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1 Introduction

Since the seminal work of Pardoux-Peng [19], there have been numerous publica-
tions on Backward Stochastic Differential Equations (BSDEs) and Forward-Backward
SDEs (FBSDEs). We refer the readers to the book Ma-Yong [17] and the reference
therein for the details on the subject. In particular, FBSDEs of the following type
are studied extensively:

t t
X, :x+/ b(s,Xs,Ys,Zs)der/ o (5, Xy, Y,)dW,;
0 0

T T (1.1)
Vo= g(Xe)+ [ (s, XY Zds — [ ZuaW

where W is a standard Brownian Motion, 7" > 0 is a deterministic terminal time,
and b, o, f, g are deterministic functions. Here for notational simplicity we assume
all processes are 1-dimensional. It is well known that FBSDE (1.1) is related to the
following parabolic PDE on [0,7] x R (see, e.g., [13], [20], and [7])

{ Ut + %O’Q@? 'CC? u>u$$ + b(t7 SC, 'LL, U(t7 Qf, U)UI)UI + f(ta l’, ua U(ta :Ca U)'be) = 07 (1 2)
u(T,x) = g(x); ‘
in the sense that (if a smooth solution w exists)

Y =u(t, Xy), Zy =u.(t, Xe)o(t, Xy, ult, Xy)). (1.3)

Due to its importance in applications, numerical methods for BSDEs have re-
ceived strong attention in recent years. Bally [1] proposed an algorithm by using
a random time discretization. Based on a new notion of L%regularity, Zhang [21]
obtained rate of convergence for deterministic time discretization and transformed
the problem to computing a sequence of conditional expectations. In Markovian set-
ting, significant progress has been made in computing the conditional expectations.
The following methods are of particular interest: the quantization method (see, e.g.,
Bally-Pages-Printems [2]), the Malliavin calculus approach (see Bouchard-Touzi [4]),
the linear regression method or the Longstaff-Schwartz algorithm (see Gobet-Lemor-
Waxin [10]), and the Picard iteration approach (see Bender-Denk [3]). These methods
work well in reasonably high dimensions. There are also lots of publications on nu-
merical methods for non-Markovian BSDEs (see, e.g., [5], [6], [12], [15], [24]). But in
general these methods do not work when the dimension is high.

Numerical approximations for FBSDESs, however, are much more difficult. To our
knowledge, there are only very few works in the literature. The first one was Douglas-
Ma-Protter [9], based on the four step scheme. Their main idea is to numerically
solve the PDE (1.2). Milstein-Tretyakov [16] and Makarov [14] also proposed some
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numerical schemes for (1.2). Recently Delarue-Menozzi [8] proposed a probabilistic
algorithm. Note that all these methods essentially need to discretize the space over
regular Cartesian grids, and thus are not practical in high dimensions.

In this paper we aim to open a door to truly Monte-Carlo methods for FBSDEs,
without computing over all Cartesian grids. Our main idea is to transform the FBSDE
to a stochastic control problem and propose the steepest descent method to solve the
latter one. We show that the original (coupled) FBSDE can be approximated by
solving a certain number of decoupled FBSDEs. We then discretize the approximating
decoupled FBSDESs in time and thus the problem boils down to computing a sequence
of conditional expectations. The rate of convergence is obtained.

We note that the idea to approximate with a corresponding stochastic control
problem is somewhat similar to the approximating solvability of FBSDEs in Ma-
Yong [18] and the near-optimal control in Zhou [25]. However, in those works the
original problem may have no exact solution and the authors try to find a so called
approximating solution. In our case the exact solution exists and we want to approx-
imate it with numerically computable terms. More importantly, in those works one
only cares for the existence of the approximating solutions, while here for practical
reasons we need explicit construction of the approximations as well as the rate of
convergence.

The key to the proof is a new well-posedness result for FBSDEs. In order to
obtain the rate of convergence of our approximations, we need the well-posedness of
some adjoint FBSDEs, which are linear but with random coefficients. It turns out
that all the existing methods in the literature do not work in our case.

At this point we should point out that, unfortunately, our approximating decou-
pled FBSDEs are non-Markovian (that is, the coefficients are random), and thus we
cannot apply directly the existing methods for Markovian BSDEs. In order to make
our algorithm efficiently implementable, some further modification of Markovian type
is needed.

Although in the long term we aim to solve high dimensional FBSDESs, as a first
attempt and for technical reasons (in order to apply Theorem 1.2 below), in this
paper we assume all the processes are one dimensional. We also assume that b = 0
and f is independent of Z. That is, we will study the following FBSDE:

t
Xo=at [ s X, Y)W,
0

T T (1.4)
Vi=g(Xr) + [ fls, XoYo)ds = [ ZudW,.
t t
In this case, PDE (1.2) becomes
{ Uy + %az(t,x,u)um + f(t,z,u) = 0; (15)
u(T,z) = g(x); '
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Moreover, in order to simplify the presentation and to focus on the main idea, through-
out the paper we assume

Assumption 1.1 All the coefficients o, f, g are bounded, smooth enough with bounded
derivatives, and o is uniformly nondegenerate.

Under Assumption 1.1, it is well known that PDE (1.5) has a unique solution «
which is bounded and smooth with bounded derivatives (see [11]), that FBSDE (1.4)
has a unique solution (X,Y, Z), and that (1.3) holds true (see [13]). Unless otherwise
specified, throughout the paper we use (X, Y, Z) and u to denote these solutions, and
C,c > 0 to denote generic constants depending only on 7', the upper bounds of the
derivatives of the coefficients, and the uniform nondegeneracy of . We allow C| ¢ to
vary from line to line.

Finally, we cite a well-posedness result from Zhang [23] (or [22] for a weaker result)
which will play an important role in our proofs.

Theorem 1.2 Consider the following FBSDE

¢ ¢
Xi==x +/ b(w,s, Xs, Ys, Zs)ds —|—/ o(w,s, Xs, Ys)dWs;
0 T 0 T (1.6)
Y, = g(w, X7) +/ Flw,s, X, Ye, Z5)ds —/ Z.dW,:
¢ ¢

Assume that b, o, f, g are uniformly Lipschitz continuous with respect to (x,y, z); that
there exists a constant ¢ > 0 such that

oyb. < —clby + 0.b, + oy f2]; (1.7)
and that
2 A 2 2 T 2 2 2
15 2 B{a+ 9@, 0 + [ [bF + lo* + £%)(.1,0,0,0)dt} < oo.

Then FBSDE (1.6) has a unique solution (X,Y,Z) such that

T
B{ sup [|X, + Y]’ +/ ZPdt}y < O,
0<t<T 0
where C' is a constant depending only on T, c and the Lipschitz constants of the coef-
ficients.

The rest of the paper is organized as follows. In the next section we transform FB-
SDE (1.4) to a stochastic control problem and propose the steepest descent method;
in §3 we discretize the decoupled FBSDEs introduced in §2; and in §4 we transform
the discrete FBSDESs to a sequence of conditional expectations.
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2 The Steepest Descent Method

Let (€2, F, P) be a complete probability space, W a standard Brownian motion, 7" > 0

a fixed terminal time, F 2 {Fi}o<i<r the filtration generated by W and augmented

by the P-null sets. Let L?*(F) denote square integrable F-adapted processes. From

now on we always assume Assumption 1.1 is in force.

2.1 The Control Problem

In order to numerically solve (1.4), we first formulate a related stochastic control prob-

lem. Given yp € IR and z° € L*(F), consider the following 2-dimensional (forward)

SDE with random coefficients (2° being considered as a coefficient):

R}

t
X)) = x+/ o(s, X2, Y2)dw;
0, .
}/;0 = Yo _/ f(saX£>1/;O)d5 +/ ngWS;
0 0

and denote

1>
DO | —

Vo, 2°) 2 SE{[Y2 — g(XP)]*}.

Our first result is

Theorem 2.1 We have

T
E{ sup [|X; — X7 PP+ Y — V)7 —i—/o |2 — Z?|2dt} < OV (yo, 2%).

0<t<T

Proof. The idea is similar to the four step scheme (see [13]).
Step 1. Denote

AY; 2V —u(t, X0 AZ, 220 —uy(t, XO)o(t, X0, Y,).
Recalling (1.5) we have
d(AY,) = z/dW, — f(t, X}, Y)dt — u(t, X )o(t, X7, Y,)dW,
— |ualt, XP) + %um(t, XD)o?(t, X7, Y,)]dt
= AZdW, — Eum(t,Xf)JQ(t,Xf,Ko) + f(t,Xf,YtO)]dt

1
[t (b, XP)0? (8 X7, u(t, X7)) + £ (X7 u(t, X7)) e
= AthWt — OétA}/;fdt,
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where

A 1
Qy = 2AYtux$(t XO)[ 2(t7 Xz?a Y;SO) - 0-2(t’ Xi?? U(t, Xf))]
1
T Ay L (6 X0 V) = S X7 u(t, X))
is bounded. Note that AYr = Y — g(X?). By standard arguments one can easily get
T
E{ sup |AY]® + / AZ,Pdt} < CE{|AY1[?} = CV (g, 2°). (2.3)
0<t<T 0

Step 2. Denote AX; 2 X, - X?. We show that

E{ sup [AX*} < CV (o, 2°). (2.4)
0<t<T
In fact,
d(AX) = |o(t, Xy, ult, X,)) — ot, X7, V)| dW,.
Note that
U(t, Xt) — }/;0 = U(t, Xt) — U(t, XtO) — AK
One has

d(AX,) = [af AX, + ol AY;]dW,

where a! are defined in an obvious way and are uniformly bounded. Note that AXy =
0. Then by standard arguments we get

T
B{ sup |AX,P) < CE{/ AY;[%dt},
0<t<T 0
which, together with (2.3), implies (2.4).
Step 8. We now prove the theorem. Recall (1.3), we have
E{ sup |Y; — Y02+/ —Zt|2dt
0<t<T

= EB{ sup |u(t, X;) — u(t, X{) — AY,]?

0<t<T
T

+ / we(t, Xo)o (, Xoy ult, X1)) — ua(t, XO)or(t, X0, u(t, X0))
0

g (1, X))o (X0, ult, X0)) — (b, XD)o(t, X0, V) — AZ[ dt)

T
< CE{ sup [AX[* + AV +/ [AXP + |AYI + |AZ,[?]dt}
0<t< 0

S Cv(y(b )7

which, together with (2.4), ends the proof. [ |
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2.2 The Steepest Descent Direction

Our idea is to modify (yo,2°) along the steepest descent direction so as to decrease
V' as fast as possible. First we need to find the Fréchet derivative of V' along some
direction (Ay, Az), where Ay € R, Az € L*(F). For 6 > 0, denote

yg 2 Yo + 0Ay; 225 = zt + 0Az;

and let X% Y% be the solution to (2.1) corresponding to (yJ, 2%%). Denote:

VX0 = /O [00VX0 4 OVl
VYL = Ay — /0 VXD + FOVYO)ds + /0 NPT
VV (o, 2°) = B{[Y} — g(XP)][VYP — ' (X$) VX };
where ? = ©(s, X2 Y?) for any function ¢. By standard arguments, one can easily
show that
lim <[X00 - X = VXm0 ] = VY

0—0

1
(151—>H(1) 5[V(y07 z ’6) - v(yOJ ZO)] = vv(y(b ’ZO);

where the two limits in the first line are in the L?(F) sense.

To investigate VV (yo,2°) further, we define some adjoint processes. Consider
(X°,Y") as random coefficients and let (Y°,Y?, Z9 Z°) be the solution to the follow-
ing 2-dimensional BSDE:

V9 = P = g(X)) = [ LV + o020 — [ 20w

Y =g/ (XPIYT — 9(Xp)] + / [fOV0 + 6220 ds — / 204w, 2
We note that (2.5) depends only on (1o, 2°), but not on (Ay, Az).
Lemma 2.2 For any (Ay, Az), we have

YV (yo, 2°) = E{}_/OOAy + /OT ZfAztdt}.
Proof. Note that
VV(yo, 2°) = E{VRVY) — YRV XD},

Applying Ito’s formula one can easily check that

AYVY? — YV X0) = Z0Azdt + (---)dW,.
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Then
_ ~ T _ _ T _
VV(yo, %) = B{YIVYY — VIVXS+ [ Z0Andt} = B{VoAy+ [ Z0Adt).
0 0

That proves the lemma. [ |

Recall that our goal is to decrease V(yo,2%). Very naturally one would like to
choose the following steepest descent direction:

Ay £ Yy, Az = ~77. (2.6)

Then
_ T o _
YV (0o, 2%) = ~B{IVS + [ 1202t} .7)
0

which depends only on (o, 2°) (not on (Ay, Az)).
Note that if VV (yg,2°) = 0, then we gain nothing on decreasing V (yo, 2°). For-
tunately this is not the case.

Lemma 2.3 Assume (2.6). Then V'V (yg,2%) < —cV (yo, 2°).
Proof. Rewrite (2.5) as

_ _ t _ - t _
VO =V [y + 03 Z0ds + [ Z0aw;
0 0

i : T : T (2.8)
0= g (XY + [ 1Y+ 022 — [ Zaw.
t t

One may consider (2.8) as an FBSDE with solution triple (Y;, Yy, Z;), where Y} is the
forward component and (Y;, Z;) are the backward components. Then (Y?, Z°) are
considered as (random) coefficients of the FBSDE. One can easily check that FBSDE
(2.8) satisfies condition (1.7) (with both sides equal to 0). Applying Theorem 1.2 we
get

_ ~ T _ T _

B{ sup (V2P + [F0P)+ [ 1200t} < CI8 = CE{IWPF + [ 1Z01at)}.

0<t<T 0 0
In particular,

1% 0 —EE Y212y < CE{Y?)? TZ“d 2.9

(o, 2°) = SE{VPP} < CE{YQP + [ |Z]dt}. (2.9)

which, combined with (2.7), implies the lemma. |
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2.3 Iterative Modifications

We now fix a desired error level € and pick an (yo, z°). If we are extremely lucky that
V (yo,2°) < €%, then we may use (X Y, 2%) defined by (2.1) as an approximation of
(X,Y,Z). In other cases we want to modify (yo, 2°). From now on we assume

Vg, 2") > E{|Y7 — g(Xp)|'} < Ky (2.10)

where Ky > 1 is a constant. We note that one can always assume the existence of K
by letting, for example, yo = 0, 20 = 0.

Lemma 2.4 Assume (2.10). There exist constants Cy, co, c1 > 0, which are indepen-
dent of Ky and ¢, such that

A CoE
Av<y07 ZO) = V(yh Zl) - V(y07 ZO) S —%V(Qm ZO)? (211>
0
and
B{|Y} — g(X})|'} < K} 2 K§ +2C0e K3, (2.12)
where, by denoting A = 5,
0
A — A -
=10 — Ay oz =2 = A2 (2.13)

and, for 0 <60 <1,

Xe_;c+/ (5, X0, YO)dW,;

t ) (2.14)
Ve =y — OATY — / (s Xﬁ,yj)ds+/ 20— OAZ0dW,;

0

Proof. We proceed in four steps.
Step 1. For 0 < # < 1, denote

! = [Yf — g(X8)] - / £V + 09 70 ds / Z0aw;

VY = g (XD — g(X0)] + / FOV? + 00 70)ds — / 20dW.;
t

VXY = / 0!V X? 4 oYW
0

VY = V0 - / VXY + fOVY]ds / Z0dW,;
where f = o(t, X?,YP) for any function . Then

AV(yo, ") = 1E{[Y1 GO - Y2 - g(X2)]2)

— A / X[VYE — g (X3)V X4 Ldb.
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Following the proof of Lemma 2.2, we have

_ T _ _
AV (yo, 2°) = — / V79 + / Z020dt}do. (2.15)
0
Step 2. First, one can easily show that
5014 | [v0(4 Toz02 15012102 4
B sup (V01" + 1901+ ([ 1207 +120P%at)"} < CKy. (2.16)
0<t<T 0
Denote
A N
AXY =X - XD AY =Y Y
Then

axt= | [l AXY 1 BHAYY)AW,:
AY? = AV — /O 02 AX? 4 B2 AY?|ds — 0) /O " 20aw,
where o?, 3% are defined in an obvious way and are bounded. Thus, by (2.16),
E{ OZ?STHAXEF +[AYf [} < oM E{|V) + / |Z°|2dt) p<OKIN. (217)

Denot
enote )

g9 — 93]

which is bounded. For any constants a,b > 0 and 0 < A\ < 1, applying the Young’s

IID

9
Qp

Inequality we have
(@+b)" = a*+4(A7a)>(A75b) + 6(ATa)2(A71b)% + 4(Aia) (A" 12b)? + b
< [L+CNa* + CIAP+ AT+ A5 + 1" < [1+ CAJa* + CA3b*.

Noting that the value of A we will choose is less than 1, we have
E{|Yf - g(X)|'} = B{|YP — g(XD) + AV} — af AX]|*}
< [L+ONE{Y} — g(XP)[*} + CAE{|AYZ]* + |AXD[*|
< [1+ CNK;. (2.18)
Step 3. Denote
AY) EYP YD AVIEYS -V AZ)EZ)-2) AZNEZ-Z)
Then
AYY = [AY] — apAXT] — / [fOAY? + 09AZ0)ds / AZPdW,
—/tT[zOAfj + Z°Ao?)ds;
AY) = g (X])AY] — afAX])] +/ [FOAY? + 69 AZ0)ds — / AZ0dw,

Y= a(XPIAG0) + [ VAL + Z00olds,
t
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where

Af,(0) 2 £t X2 YE) = f,(t, X0, Y,2);

and all other terms are defined in a similar way. By standard arguments one has

_ ~ T _ ~
B{ sup [AYSP + AV + [ 1AZI2 + |AZ{ )
0<t<T 0
< CE{|AYRP + |AXD] + VP — g(XP)P|Ag (0)?
T . _ ~
+ /0 (IVPPIAL + AP + 1 Z0PIACYP + | Aok )| dt}
< CE{|AYRP + |AXD] + Y7 — g(XP)P|AXE
T _ ~
+ [CIFPR + 120 IAXT P + |AYY at)

< CE%{ sup [JAX?* + ‘AYQOW} X

0<t<T
1 T o ~ 2
BH{1+ Y7 — gQx) + ([ U907 +1201de))
< CKEN[1+ K2 < CK§A?,
thanks to (2.17), (2.10), and (2.16). In particular,
_ T _
E{|AY09|2+/ AZ{Pdt} < KN (2.19)
0
Step 4. Note that
B{vivy+ [ z0z0ar) — B{Y0P+ [ 1Z0pat)]
0 0

o T o

< B{IAYSYS) + [ 17020 \at)
0
< CB{|ATYP +/T AZ0Raty + L E{|Tep +/T 1202t
— 0 0 t 2 0 0 t
442 1 012 T ~012
< CKGN + SE{YSP + | |20 dt}.
2 0
Then, by (2.9) we have
E{Y9Y0+/T ZZ0dt}y > 1E{|Y/0|2+/T|ZO|2cht} — CKEN?
0-+0 0 t = 9 0 0 t 0
> cV(y,2") — CK A%

Choose ¢, = 56 for the constants ¢, C" as above, and A 2 45, Then by (2.10) we
0

get
g2 >

o T _ _
B{V{YY + /0 Z020dt) > ¢V (yo, ") V (g0, 2). (2.20)

c c
2 2
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Then (2.11) follows directly from (2.15).
Finally, plug A into (2.18) and let # = 1 we get (2.12) for some C. [ |

Now we are ready to approximate FBSDE (1.4) iteratively. Set
A A A 1
w=0, =0, K= EHY2 - g(X2)I'). (221)
For k =0,1,---,let (X*, Yk Yk Yk Z*k, Zk) be the solution to the following FBSDE:
—zt / 5, XF Y)W,
t
v —yk—/ Fls, X5, ¥ 9 ds—l—/ kAW
0 0
_ T _
V) = [¥F = g(Xh)] - [ 1V + 0} 28ds - / Zkaw,;
VFE = g (XE)YE — g(XE)] + / [FAYE 4 ok Z¥)ds — / Zhaw,,

(2.22)

We note that (2.22) is decoupled, with forward components (X*,Y*) and backward
components (Y* Y* ZF Z*). Denote

A C1€

A = A A
Ak = ﬁa Yk+1 = Yk — Ak%k> Zf“ = Zt )\ka7 K}irl = K}? + 2005[(/3, (2-23)
k

where ¢q, Cy are the constants in Lemma 2.4.

Theorem 2.5 There exist constants Cy,Cy and N < C1e=2 such that
V(yn, 2N) < 2

Proof. Assume V (y, 2*) > &% for k =0,---, N — 1. Note that K}, < (K7 + Cpe)™.
Then K72,, < K} + Coe, which implies that
K} < K§ + Coke.
Thus by Lemma 2.4 we have
Vg, 25 < [1= o

vy, ).
K§+Cok:e} (e, 25)

Note that log(1 — z) < —x for x € [0,1). For € small enough, we get

N-1

log(V (yx, =) < log(V/(0,0)) + 3 log (1 )

B Kg + Coke’f
N-1

1 N-1  dx
<(C — <C - /
sC-el prasC-c) 5

=C —c[log(N —1+¢7") —log(e")| = C — clog(1 + (N —1)).
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For ¢, C' as above, choose N to be the smallest integer such that
N>1+ 6*1[6%5’% —1].
We get

08(V (3 2)) < C — [ — Zlog(<)] = log(<?),

which obviously proves the theorem.

3 Time Discretization

We now investigate the time discretization of FBSDEs (2.22). Fix n and denote

2

t; a L,

T, At ; 1=20,---,n.

n

3| .

3.1 Discretization of the FSDEs
Given yo € IR and 2° € L*(F), denote

n70 A . n70 A .
Xto = T; }/;0 = Yo;

X2 X0+ o(t, X0 YO Wy = Wa ], t € (i tinl;
t
YRV = flan X0 VIOt + [ SR, e (tton].
t;
Note that we do not discretize z° here. For notational simplicity, we denote
X’Lﬂ’o éXZ?O? }/in’o é S/t?’o; [ 207"'7n‘

Define
JAN

1
Valwo,2%) 2 SE(IY = (X201},

First we have

Theorem 3.1 Denote
T
n A n, n,
10 £ B{ max[|X,, = X7P + Vi, =¥ + [ 12— 2t}

Then o
"% < CV,, (o, 2°) + o
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We note that (see, e.g. Zhang [21]),
max E{ sup [|X; — Xy, >+ Y: —

Osisn—1 ti<t<tit1

Yul'l} <

Q=3|Q

logn
- X P Y- Y Pl < =R

.
n

E{ max  sup [|X;

0<Z<7’L lt <t<t2+1

E{;/tim‘zt E{/ Zds}| dt}g

where E;{-} 2F {:|F:}. Then one can easily show the following estimates

Corollary 3.2 We have
E X — X"P + v, =Y P < CVi(yo, 2°) + —;
Jdnax {ti;ggiﬂ[! = XPUR Y = YPUPL) S OV, ) +
Cl
B max sup (X, — XPOP 4+ Y — YOI} < OValyo, 20) + —— 2
n

0<2<n 1 t <t<t1+1

141
E{ Zjo /t Z, —

E{/ 20ds}|? dt <CV(yO, )+;

Proof of Theorem 3.1. Recall (2.1). For i =0, -- -, n, denote

AX; 2 XD - X AY; 2V -

Then
AXyg=0; AY,=0;
AXip = AX, + /jiﬂ [[az‘lAXi + BIAY] + [o(t, X7, Y) — ot X,S,Y;?)] dWs;
DYy =AY, = [ [la2AX; + BAY] + (6 X2 YY) - f(0, X0, YD)

where o, 3/ € F,, are defined in an obvious way and are uniformly bounded. Then

E{|AX; 1]}
tit1
:E“A&F+/+“a
t;
C 2 2 ikl o 012 0 02
ZIAXL + 1AY +C [P - XD+ ¥ - Y2t

)
dt;

IAX, + BLAY] + [0t X0,Y0) - ot X0, Y0 dt)

< B{|AX:]” +

and, similarly,
E{|AY; )
12 Q 2 12 B G0 302 0 102
< B{AY + S[AXP + AV +C [ 1XD = XPP o+ Y = Yt .
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Denote

A; £ B{|AX,? + |AY ).
Then Ag = 0, and

C t
A < [0+ D14+ CB{ [ X0 - XD 4+ 1Y0 — Y Plat).

i

By the discrete Gronwall inequality we get

0<i<n

titr1
max A; < OZE{/ﬁ CIX? - XOP 4 Y2 - Y0Pt )
n—1 tiv1 t t t
< OZE{/ [/ o (s, X°, Y9 ds+|/ (5, X°,Y0) ds|2+/ |20[%ds] dt}
. . t; t;
< CZE{|At|2+ |At|3+At/ |2 Pt |
c C
<~ 4+YE / 0244\, .
—+ B | |2t (3.5)

Next, note that

Zl/ aJAX; + BIAY)] + [o(t, XP, Y1) — o(t;, X7, V)] | dWi;
i/ QFAX; + BAY;] — [f(t, X7, V0) = f(t;, XD, YD)t

Applying the Burkholder-Davis-Gundy Inequality and by (3.5) we get
c T
2 2 02
B{ max[|AX[? + [Ai[]} < =+ ZB{ [0},
which, together with Theorem 2.1, implies that
c c
I < OV (yo, %) + = + —E{/ 20 Pdt).
non
Finally, note that
V(yo, 2°) < CV,(yo, 2°) + CE{]AXn\Q + ]AYn|2} = OV, (4o, 2°) + CA,.

We get
c
1" < CViy(yo, 2°) + = + —E{/ 20Pdt).
n n
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Moreover, noting that Z; = w,(t, Xy)o(t, Xy, Y;) is bounded, we have

T T T
0)2 02 2
E{/O 29Pdt) < CE{/O 12, — 20| dt}+CE{/O 1Z,[dt}
T
< OE{/ 12, — 2Pt} + C.
0
Thus c o
" < CVi(yo, %) + — + — B / — 0Pt
< CValyo, )+ —B{ [ |2, = =t }.
Choose n > 2C for C' as above, by (3.3) we prove (3.4) immediately. |

3.2 Discretization of the BSDEs

Define the adjoint processes (or say, discretize BSDE (2.5)) as follows.
}_/nn,O é Yn,O _ (Xn,O); f/n,o A (Xn O) [Yn 0 (Xn O)]
VIO = YO 0 YROAL— o / Zidi / L zpaw; (36)

R O N / Z0dt / Z0dW;
ti—1

where "’ 2 o(t;, X1, Y70) for any function . We note again that Z™°, 2™ are
not discretized. Denote AW;, 4 2 Wi =Wy, 0 =0,---,n—1. Following the direction
(Ay, Az), by (3.1) we have the following gradients:

VXY =0, VY= Ay;
VXL = VP 4 [0l VT 4+ o Y AW

VYR = VY [r0VXTO 4 oy At + / AzdWV:
VVlyo, 2°) = E{[Y0 - g(X20)|[VY — ¢/ (X20)vx20)}.

Then
an(yo, ZO) = E{Y/‘J,Ovynn,o . Y/nn’OVX:’O}

" Zt”’oth] X

tn—1

= B[V YIS A+ ol 1/ 7m0t +

tn
[VYH”,’OI—[fo,NXZ’O Fra VYA + [ Azd Wy

tn—1
~ tn - tn
_[Ynn—’ol - fmn 1Yn01At azn 1/1L Ztmodt‘i'/t Zf’oth} X
n—1 n—1
(VX0 4 [0 VXS 4 o VY AW, |}

tn _
780 Azt + I3},

tn—1

- E{Y,{L;%VYn"ﬂ — YV X™ 4
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where

t;
oL g / 7m0t [ Azdw,

' tz 1
ti .
oL Ll VX + oy VYA, [ 200
(2
—o O[O VX 4 0 vy AL / 7m0t (3.7)
0 YUl VX A+ Y IVY"OHAtV

Repeating the same arguments and by induction we get
=n,0 T ono 0
VValyo, 2°) = E{¥g Ay + / ZPAzdt + Y17 (3.8)
0 i=1

.From now on, we choose the following “almost” steepest descent direction:

Ayé

_ L _ _
_yo, / AzdW, & B, [V} — 7. (3.9)
ti—1
We note that Az is well defined here. Then we have
Lemma 3.3 Assume (3.9). Then for n large, we have

an(yo, ZO) S _CVn(y07 ZO)'

Proof. We proceed in several steps.
Step 1. We show that

E{ max [[V"°] + |V +/ 1200 +1Z70Pldt} < CVi(yo, =) (3.10)

0<i<n

In fact, for any 1,
_ ~ t; _ ~
B{TP 4 V20 + [ 1200 + 120 °7at)

—E{

704 0 Y"OAH%“/ Ziodt|}

_yzl

t;
YTLO nO YnOAt yl 1/ Znodt‘

C 1,02 1,02 n,0(2 1 ti ~1,012 ~n,012
<[+ S+ 7y + Spenaey+ ga{ [ 1207 + 170 Plar)

Then

Vel Vel Lt ~n ~n C \ 1 \ T
E{IVP + V2 + 5/ 1220 + 1200 Plde ) < [1+ —JE{VP + V0.
ti—1 n
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By standard arguments we get

T ~
max B{[7""2 + ¥ }+E{/O 120 + 120 Pt}

< CE{|V + [V} < CValyo, 2°).

Then (3.10) follows from the Burkholder-Davis-Gundy Inequality.
Step 2. We show that

_ T
Va(yo, 2°) < CE{|Y3°2 + /O 12002t ).

In fact, for t € (t;,t;41], let

n(]A

n,0 n,0y,n,0 t~n,0 tin,O .
Y02 Ym0 g g0y ] 4 o™ [ Zn0ds + | Zr0dw;
t; t;

. - _ t . t
Y=Y = VOl — ) = o / Ze0ds + [ Zm0aw;

’ ’ t; ti

Denote m(t) = t; for t; € [t;,t;+1). Then one can write them as
}_/tn,O _ nO +/ an [Y'IZ(O) Y'sn,()]ds
~ t _

+/ 10 (s) V0 + 6™ (s ))ZQ’O]ds+/ Zm0dW,;

0

s

AL ) / FrO(r(s)IY5) — Vi0)ds

~ T .
+/ 70 (e () V20 + 070 (n (s))Zg’O]ds—/ 2004w,

t

Applying Theorem 1.2, we get
1 \ N

Vi(yo,2°) = §E{]Yn 012

_ T _ T 3
<CB{F P+ [1Z0Par+ [ 9 - Vg )

0 0
_ T n—1 tig1 _ B
E{|Ybn,0|2_|_/ |Zf,0|2dt+z/t |Y;n’O—YZ_L’O‘2dt}
i=0 Jti

< CE{|Yy |2+/ 1202

_ lit1 . tip1  _
roars [\3@”’0\2|At|2+At/ CNZEpa s [ 200 R )
=0 ti ti

. ro_ C
< CB{IV3"F + [ 120°Fdt} + = Valyo, ),
0 n
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thanks to (3.10). Choosing n > 2C, we get (3.11) immediately.
Step 3. By (3.9) we have

B / T|Azt+Zf’0|2dt} :nZOlE{\ /t ” AzdW; + /t “ Zioaw|)
{
{ P /f+ 2004t — Eif /t+ zroany[)

nO

nOPmOAL 4 ”OE{/ Zr0dty — Y;i?Jr/” ”Oth\}

IA
~
LML

E{ /tt+ 2702t} < %Vn(yo,zo), (3.12)
where we used (3.10) for the last inequality. Then,
B{vyay+ [ 200 nadey + BTGP + [ 1700}
= |B{ / Z"(Az + 270 dt}|
< CEa{/ |Zt"’0|2dt}E%{/ |Azt+Zf’0\2dt}

\/ y07ZO \/ ?JO,ZO yO: )

Assume n is large. By (3.11) we get
_ T _ 1
E{YO"’OAer/ 2 Aty < 5 B{|Y "°2+/ ZPOPdt) < —cVi(yo, 2°). (3.13)
0

Step 4. Tt remains to estimate I;' Y. First, by standard arguments and recalling
(3.9), (3.12), and (3.10), we have

0<i<n

T
E{ max VX! + [V} < CE{|Ay\2+/ Az [dt)
0
< CE{yY()”’OFJF/ 1Az + ZOP +1Z7°P)dt} < CVa(yo, 2°).  (3.14)
0
Then
‘Zn:E{I-”:O}‘ < Qi {/ 1]2?’0\2dt+/ti+l|Azt|2dt
i=1 ' - \/_ ti
+Hv ?°|2 VY OPIE (| AW: 1 [P} + [ A7) + [V P At

T . _ _
{02008 +120°8 + 182+ 270t

IN

c
—F
ND
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C n,012 n,012 n,02
+\/ﬁ0r£%E{|VX 2+ VYR 4 707

< Vil ) (3.15)

Recall (3.8). Combining the above inequality with (3.13) we prove the lemma for

large n. [ |

3.3 Iterative Modifications

We now fix a desired error level €. In light of Theorem 3.1, we set n = =2, So it
suffices to find (y, z) such that V,,(y,2) < &2 As in §2.3, we assume

Valyo, 2°) > €% B{Y0 — g(X10)|*} < K. (3.16)

Lemma 3.4 Assume (3.16). There exist constants Cy, ¢, c1 > 0, which are indepen-
dent of Ky and ¢, such that

CoE
AVa(yo. ) £ Valyr, =) = Valyo, 2°) < =753 V(o 2. (3.17)
0
and
B{|Y;" — g(Xph)|*} < K} 2 K¢+ 200e K2, (3.18)
where, recalling (3.9) and denoting A = ag,
0
g+ Ay 2 220+ A (3.19)
and, for0 <60 <1,
X2 a2 gy + 0AAY;
X = XM+ oty X0 Y0 AW (3.20)

t;
YLy XM Y AL+ / e+ OAAZ AW,
t;

Proof. We shall follow the proof for Lemma 2.4.
Step 1. For 0 < # < 1, denote

Vo LY (X0 V2 XY — ()
vl =yt — ol YL — o 1/ Zfedt—/ 20w

S A AN 1/ Zfedt—/ Zraw,,
’L 1
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and
VX =0, VY = Ay;
VXS = VX + [0l IVX oy VY AWy
tit1
VY = vyt - [0 4 vy At / " Azd Wy
ti
no A n,0 n,0 .
where ¢;"" = p(t;, X;"",Y;"") for any function ¢. Then
AVl 2") = E{[Y = g(XphP — (Y0 — g(x297?)
— A / B{[Y" — g(X2O[VY — g (X2 v X0 Ldb.

By (3.8) we have

1
AV, (yo, 2°) zA/ E{Y, ""Ay+/ ZtneAztdt—i—Z]ng} (3.21)
0 =1
where
e / 7m0 gt / Az dW,

+om? [0 VX 4 o 1VWAW/ 7m0 dt

oL VXE oy [C (3.22)
ti—1
yz lyne[f;lze IVinel +f A= lvny”AﬂQ

Step 2. First, similarly to (3.10) and (3.12) one can show that
Vel Vel T N ~n 2
B max (7701 + (7701 + ([ 1Z0°F + 120 + |A=fdt) '} < CKG. (3:23)

Denote

n@A n@A

Then

AXP? =0, AV = 0AAy;
AX] = AXT + [0 " AX] + B AYY | AW

ti
AY = AV — (02 AXPY 4 B2 AY) AL — O /t T AzdW;
where a{"), ﬁf’e are defined in an obvious way and are bounded. Thus, by (3.23),

E{ggix[mx 1AV} < coNE{ Ayl + (/0 Az dt) "} < CKGA
(3.24)
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Therefore, similarly to (2.18) one can show that
E{|Y;? — g(Xp0)[*} < [1 + CAKG. (3.25)
Step 3. Denote

= JANES = Snd D rn.f ~n.0
2 }/Znﬁ = Y;nﬁ _ Yin,O; 2 }/;n, = }/{L, o }/;n, ’

= VAN = ot YANI-- ot
AZM = 200 — 700 Az = 20— 2

?

Then
AY =AY — ol AX Y
AY = (X)) [AY — ap? AX ) + [Y{’O - g(XZ’O)]Ag’(n, 0);
AV = AV — 10 AYPOAE - o™ / CAZM g — / L AZMaw,
) ’ ti—1 ti—1
t.
N, n,0 Y on, n,0 .
_Ytingfy,iflAt - / Z OthUy,zeu
~ ~ _ s t; - t; -
AV =AY 4 0 AV A+ o / AZMdt— [ AZPP AW,
ti—1 ti—1
_ ti .
FYIAf AL + /t | ZMdtAaly ),
where
Xn,@ o Xn,O
ot £ IR I A 2 0, X7 ) — ol XX

" AXY

and all other terms are defined in a similar way. By standard arguments one has

_ ~ T _ ~
E{ max [|AY? + |AY"] + /0 1AZM ) +|AZM Pdt}

0<i<n
< CE{|AYP +[AXRP 4 V0 = g(X10)*|Ag (n, 6) ]
+Z I PIALE + 1A PAe+ [ | Z0Patiaoy P + 180z )]}
< OR{AYP + X + V0 - g PIAX P
S pace [z P A+ A

< CEH{ max X2 + 1AY1} x

0<i<n
T
1 no _ n,0y |4 .04 51,012 7.\ 2
B+ Y20 = g(X)* + mae [77° + ([ 120" 2at)")
< CKIN1+ K§) < CKGN?,
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thanks to (3.24), (3.16), and (3.23). In particular,
n,0 T ~n,0
B{|AY +/ AZPM Pt} < CEN. (3.26)
0
Step 4. Recall (3.12). Note that
_ T _ _ T _
’E{Y()”’(’Aer/o Zf’eAztdt}JrE{%”’O!QJr/ 1270 Pt )|
_ _ T _ _
< B{|AY Y| + / IAZP 200 + (|AZ°| +120°) | Az + 23| |dt |
1 _
< CE{\AYO"HIQJr/ IAZPP + Az + 200ty + S B{ 1Yy \2+/0 20t
< CK{MN + gVn(yO 2) + —E{|Y0”’0|2+/ 1202 dt}.
- 0 n ’ 2 0
Then
n,0 T ~n,0 1 n,012 T ~n,0|2 42 C 0
E{Yy Ay + | ZM'Azdt) < —SE{Y5P+ [ 1Z7°Pdt) + CEN + = Va(yo, 2°).
0 2 0 n
Choose n large and by (3.11) we get
n,0 T 0
E{Y;"' Ay + / 710 Nydt} < —cVa(yo, 2°) + CKA®. (3.27)
0
Moreover, similarly to (3.14) and (3.15) we have

n, n, - n C
E{ max VX + (VY] } < OValyo, 2°); |;E{]" < %Vn<?/0720)'

Then by (3.27) and choosing n large, we get

B{Yg Ay + / 200 Anydt + 3 I N < —eValyo, 2°) + CKEN.

=1

Choose ¢; 2 /3¢ for the constants ¢, C' as above, and A £ %5. Then by (3.8) and
0
(3.16), we have

005

c
AVn(Z/Oy ZO) S A[__Vn(ym ZO)] = V (yU: )
2 KO
Finally, plug A into (3.25) and let # = 1 to get (3.18) for some Cj. [ |
We now iteratively modify the approximations. Set
A A A g n, n
wo =0, 220, Ko= BV — g(X0). (3.28)



For k=0,1,---, define (X" yn+k ynk Yk Znk Z”k) as follows:

Xo*t S w9 S
X = = X+ ot XY AW (3.29)
Ynk A Yn,k n,k n,k ti+a k .

+1 — 44 _f<t17Xz 7}/;' )At+ 2t th7

1 1
ti

and
Yvnn,k é Ynn,k . (Xn,k); f/n,k é g (Xn k)D/n k (Xn k>]
}7171,{@ _ Y/in,k . yz 1Yn kAL — Uyz 1/ Ztn Rt — / Ztn det7 (330)
7, 1
~ ~ t»L tl
S U L / Zrkqp — / Zrkqw,
ti—1 ti—1
Denote .
Ay, 2 —7F, / AzFdW, £ E,_ (Y} — vk, (3.31)
ti—1
and
C1€
Ak 22 Yrk+1 2 Yr+ A AYk; Zf“ = 20+ Az K;Cl-‘rl = K +2Coe K}, (3.32)

el
where ¢q, Cy are the constants in Lemma 3.4. Then following exactly the same argu-

ments as in Theorem 2.5, we can prove

Theorem 3.5 Set n = c~2. There exist constants Cy,Cy and N < C1e~? such that

Vn(yN> ZN) S 52-

4 Further Simplification

We now transform (3.30) into conditional expectations. First,

A 1 tiv1 1 .
A At Z{/t Zfdt} - KtEi{}/i¥fAWi+1}-

Second, denote

A le

M = exp (of AW, — Sloni A, (4.1)
Then

11—

nk Ynk+0_nk Ynk:_ n,k Ez l{Yn,k}+O_nk Ez 1{?71,19}

:cz 1 y,i—1 :(:7, 1 y,i—1
nk n,k n,k
[ yz 1f a:z—l Y,i— l]Y At.

?n,k = Ez 1{Mn,k?n,k} + fn’-k meAt,
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Thus

_ 1 _ Un"k_1 Sk k
Vil = —— B (V) — 2B (Y M - 1)}
L+ fi8 At | O | (4.2)

ﬁﬁ’f = E’Lfl{MznkY/znk} + f;,’i]il?iﬁ’fAt-

When ¢F | = 0, by solving (3.30) directly, we see that (4.2) becomes

x,i—1

N 1 Vel n N,
Vot = —— e [B () — ol B VR AW Y
L+ it At (4.3)

Y = B {V) + LY AL

Now fix ¢ and, in light of (3.4), set n 22 Let c1, Cy be the constants in Lemma
3.4. We have the following algorithm.

First, set
Xg0 22 Y20
XIS 2 XM+ ot X0 Y AW,
Y2V - f(t, X0, Y A
and

n.0 A A L1 n n
G020, Ko = Ei{[y0 — g(Xp0)*}.

For k =0,1,---, if E{|Y,F — g(X¥)|?} < &2, we quit the loop and by Theorems 3.1,
3.4, and Corollary 3.2, we have

n—1 tiv1
B{ max (|, — X[P + Vi, = VP + 2 / |2 — 2 Pdt | < Ce?.
P =0 i

Otherwise, we proceed the loop as follows:

Step 1. Define (Y/*, Y*) by the first line of (3.30); and for s = n, - -, 1, define
(V2 V) by (4.2) or (43).

A ClE

Step 2. Let A\ = KL

S Ky 2 K} 4 200 K2 Define (XL ymktl onkty by
k

Yo 2 Yt - Y
XA 2 X o, XY AW
Yﬁr’fﬂ é Y;_mk—i—l . f(ti’X;L,k-‘rl’ Yin,kﬂ)At
Y = Y G X YA A BV - Vi

nk+1 &
Xo =

I
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and

nht1 & 1 n
i’kH:A—t z’{Yi#fHAWiH}- (4.5)

We note that in the last line of (4.4), the two terms stand for [/"*' zFdW, and
ftii“ AzEdW;, respectively.

By Theorem 3.4, the above loop should stop after at most C;e~2 steps.
We note that in the above algorithm the only costly terms are the conditional
expectations:

EAYInY, EAYATYL E{AWmYinY,  BAMIAYINY or E{AWL Y.
(4.6)
By induction, one can easily show that

nk _  nk n,k n,k
Y; = Uy (XO 7"'>Xi )7

)

for some deterministic function u}"*. Similar properties hold true for (V;** v;"").
However, they are not Markovian in the sense that one cannot write ;™% v;™* vy,
as functions of X' ok only. In order to use Monte-Carlo methods to compute the
conditional expectations in (4.6) efficiently, some Markovian type modification of our

algorithm is needed.
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