gives

EW f (W ) = bE f (W ) ≤ bE f (Z∞). (60)

5.5 Proof of Theorem 1.4

Sufficiency. Let Z∞ be defined as usual with Mk and Qk as in (50) and (51), respectively. Notice
that Z∗∞ =

∑
k≥1 |Πk−1Qk| = Z∞ in the present context. By Lemma 5.2 and (52), condition (20)

translates to
bEb(log+W1)J(log+W1) = bEb(log+Q)J(log+Q) < ∞,

and we may naturally replace b(log+ x) with the asymptotically equivalent concave function f from
Lemma 2.1. Since

M1 = L(Ξ1) ≤
∑

v∈T1

L(v) = W1,
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we also infer bE f (M)J(log+M) <∞. Hence the desired conclusion (21), equivalently EW f (W ) <

∞, follows by an appeal to Theorem 1.2 and (60).

Necessity. Suppose now uniform integrability of the Wn, P{W1 = 1} < 1 and EW f (W ) <∞ with f

as before. Then bP{W <∞}= 1 and bE f (W )<∞ by another appeal to (47). Next, Lemma 5.4 gives
bE f (W ∗)<∞ and then in combination with (58)

bE f
�

sup
k≥1

eΠk−1Qk

�
≤ bE f

�
sup
k≥1
Πk−1Qk

�
≤ bE f (W ∗) < ∞,

where eΠk =
∏k

j=1(M j ∧ 1) is defined as in the proof of Theorem 1.3, from which we further see
that the uniform P-integrability of the Wn ensures limn→ßΠn = 0 a.s. (Theorem 1.3) and thus
bP{0 < M < 1} > 0. Consequently, we can finally invoke Lemma 3.4 in combination with (52) to
conclude

bE f (Q)J(log+Q) = bE f (W1)J(log+W1) = EW1 f (W1)J(log+W1) < ∞

which proves (20). �
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