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Abstract

We give new exponential inequalities and Gaussian approximation results for sums of weakly de-

pendent variables. These results lead to generalizations of Bernstein and Hoeffding inequalities,

where an extra control term is added; this term contains conditional moments of the variables.
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1 Introduction

In the whole paper (X i)1≤i≤n is a sequence of centered random variables. Our objective is to give

new exponential inequalities and Gaussian approximation results for the sum S = X1 + · · · + Xn

(and other functions of (X1, . . . Xn)) in the case where first and second order mixing conditions are

assumed (first order mixing conditions involve conditionnal means and second order ones involve

conditionnal covariances).

The essential application of exponential inequalities is to give small event probabilities; typically, we

would like here to extend the Hoeffding and Bernstein inequalities to mixing processes, that is

P(S ≥ A)≤ exp

�

−
2A2

∑

i b2
i
+ρ

�

, ai ≤ X i ≤ ai + bi (1)

P(S ≥ A)≤ exp

�

−
A2

2E[S2] + 2Am/3+ρ

�

, m= sup
k

‖Xk‖∞ (2)

where ρ = 0 if the variables are independent. We shall obtain here a value of ρ which depends on

conditional moments of the variables. We also want to provide inequalities which generalize what

is already known for martingales. Actually Equation (2) is not satisfied for a martingale (E[S2] has

to be replaced with a bound on the total variation); this will lead us to two different alternatives

P(S ≥ A)≤ exp

�

−
A2

2v + 2Am/3+ρ

�

, (3)

where v is a bound on some kind of quadratic variation and ρ = 0 in the case of a martingale (cf.

Theorem 4 for a precise statement), or

P(S ≥ A)≤ exp



−
A2

2E[S2] +
p

2Aρ1/3



 , (4)

where ρ1 is a third order quantity (i.e. if S is replaced with tS, ρ1 becomes t3ρ1) which involves

conditional moments and is in the independent case ρ1 =
∑

Var(Xk)‖Xk‖∞+‖X 3
k
‖∞/2 (Theorem 7

and Theorem 9). For instance, if we are close to the independent case and S is a normalized sum,

that is Xk = Uk/
p

k where (Uk)k is a sequence of weakly dependent bounded random variables, ρ1

has order 1/
p

n and the second term in the denominator is residual as long as A≪pn.

Bounds like Equation (3) will be obtained through what we call here the first order approach

whereas (4) will require the second order approach. We present the main ideas below.

First order approach. Considering the sequence X1, . . . Xn as a time series, for instance a martin-

gale, it is natural to introduce the σ-fields

Fk = σ(X1, . . . Xk). (5)

It will appear that the remainder ρ will involve essentially the L∞ norm of the conditional expec-

tations E[X j |Fk], k < j. If the sequence is a random field this filtration will generally not be very

useful because of the arbitrariness of the order on the variables, and we shall need to proceed as

follows: to each index k we associate a reordering of the sequence which corresponds (hopefully) to

increasing dependence with Xk; this brings on a new sequence, depending on k: X k
j
. More precisely:
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For any 1 ≤ k ≤ n is given a sequence X k
j
, j = 1, . . . k, which is a reordering of (X j , j = 1, . . . k)

with X k
k
= Xk. We attach to each k a family of σ-algebras (Fk

j
) j≤k such that

F
k
j ⊃ σ(X

k
i , i ≤ j), j ≤ k. (6)

In particular, we have

F
k
k ⊃ Fk

F
k
k−1 ⊃ Fk−1.

If (X i) is a time series, it is natural to set X k
i
= X i and F

k
j
= F j = σ(X i , i ≤ j): the superscripts can

be dropped. Later on, the term “times series” will refer to to this situation, whereas the general case

will be rather refered to as “random fields”.

Xn

F
k

XkXk−1 Xk+1

X1

XkXk−1 Xk+1

Xn

Fk
j

When dealing with mixing random fields of Rd , each index k corresponds to some point Pk of

the space where Xk sits; for each k, the sequence (X k
j
) will be typically obtained by sorting the

original sequence (X j) j≤k in decreasing order of the distance d(Pj, Pk). A simple example is the case

of m-dependent fields indexed by Zd , that is, a process Xa, a ∈ Zd , such that the set of variables

XA = {Xa : a ∈ A} is independent of XB if the sets A and B have distance at least m; they are typically

fields of the form Xa = h(Ya+C) where Ya is an i.i.d. random field, C a finite neighborhood of 0 in

Z
d , and h a measurable function of |C | variables.

We would like to point out that this framework covers quite different situations. For instance, in the

Erdös-Rényi model of an unoriented random graph with n vertices, edges are represented by
�n

2

�

i.i.d. Bernoulli variables Yab, 1 ≤ a < b ≤ n, with the convention Yab = Yba and Yaa = 0 (see [2]

and references therein). The number of triangles (for instance) in such a model is

∑

a,b,c

YabYbcYac =
∑

a,b,c

Xabc .

The process X is here an m-dependent process on the set of three element subsets of {1, . . . n}. We

shall treat this example in Section 3.5. As pointed out by Lumley [14], a similiar situation appears

in the case of U-statistics; we shall however treat them with a martingale method.

Within this framework, we are able to control exponential moments of S with the help of formulas

which generalize the Hoeffding and Bernstein inequalities for independent variables (Theorem 2
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and Theorem 3). The bound of Theorem 2 involves v =
∑

k ‖E[X 2
k
|Fk

k−1
]‖∞, and a remainder term

involving conditional expectations ‖E[Xk|Fk
i
]‖∞. This is slightly unsatisfactory since it is known that

the key quantity in the case of a martingale is the quadratic variation 〈X 〉=
∑n

k=1 E[X 2
k
|Fk−1], and in

most cases effective bounds will actually involve ‖〈X 〉‖∞, which is smaller than v. This is corrected

in Theorem 1, where we give a result which generalizes what is known from martingale theory

and improves on classical papers concerned with mixing [6]. However, inspection of the bounds

shows that this improvement is really effective only if the conditional expectations |E[Xk|Fk
i
]| are

significantly smaller than |Xk|; if not, the only way to improve accuracy is to use the second order

approach of Section 3 briefly discussed below.

Second order results. By this terminology, we mean the following fact: the Hoeffding inequality

(Equation 1 with ρ = 0) for instance is obtained from the exponential inequality

E[etS]≤ et2
∑

i b2
i
/8. (7)

One obvious drawback of this upper bound is that when t tends to 0, it does not look like 1+t2E[S2].

One would rather expect something like

E[etS]≤ et2E[S2]/2+C t3

(8)

which has more interesting scaling properties; this approach would hopefully lead to significant

improvements in a moderate deviation domain; this is what has been done in [5], but there S is

an arbitrary function of independent variables, or of a Markov chain. In order to get closer, like

in Equation (34) and (41) below, we have to pay with higher order extra terms: the remainder

terms will not only contain conditional expectations E[Xk|Fk
i
] but also conditional covariances; this

will force us to consider for each pair of indices (i, j) another reordering of the sequence which

corresponds to increasing dependence with the pair (X i, X j), and to introduce σ-fields H
i j

k
; we

postpone details to Section 3.

In this context we shall give exponential inequalities and Gaussian approximation; we give in partic-

ular a bound for |E[h(X )]−E[h(N)]| where h is any function of n variables with all third derivatives

bounded and N is a Gaussian random variable with same covariance matrix as X .

The paper is organized as follows. The two forthcoming sections deal with first order and second or-

der exponential inequalities. A classical use of the exponential inequalities leads to Theorem 4 which

generalizes the Bernstein and Hoeffding inequalities. An application to concentration inequalities

and triangle counts is given in Section 2.2.

Section 3 is concerned with the second order approach, with applications to bounded difference

inequalities and triangle counts.

In Section 4 we give some estimates under mixing assumptions.

2 First order approach

2.1 General bounds

This section is devoted to bounds for the Laplace transform of S. The corresponding deviation

probabilities will be obtained in Section 2.2.1 through classical arguments.
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In Theorem 1 we present bounds which generalize known results concerning martingales. Since

they only use the linear sequence of σ-fields Fk, they are essentially interesting for time series.

In Theorem 2 we give a Hoeffding bound which is valid in both cases (time series and random

fields), and Theorem 3 gives a Bennett bound for random fields which does not exactly generalizes

(9) because the quadratic variation 〈X 〉 is changed into the more drastic upper bound v.

The applicability of the following theorem depends on the way one can bound the quadratic varia-

tions involved. In the forthcoming examples, we shall consider only Equation (9) through a bound

on ‖〈X 〉‖∞; however Equations (10) and (11) have the advantage of not involving m.

Theorem 1. We are in the setting described in the introduction, with the filtration defined by (5). The

variables Xk are centered. We define

m= sup
1≤k≤n

ess sup Xk

[X ] =

n
∑

k=1

X 2
k

〈X 〉=
n
∑

k=1

E[X 2
k |Fk−1]

[X+] =

n
∑

k=1

(Xk)
2
+

〈X−〉=
n
∑

k=1

E[(Xk)
2
−|Fk−1]

q =

n
∑

k=1

k−1
∑

i=1

‖X i‖∞‖E[Xk|Fi]‖∞

where the notation x2
+ (resp. x2

−) stands for x21x>0 (resp. x21x<0). Then

E

�

exp

�

S −
〈X 〉
m2
(em−m− 1)

��

≤ e4q (9)

E

�

exp

�

S −
1

2
[X+]−

1

2
〈X−〉

��

≤ e4q (10)

E

�

exp

�

S −
1

6
[X ]−

1

3
〈X 〉
��

≤ e4q. (11)

REMARK. In the martingale case q = 0. We recommend [1] for an account on recent work concerning

exponential inequalities for martingales.

Proof. Consider a pair of functions θ (x) and ψ(x) such that

ψ ≥ 0, ex−θ (x) ≤ 1+ x +ψ(x). (12)
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These functions are meant to be O(x2) in the neighborhood of 0. Three examples of such functions

are

θ (x) = 0, ψ(x) = ex − x − 1

θ (x) = ζ(x+), ψ(x) = ζ(x−), ζ(x) = e−x + x − 1

θ (x) =
x2

6
, ψ(x) =

x2

3
.

Inequality (12) for these functions is proved in Proposition 12 of the Appendix. Set

Tk =

k
∑

i=1

X i − θ (X i)− log(1+ ξi), where ξi = E[ψ(X i)|Fi−1].

Then

E[eTn] = E[eXn−θ (Xn)(1+ ξn)
−1eTn−1]

≤ E[(1+ Xn+ψ(Xn))(1+ ξn)
−1eTn−1]

= E[Xn(1+ ξn)
−1eTn−1] + E[eTn−1]

= E[Xn((1+ ξn)
−1− 1)eTn−1] + E

n−1
∑

i=1

Xn(e
Ti − eTi−1) + E[eTn−1]

= r1+ r2+ E[eTn−1].

In the martingale case, the first two terms are zero; here we have

r1 = E[E[Xn|Fn−1]e
Tn−1ξn/(1+ ξn)]≤ E[|E[Xn|Fn−1]|eTn−1](‖ψ(Xn)‖∞ ∧ 1).

The above defined functionψ is convex withψ(0) = 0,ψ(−1)≤ 1 andψ(1)≤ 1. Hence |ψ(x)|∧1≤
|x | and therefore

r1 ≤ ‖Xn‖∞‖E[Xn|Fn−1]‖∞E[eTn−1].

Let ∆i = Ti − Ti−1; the second remainder is bounded as follows:

r2 = E

n−1
∑

i=1

Xn tanh(∆i/2)(e
Ti + eTi−1)

≤ E

n−1
∑

i=1

|E[Xn|Fi]∆i |(eTi + eTi−1)/2

≤
n−1
∑

i=1

‖E[Xn|Fi]∆i‖∞ sup
j≤n−1

E[eT j].

Equation (53) of the Appendix implies that | tanh(∆i)| ≤ 3‖X i‖∞, hence

r2 ≤ 3ρn sup
i≤n−1

E[eTi], ρn =

n−1
∑

i=1

‖X i‖∞‖E[Xn|Fi]‖∞.
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Finally

E[eTn]≤ (1+ 4ρn) sup
i≤n−1

E[eTi]≤ exp(4ρn) sup
i≤n−1

E[eTi]

and we get by induction that

sup
i≤k

E[eTi]≤ exp(4

k
∑

i=1

ρi).

In particular

E



exp

(

n
∑

i=1

X i − θ (X i)− log(1+ E[ψ(X i)|Fi−1])

)

 ≤ exp(4q)

hence

E[exp{
n
∑

i=1

X i − θ (X i)− E[ψ(X i)|Fi−1]}]≤ exp(4q).

This leads to the three bounds by using the three pairs of functions and by noticing that for m ≥ 0

and x ≤ m

ϕ(x)≤ ϕ(m), ϕ(x) =
ex − x − 1

x2
(13)

which is a consequence of L’Hospital’s rule for monotonicity [? ], and that for x ≥ 0

ζ(x)≤
x2

2

since the function x2/2− ζ(x) has a non-negative derivative.

Theorem 2. Assume that we are in the setting described in the introduction, with a family of σ-fields

satisfying (6). The variables Xk are centered. We define now q as

q =

n
∑

k=1

k−1
∑

i=1

‖X k
i ‖∞‖E[Xk|Fk

i ]‖∞

(this is consistent with the definition in Theorem 1). If the variables are lower and upper bounded with

probability one:

ai ≤ X i ≤ ai + bi (14)

the following inequality holds

E



exp

 

S −
1

8

∑

i

b2
i

!

 ≤ e8q. (15)

In the martingale case (Fk
i
= Fi and E[X i |Fi−1] = 0 for all i and k), this inequality remains true if we

allow ai and bi to be an Fi−1-measurable random variables.
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Proof. We assume first that ai and bi are deterministic. We start, as in the proof of the Hoeffding

inequality, with the following inequality based on the majoration of the exponential function by the

chord over the curve on [a, a+ b]:

ex ≤
(a+ b)ea − aea+b

b
+ x

ea+b − ea

b
, a ≤ x ≤ a+ b.

ec

ex

a a + b xc

It is well known that the first term of the right hand side, ec on the figure, is smaller than exp(b2/8)

independently of a (this a key step for proving the Hoeffding inequality, see for instance Appendix

B of [? ]). On the other hand, it is clear that c ≤ a+ b (see the figure or bound ea with ea+b in the

expression of ec). Hence, if we define ci and di with the equations

ci =min(
b2

i

8
, ai + bi), di = eai

ebi − 1

bi

we have

ex ≤ eci + di x , ai ≤ x ≤ ai + bi .

Now let the random variables T j and T k
j

be defined as

Tk =

k
∑

i=1

(X i − ci), T k
j =

j
∑

i=1

(X k
i − ck

i )

where (ck
i
)i≤k is the corresponding reordering of the sequence (ci)i≤k. We obtain

E[eTn] = E[eXn eTn−1−cn]

≤ E[(ecn + dnXn)e
Tn−1−cn]

In the martingale case, the term involving dn vanishes and this equation gives immediately the

result. We assume now that we are not necessarily in this case but ai and bi are deterministic. We

can assume in addition, without loss of generality, that ai and bi are chosen so that (14) is tight.

Notice that in this case we also have ai ≤ 0≤ ai+ bi since E[X i] = 0. The previous equation implies

E[eTn]≤ dne−cn E[XneTn−1] + E[eTn−1]

= dne−cn E

n−1
∑

i=1

Xn(e
T n

i − eT n
i−1) + E[eTn−1]

= dne−cn r2+ E[eTn−1]. (16)
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Let ∆i = T n
i
− T n

i−1 = X n
i
− cn

i
; bounding r2 as in the proof of Theorem 1 we get

r2 = E

n−1
∑

i=1

Xn tanh(∆i/2)(e
T n

i + eT n
i−1)

≤ E

n−1
∑

i=1

|E[Xn|Fn
i ]∆i |(eT n

i + eT n
i−1)/2

≤
n−1
∑

i=1

‖E[Xn|Fn
i ]∆i‖∞ sup

j≤n−1

E[e
T n

j ]

and since

|∆i | ≤max(an
i + bn

i − cn
i , cn

i − an
i )≤ bn

i ≤ 2‖X n
i ‖∞

(bn
i

is the difference between the essential supremum and the essential infimum) we get that

r2 ≤ 2ρn sup
i≤n−1

E[eT n
i ], with ρn =

n−1
∑

i=1

‖X n
i ‖∞‖E[Xn|Fn

i ]‖∞.

On the other hand since ai ≤ 0 the Equation (55) in Propostion 13 of the Appendix leads to dne−cn ≤
4 and (16) becomes finally

E[eTn]≤ (1+ 8ρn) sup
i≤n−1

E[eT n
i ]≤ e8ρn sup

i≤n−1

E[eT n
i ].

For any sequence α ∈ {0,1}n set

Tk(α) =

k
∑

i=1

αi(X i − ci).

The bound we obtained is still obviously valid for Tn(α) since the replacement of X i with αiX i does

not increases ρn, hence

sup
α

E[eTn(α)]≤ e8ρn sup
α

sup
i≤n−1

E[eT n
i
(α)] = e8ρn sup

α
E[eTn−1(α)]

and we get

E[eTn]≤ exp

 

8

n
∑

i=1

ρi

!

.

We obtain (15) by using that ci ≤ b2
i /8 in the expression of Tn.

Theorem 3. Assume that we are in the setting described in the introduction, with a family of σ-fields

satifying (6). The variables Xk are centered. We define

v =

n
∑

k=1

‖E[X 2
k |Xk−1, . . . X1]‖∞,

m as in Theorem 1, and q as in Theorem 2. Then for any t > 0

E[eS]≤ exp

�

v

m2
(em−m− 1) + q

�

. (17)
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Proof. We set

Si = X n
1 + X n

2 + · · ·+ X n
i , i ≤ n

and S0 = 0. Equation (13) implies that

eXn ≤ 1+ Xn+ X 2
nϕ(m)

hence

E[eS]≤ E[(1+ Xn+ X 2
nϕ(m))e

Sn−1]

= E

n−1
∑

i=1

Xn(e
Si − eSi−1) + E[(1+ X 2

nϕ(m))e
Sn−1]

= E

n−1
∑

i=1

XnX n
i

tanh(X n
i
/2)

X n
i

(eSi + eSi−1) +ϕ(m)E[X 2
neSn−1] + E[eSn−1]

≤ E

n−1
∑

i=1

‖E[Xn|Fn
i ]X

n
i ‖∞(e

Sn
i + eSi−1)/2+ϕ(m)E[E[X 2

n |F
n
n−1]e

Sn−1] + E[eSn−1]

≤ (1+ qn+ϕ(m)vn) sup
i≤n−1

E[eSi]

≤ eqn+ϕ(m)vn

sup
i≤n−1

E[eSi]

where qn and vn are the terms corresponding to k = n in the definition of q and v. This proves the

result by induction.

2.2 Applications

2.2.1 Deviation bounds

In this section we give the deviation inequalities that can be deduced from the preceding exponential

inequalities. We generalize the Bernstein inequality in Equations (18) and (22), and the Hoeffding

inequality in Equation (21); one could get Bennett inequalities through a similar process, we refer

to Appendix B of [? ]. In the martingale case, Equations (19) and (20) do not assume that the

variables are bounded, but sums of squares are involved.

Theorem 4. With the notations of Theorem 1 we have for any A, y > 0

P(S ≥ A, 〈X 〉 ≤ y)≤ exp

�

−
A2

2(y + 8q) + 2Am/3

�

(18)

P(S ≥ A, [X+] + 〈X−〉 ≤ y)≤ exp

�

−
A2

2(y + 8q)

�

(19)

P(S ≥ A, [X ] + 2〈X 〉 ≤ 3y)≤ exp

�

−
A2

2(y + 8q)

�

. (20)
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With the notations of Theorem 2 and 3 we have for any A, y > 0

P(S ≥ A,
∑

i

b2
i ≤ 4y)≤ exp

�

−
A2

2y + 32q

�

(21)

P(S ≥ A)≤ exp

�

−
A2

2(v + 2q) + 2Am/3

�

. (22)

In the martingale case, (21) remains true if we allow ai and bi to be an Fi−1-measurable random

variable.

REMARK. Equation (21) is analogous to Corollary 3(a) of [6].

Proof. Applying the bound (9) to the variables tX i for some t > 0, we get

log P(S ≥ A, 〈X 〉 ≤ y)≤ log E[exp{t(S − A)−
t2〈X 〉 − t2 y

t2m2
(etm− tm− 1)}]

≤ 4t2q+
y

m2
(etm− tm− 1)− tA

≤
y + 8q

m2
(etm− tm− 1)− tA.

The optimization of this expression w.r.t. t ≥ 0 is classical in the theory of Bennett and Bernstein

inequalities and delivers (18); see for instance the Appendix B of [? ]. The second inequality is

deduced from (10) with the same method: for V = [X+] + 〈X−〉 or V = ([X ] + 2〈X 〉)/3 one has

log P(S ≥ A, V ≤ y)≤ log E[etS−tA−t2(V−y)/2]≤ 4t2q+ y
t2

2
− tA

and we take t = A/(y + 8q).

Equations (21) and (22) are obtained similarly.

2.2.2 Bounded difference inequalities

The above results lead straightforwardly to bounded difference inequalities by using a classical

martingale argument of Maurey [? ]. Equation (26) is the McDiarmid inequality [? ]. Equation (25)

is a Bernstein inequality in the same context.

Theorem 5. Let Y = (Y1, . . . Yn) be a zero-mean sequence of independent variables with values in some

measured space E. Let f be a measurable function on En with real values. Set

S = f (Y )− E[ f (Y )]

Dk(y, z) = f (Y1, . . . Yk−1, y, Yk+1 . . . Yn)− f (Y1, . . . Yk−1, z, Yk+1 . . . Yn)

Φk = sup
y,z

E[Dk(y, z)|Y1, . . . Yk−1] (23)

∆k = f (Y )− E[ f (Y )|Y1, . . . Yk−1, Yk+1 . . . Yn] = E[Dk(Yk, Y ′k)|Y ]
m= sup

k

ess sup∆k
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where Y ′
k

is an independent copy of Yk. We assume the measurability of Φk. Then for any A, y > 0

P(S ≥ A,
∑

k

Φ2
k ≤ 4y)≤ exp

�

−
A2

2y

�

(24)

P(S ≥ A,
∑

k

E[∆2
k |Y1, . . . Yk−1]≤ y)≤ exp

�

−
A2

2y + 2Am/3

�

. (25)

In particular

P(S ≥ A)≤ exp

�

−
2A2

∑

k δ
2
k

�

(26)

δk = ‖Dk(Yk, Y ′k)‖∞.

REMARK. Let us mention that if f has the form f (Y ) = supg∈Γ g(Y ) for some finite class of functions

Γ then, with obvious notations,

Dk(y, z) = sup
g∈Γ

g(Y1, . . . Yk−1, y, Yk+1 . . . Yn)− sup
g∈Γ

g(Y1, . . . Yk−1, z, Yk+1 . . . Yn)

≤ sup
g∈Γ
{g(Y1, . . . Yk−1, y, Yk+1 . . . Yn)− g(Y1, . . . Yk−1, z, Yk+1 . . . Yn)}

= sup
g∈Γ

D
g

k
(y, z)

in particular δk ≤ supg∈Γδ
g

k
. This is a classical argument in the theory of concentration inequalities.

Proof. We shall utilize (21) and (18) with

Xk = E[ f (Y )|Fk]− E[ f (Y )|Fk−1]

Fk = σ(Y1, . . . Yk).

We have already pointed out that q = 0 since Xk is a martingale difference. Let us define the random

variables

Lk = inf
y

E[Fk(y)|Y1, . . . Yk−1]

Uk = sup
y

E[Fk(y)|Y1, . . . Yk−1].

The equation

Lk ≤ E[ f (Y )|Fk]≤ Uk

implies

Lk − E[ f (Y )|Fk−1]≤ Xk ≤ Uk − E[ f (Y )|Fk−1]

and since Uk − Lk = Φk we can apply (21) with bk = Φk and get (24).

Clearly Xk rewrites

Xk = E[∆k|Fk]

hence E[X 2
k
|Fk−1]≤ E[∆2

k
|Fk−1], 〈X 〉 ≤ V , and (25) follows from (18).
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2.2.3 Inequalities for suprema of U-statistics

For some problems of adaptive estimation and testing, it is very important to be able to control the

supremum of U-statistics [9]. We give here a bound in this direction.

Consider a sequence of i.i.d. random variables Y1, . . . Yn with values on some measurable space E

and a finite familly H of measurable symmetric functions on Ed and set for h ∈ H

YI = {Yi , i ∈ I}, I ⊂ {1, . . . n}

Zh(Y ) =
1
�n

d

�

∑

I⊂{1,...n}
h(YI)

S = sup
h∈H

Zh(Y )− E[sup
h∈H

Zh(Y )]. (27)

where the sum is restricted to the subsets with cardinality d; since the kernel h is symmetric there

is no ambiguity regarding the notation h(YA). We assume that h is centered:

E[h(Y1, . . . Yd)] = 0.

It is well known that if Zh is non degenerate, that is

E[h(Y1, . . . Yd)|Y1] 6≡ 0,

then the variance of Zh has order n−1, cf [13] p.12. We give in the following corollary a deviation

bound for S which corresponds to a Gaussian approximation with variance of the same order of

magnitude. In the case of degenerate U-statistics we do not get good bounds; this is apparent in the

case H has only one element since an abundant litterature exists concerning deviation of degenerate

U-statistics [11? ; 4].

The function L below may be bounded by 2‖h‖∞, what should be generally good enough unless Y1

takes a specific value with high probability in which case (29) may become significantly better:

Corollary 6. The symmetric function h satisfies for some function L(x , y)

|h(y1, . . . yd)− h(y ′1, y2, . . . yd)| ≤ L(y1, y ′1).

Then, for any A> 0

P(S ≥ A)≤ exp

�

−
2nA2

µ2

�

, µ= d ess sup L(Y1, Y2) (28)

P(S ≥ A)≤ exp

�

−
nA2

d2E[L(Y1, Y ′1)
2] + 2Aµ/3

�

. (29)

Proof. With the notation of Theorem 5, we have with Y k = (Y1, . . . Yk−1, Y ′
k
, Yk+1, . . . Yn)

∆k ≤ sup
h

Zh(Y )− sup
h

Zh(Y
k)≤ sup

h

(Zh(Y )− Zh(Y
k))
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and

|Zh(Y )− Zh(Y
k)| ≤

1
�n

d

� |
∑

I∋k

h(YI)− h(Y k
I )|

≤
1
�n

d

�

�

n− 1

d − 1

�

L(Yk, Y ′k)

=
d

n
L(Yk, Y ′k).

Hence ∆k ≤ d

n
L(Yk, Y ′

k
) and the result is now just a consequence of Theorem 5, noticing that

v ≤
d2

2n
E[L(Y1, Y ′1)

2]

‖∆k‖∞ ≤
µ

n
.

3 Second order approach

As mentionned in the introduction, in order to get better results, we shall have to control conditional

expectations of products XkX j; actually, our procedure will rather lead to products like XkX k
j
; hence

we are led to introduce for any pair (k, j) a sequence X
k, j

i
corresponding to increasing dependence

with (Xk, X k
j
). More precisely:

INHOMOGENEOUS SETTING

(i) For any 1 ≤ k ≤ n is given a sequence X k
j
, j = 1 . . . k, which is a reordering of (X j , j = 1, . . . k)

with X k
k
= Xk. We attach to each k the σ-algebras

F
k
j = σ(X

k
i , i ≤ j), j ≤ k. (30)

(ii) For 1 ≤ j ≤ k ≤ n, sequences (X
k, j

i
)i< j and (H

k, j

i
)i< j are defined as above from the sequence

(X k
i
)i< j.

In other words the σ-field F
k
j

is made by taking off F
k
j+1 the “closest” variable to Xk. The σ-field

H
k, j

i
is made by continuing this process after F

k
j

(hence i < j) in a way which may depend on k and

j.

This setup is essentially, in a somewhat more general context, what is considered in [6]. For time

series, we have X k
i
= X i and F

k
i
=H

k, j

i
= Fi = σ(X l , l ≤ i).

It happens commonly in the theory of random fields that there is no natural order on the variables

(this is however typically not the case if there is a time variable). In those cases, instead of building

the F
k
i

by reordering the variables which are “before” Xk, it is not more restrictive to assume that for

any k there exist a reordering of all variables for which the conditional expectations will decrease

rapidly enough. In this case the F
k
j

will be replaced by the G k
j

defined as follows
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HOMOGENEOUS SETTING

(i) For any 1 ≤ k ≤ n is given a sequence X k
j
, j = 1 . . . n, which is a reordering of (X j , j = 1 . . . n)

with X k
n = Xk. We attach to each k the σ-algebras

G k
j = σ(X

k
i , i ≤ j), j ≤ n. (31)

(ii) For any 1 ≤ j, k ≤ n is given a sequence (X
k, j

i
)i< j , which is a reordering of (X k

i
)i< j . We attach to

each such pair (k, j) the σ-algebras

H
k, j

i
= σ(X

k, j

l
, l ≤ i), i < j. (32)

k
jG

Xk

Xk
1

Xk
n−1

Xk
n−2

Xk
j

Xk

Xk
n−2

Xk
n−1

Xk
j

Hi
kj

This setting is adequate for dealing with mixing random fields in which case each index k corre-

sponds to some point Pk of the space; for each k, the sequence (X k
j
) j will be obtained by sorting

the original sequence (X j) in decreasing order of the distance d(Pj , Pk), and G k
j

will be the σ-field

generated by the random variables setting on the j more distant points from Pk, say Pk
1 ,. . . Pk

j
; it

is natural to define X
k, j

i
as X l where Pl is the i-th more distant point from {Pk, Pk

j
}, but the choice

X
k, j

i
= X k

i
, H

k, j

i
= G k

i
, is typically good enough for random fields over the Euclidean space (see

Section 4).

3.1 The homogeneous setting

The following theorem states a Gaussian approximation result (33) and an exponential bound (34).

Equation (33) may seem rather overtechnical; the reader can think first of the case p = 1, q =∞,

which is natural if h has bounded third derivatives; however the proof of (34) utilizes the case

p =∞, q = 1.

Theorem 7. Set for 1≤ p ≤+∞

rp =

n
∑

k, j=1







1

2
‖E[Xk|G k

j ](X
k
j )

2‖p +
∑

i≤ j−1

‖(E[XkX k
j |H

k, j

i
]− E[XkX k

j ])X
k, j

i
‖p +

∑

i≥ j

|E[XkX k
j ]|‖X

k
i ‖p






.
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Let h be a three time differentiable function of n variables, and N be a centered Gaussian vector inde-

pendent of X = (X1, . . . Xn) with the same covariance matrix. Then for any 1≤ p ≤∞

|E[h(X )]− E[h(N)]| ≤
rp

3
sup
i, j,k

sup
0≤t≤1

sup
Y∈X
‖h′′′i jk(tY +

p

1− t2N)‖q (33)

where q = p/(p− 1), and X is the set of processes Yi = αiX i where α is allowed to be any sequence of

[0,1]n.

The sum S =
∑

k Xk satisfies for any t > 0

E[etS]≤ exp

�

σ2
∗

t2

2
+ r∞

t3

3

�

, σ2
∗ = max

I⊂{1,2,...n}
E







 

∑

i∈I

X i

!2




 . (34)

REMARKS. If the Xk ’s are independent rp =
∑

Var(Xk)‖Xk‖p+‖X 3
k
‖p/2. Hence under strong enough

mixing assumptions, rp/σ
2
∗ is expected to tend to 0 as the number of variables n tends to infinity;

in this case, (33) leads in particular to the central limit theorem for S/σ∗.

For the sake of clarity, we shall start the proof with a preparatory lemma: We know that if (Y, Z) is

a Gaussian vector and Y is scalar centered, for any differentiable function g one has

E[Y g(Z)] =
∑

i

E[Y Zi]E[g
′
i(Z)], where g ′i(x) =

d

d x i

g(x)

under appropriate integrability conditions. We shall see that, when the variables are not Gaussian,

bounds of the difference between both sides when Y varies among the coordinates of Z provide an

efficient measure, on some sense, of how far Z is from a Gaussian vector of the same covariance

(this will appear in Equation (37) below).

Next lemma provides a way to estimate such a bound:

Lemma 8. Let Y be a centered random variable and Z be a random vector on Rn. For any 1 ≤ j ≤ n

is given and sequence (Z
j

i
)i< j which is a reordering of (Zi)i< j . Let A j and B

j

i
, i < j, be σ-algebras such

that A j ⊃ σ(Z1, . . . Z j) and B
j

i
⊃ σ(Z j

1, . . . Z
j

i
) and

rp =

n
∑

j=1

1

2
‖E[Y |A j](Z j)

2‖p +
j−1
∑

i=1

‖(E[Y Z j|B
j

i
]− E[Y Z j])Z

j

i
‖p +

n
∑

i= j

|E[Y Z j]| ‖Zi‖p.

Then for any function g two times differentiable on Rn, with first (resp. second) order derivatives

denoted by g ′j (resp. g ′′i j), and 1≤ p ≤∞:

|E[Y g(Z)]−
∑

j

E[Y Z j]E[g
′
j(Z)]| ≤ rp sup

i, j,α
‖g ′′i j(α1Z1, . . .αnZn)‖q,

1

p
+

1

q
= 1 (35)

where the supremum over α is taken over all sequences of [0,1]n having no more than one term different

from 0 or 1.
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Proof. We set

Z̄ j = (Z1, . . . Z j , 0, . . . 0)

and Z̄
j

i
is defined by setting to zero all entries in Z̄ j which are not a Z

j

l
for some l ≤ i; hence

Z̄
j

j−1
= Z̄ j−1 and Z̄

j

0 = 0.

The key observation is that if all terms of the sums below are integrable we have

E[Y g(Z)]−
n
∑

j=1

E[Y Z j]E[g
′
j(Z)] =E

n
∑

j=1

Y (g(Z̄ j)− g(Z̄ j−1)− Z j g
′
j(Z̄ j−1))

+ E

n
∑

j=1

j−1
∑

i=1

(Y Z j − E[Y Z j])(g
′
j(Z̄

j

i
)− g ′j(Z̄

j

i−1
))

− E

n
∑

j=1

∑

i≥ j

E[Y Z j](g
′
j(Z̄i)− g ′j(Z̄i−1)). (36)

Clearly indeed, for any j, the factors of E[Y Z j] are the same on both sides, except a residual

E[Y Z j]g
′
j(0) on the right hand side which compensates for a remaining term from the otherwise

vanishing sum of the E[Y Z j g
′
j(Z̄

j

i
)] (namely the term i = 0); finally the terms Y g(Z̄ j) of the right

hand side sum up to E[Y g(Z)] since E[Y ] = 0.

The general identities

f (x + h)− f (x)− hf ′(x) = h2

∫ 1

0

(1− t) f ′′(x + th)d t

f ′(x + h)− f ′(x) = h

∫ 1

0

f ′′(x + th)d t

imply that (ei is the ith vector of the canonical basis of Rn)

g(Z̄ j)− g(Z̄ j−1)− Z j g
′
j(Z̄ j−1) = Z2

j

∫ 1

0

(1− t)g ′′j j(Z̄ j−1+ tZ je j)d t

g ′j(Z̄
j

i
)− g ′j(Z̄

j

i−1
) = Z

j

i

∫ 1

0

g ′′i j(Z̄
j

i−1
+ tZ

j

i
ei)d t

hence by the Minkowski inequality

‖Z−2
j (g(Z̄

j)− g(Z̄ j−1)− Z j g
′
j(Z̄

j−1))‖q ≤ sup
α
‖g ′′i j(α1Z1, . . . ,αnZn)‖q

∫ 1

0

(1− t)d t

‖(Z j

i
)−1(g ′j(Z̄

j

i
)− g ′j(Z̄

j

i−1
))‖q ≤ sup

α
‖g ′′i j(α1Z1, . . . ,αnZn)‖q

and (35) is now only a consequence of (36) and the Hölder inequality.
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Proof of theorem 7. Set for 0≤ t ≤ 1

ϕ(t) = E[h(tX +
p

1− t2N)].

Using that for any differentiable function f with bounded derivatives E[Nk f (N)] =
∑

i E[NkN j]E[ f
′
j (N)] we obtain

d

d t
ϕ(t) =

∑

k

E[Xkh′k(tX +
p

1− t2N)]−
t

p

1− t2

∑

k

E[Nkh′k(tX +
p

1− t2N)]

=
∑

k

E[Xkh′k(tX +
p

1− t2N)]− t
∑

k, j

E[XkX j]E[h
′′
k j(tX +

p

1− t2N)]. (37)

Applying n times Lemma 8 with Y = Xk, Z j = X k
j
, Z

j

i
= X

k, j

i
, A j = G k

j
, B

j

i
= H

k, j

i
and g(x) =

E[h′
k
(t x +

p

1− t2N)], for k = 1, . . . n we get

|ϕ′(t)| ≤ t2rp sup
i, j,k,Y∈X

‖h′′′i jk(tY +
p

1− t2N)‖q

where X is the family of the processes of the form Yi = αiX i , α ∈ [0,1]n. This leads to (33).

Concerning (34), notice first that an elementary scaling argument reduces to the case t = 1. We

consider now the function h(x) = exp(
∑

x i):

ϕ(t) = e(1−t2)σ2/2E[h(tX )], σ2 = E[S2]

and Equation (37) rewrites:

|ϕ′(t)|=|
∑

k

E[Xkh′k(tX ))]eσ
2(1−t2)/2− t

∑

k,i

E[XkX j]E[h
′′
k j(tX )]eσ

2(1−t2)/2|

≤t2eσ
2(1−t2)/2r∞ sup

Y∈X
E[h(tY )] (38)

by application of Lemma 8 since h′′′
i jk
= h. Hence it we set

ψ(t) = eσ
2
∗ (1−t2)/2 sup

Y∈X
E[h(tY )]

(the reason for the choice of σ∗ rather than σ will appear soon) Equation (38) implies

ϕ(t)≤ϕ(0) + r∞

∫ t

0

s2ψ(s)ds ≤ψ(0) + r∞

∫ t

0

s2ψ(s)ds. (39)

The variance of any Y ∈ X is smaller than σ2
∗ due to the fact that the convex function on [0,1]n

α 7→ E[〈α, X 〉2]
attains necessarily its maximum on extremal points of [0,1]n. Hence (39) is again valid if instead

of X we put any Y ∈ X in the definition of ϕ since r∞ and σ∗ would be smaller, thus

ψ(t)≤ψ(0) + r∞

∫ t

0

s2ψ(s)ds

which implies via the Gronwall lemma that

ψ(t)≤ψ(0)exp(r∞ t3/3) = exp(σ2
∗/2+ r∞ t3/3).

If we set t = 1 in this equation, we get (34) for t = 1.
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3.2 The inhomogeneous setting

In this section we give a companion to Theorem 7 in the inhomogeneous case.

Theorem 9. Set

σ2 = E[S2]

σ2
m = sup

k≤n

E[S2
k]

v =
∑

k

E[X 2
k] + 2E[XkSk−1]+

wp =

n
∑

k=1

k
∑

i=1







1

2
‖(X k

i )
2E[Xk|Fk

i ]‖p +
∑

j>i

‖(E[XkX k
j |H

k, j

i
]− E[XkX k

j ])X
k, j

i
‖p +

∑

j≤i

|E[XkX k
j ]| ‖X

k
i ‖p





 .

Then for any a ∈ R

|E[eiaS]− e−a2σ2/2| ≤ |a|3w1ea2(σ2
m−σ2)/2, (40)

E[eaS]≤ exp

�

v
a2

2
+w∞

|a|3

3

�

. (41)

REMARK. In the case of a martingale, σ2
m = σ

2 = v and wp =
∑

Var(Xk)‖Xk‖p + ‖X 3
k
‖p/2.

Proof. Let λ ∈ C. Set S(t) = Sn−1+ tXn, and

ϕ(t) = E[eλS(t)].

The derivative of ϕ is :

ϕ′(t) =λE[XneλS(t)] = λ2E[XnS(t)]ϕ(t) +w(t) (42)

where, thanks to Lemma 8 with Y = Xn, Z = (X n
1 , . . . X n

n−1, tXn), g(x) = eλ
∑

x i ,

|w(t)| ≤ |λ|3 sup
Y∈X
‖eλ(Y1+···+Yn−1+tYn)‖pwn

q (43)

and X is the family of the processes of the form Yi = αiX i where α is any decreasing sequence of

[0,1]n with no more than one term different from 0 or 1, and wn
q is the term corresponding to k = n

in the expression of wq. Integrating (42) we get

ϕ(t)e−λ
2
∫ t

0
E[XnS(s)]ds =ϕ(0) +

∫ t

0

e−λ
2
∫ s

0
E[XnS(u)]duw(s)ds

and since E[XnS(t)] is half the derivative of σ(t)2 = E[S(t)2], this rewrites

ϕ(t)e−λ
2σ(t)2/2 =ϕ(0)e−λ

2σ(0)2/2+

∫ t

0

e−λ
2σ(s)2/2w(s)ds. (44)
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If λ = ia ∈ iR, taking p =∞ in (43), (44) implies

|ϕ(t)ea2σ(t)2/2−ϕ(0)ea2σ(0)2/2| ≤ |a|3wn
1 exp(a2 sup

0≤t≤1

σ(t)2/2).

Now since the function σ(t) is convex, its supremum over [0,1] is either σ(0) or σ(1) hence

|ϕ(1)ea2σ(1)2/2−ϕ(0)ea2σ(0)2/2| ≤ |a|3wn
1ea2σ2

m/2

which implies (40) by induction on n. Now for a fixed real λ ∈ R, let

ϕ∗(t) = sup
Y∈X

E[eλ(Y1+···+Yn−1+tYn)].

Equations (43) and (44) with p = 1 imply

ϕ(t)≤ϕ∗(0)eλ
2(σ(t)2−σ(0)2)/2+ |λ|3wn

∞

∫ t

0

eλ
2(σ(t)2−σ(s)2)/2ϕ∗(s)ds.

We have for t ≥ s

σ(t)2−σ(s)2 = 2(t − s)E[XnSn−1] + (t
2− s2)E[X 2

n]≤ 2(t − s)E[XnSn−1]+ + (t
2− s2)E[X 2

n].

Hence, if we set u(t) = tE[XnSn−1]+ + t2E[X 2
n]/2

ϕ(t)≤ϕ∗(0)eλ
2(u(t)−u(0))+ |λ|3wn

∞

∫ t

0

eλ
2(u(t)−u(s))ϕ∗(s)ds.

For any Y ∈ X, the same bound holds if X is replaced by Y in the definition of ϕ, since the corre-

sponding values of wn
∞ and u(t)− u(s) will be smaller (either αn = 0 and the corresponding value

of u(t)− u(s) is zero, or Yn = αnXn and Yi = X i , i < n). Hence

ϕ∗(t)≤ϕ∗(0)eλ
2(u(t)−u(0))+ |λ|3wn

∞

∫ t

0

eλ
2(u(t)−u(s))ϕ∗(s)ds

or

ϕ∗(t)e
−λ2u(t) ≤ϕ∗(0)e−λ

2u(0)+ |λ|3wn
∞

∫ t

0

e−λ
2u(s)ϕ∗(s)ds,

and by Gronwall’s Lemma:

ϕ∗(t)e
−λ2u(t) ≤ϕ∗(0)e−λ

2u(0)2 et|λ|3wn
∞

which gives for t = 1

ϕ∗(1)≤ϕ∗(0)eλ
2(E[XnSn−1]++E[X 2

n]/2)+|λ|3wn
∞ .

This proves (41) by induction on n.
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3.3 Applications to deviation bounds

In this section we give the deviation inequalities that can be deduced from the preceding exponential

inequalities. The bound (46) is analogous to the bound or Corollary 3 (b) in [6] p.85, but in this

paper the variance v is amplified with an extra factor 2e2 and w∞ takes a slightly different value.

Theorem 10. With the notations of Theorem 7 and Theorem 9, we have for any A> 0

P(S ≥ A)≤ exp



−
A2

2σ2
∗ + 2

p

2Ar∞/3



 , (45)

P(S ≥ A)≤ exp



−
A2

2v + 2
p

2Aw∞/3



 . (46)

Proof. Using (34) we get

log P(S ≥ A)≤ log E[et(S−A)]≤ σ2
∗

t2

2
+ r∞

t3

3
− tA.

We choose t = A/(σ2
∗ +
p

2Ar∞/3); in particular t ≤
p

3A/2r∞ (value of t if σ∗ = 0) hence

log P(S ≥ A)≤ σ2
∗

t2

2
+
p

2Ar∞/3
t2

2
− tA=−

tA

2
= −

A2

2σ2
∗ + 2

p

2Ar∞/3
.

Equation (46) is obtained similarly on the basis of (41).

3.4 More on bounded difference inequalities

We give a second order variant of Equation (26).

Theorem 11. With the notation of Theorem 5, the following inequality holds true

P(S ≥ A)≤ exp



−
A2

2Var(S) + 2
p

A
∑

k δ
3
k



 .

Proof. As in the proof of Theorem 5, we notice that S is the sum of the following martingale incre-

ments

Xk = E[ f (Y )|Fk]− E[ f (Y )|Fk−1] = E[∆k|Fk]

Fk = σ(Y1, . . . Yk)

but now we use Equation (46). As pointed out right after Theorem 9, one has in the martingale

case:

w∞ =
∑

Var(Xk)‖Xk‖∞ + ‖X 3
k
‖∞/2≤

3

2

∑

‖X 3
k
‖∞

and we conclude by noticing that ‖X 3
k
‖∞ ≤ δk.
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3.5 Triangle counts

We shall show that the standard Gaussian approximation is asymptotically valid for triangle counts

in the moderate deviation domain.

In the Erdös-Rényi model of an unoriented random graph with n vertices, edges are represented by
�n

2

�

i.i.d. Bernoulli variables Yab, 1 ≤ a < b ≤ n, with the convention Yab = Yba and Yaa = 0. The

number of triangles in such a model is

Z =
∑

{a,b,c}
YabYbcYac .

We set p = E[Y12] and

Xabc = YabYbcYac − p3

S =
∑

{a,b,c}
YabYbcYac − p3 =

∑

{a,b,c}
Xabc =

∑

τ∈T

Xτ (47)

where T is the set of subsets of {1, . . . n} with three elements, |T | =
�n

3

�

. Recall that r∞ rewrites,

with these notations

r∞ =
∑

τ∈T, j≤|T |

�

1

2
‖E[Xτ|Gτj ](X

τ
j )

2‖∞ +
∑

i≤ j−1

‖(E[XτXτj |H
τ, j

i
]− E[XτXτj ])X

τ, j

i
‖∞

+
∑

i≥ j

|E[XτXτj ]|‖X
τ
i ‖∞






.

For any τ = {a, b, c}, define Aτ the set elements of T such that at least two points are in common

with τ (τ, {a, b, d}, {a, d, c}, . . . ); this makes n1 = 1+ 3(n− 3) elements, and (Xσ)σ/∈Aτ
is indepen-

dent of Xτ. We define the ordering Xτj by taking first ( j large) these Xσ for which σ ∈ Aτ and define

Gτj according to (31). Since Gτj is independent of Xτ for j ≤ |T | − n1, the first term in rp will be 0

unless j > |T | − n1, hence

∑

τ∈T, j≤|T |

1

2
‖E[Xτ|Gτj ](X

τ
j )

2‖∞ ≤
1

2
|T |n1

and

∑

τ∈T, j≤|T |

∑

i≥ j

|E[XτXτj ]|‖X
τ
i ‖∞ ≤ |T |n

2
1.

Now since H
τ, j

i
⊂ Gτj , Xτ is independent of (Xτj ,H

τ, j

i
) for j ≤ |T | − n1, and for these j, the second

term vanishes, independently of the construction of H
τ, j

i
.

We consider now the case j > |T | − n1. In this case, and if j 6= |T |, Xτj = Xτ j for some τ j which has

two points in common with τ, for instance {a, b, d}. We define the σ-fields H
τ, j

i
by excluding first

the σ which has at least two points in common with τ or τ j , this makes at most n2 = 3(n−3)+1+
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2(n− 3) = 1+ 5(n− 3) points to exclude. If j = |T |, we take H
τ,|T |
i
= Gτi , and this contributes to at

most n1 non-zero terms in the middle sum; finally:

∑

τ∈T, j≤|T |

∑

i≤ j−1

‖(E[XτXτj |H
τ, j

i
]− E[XτXτj ])X

τ, j

i
‖∞ ≤ |T |(n1n2+ n1).

Hence

r∞ ≤ |T |
�

1

2
n1+ n2

1+ n1(n2+ 1)

�

= |T |n1(8(n− 3) + 4)≤ 4n5

and Equation (45) rewrites

P(S ≥ A)≤ exp



−
A2

2σ2
∗ + 4

p

2n5A/3



 . (48)

In this case it is easily verified that σ2
∗ = Var(S) since covariances are non-negative. Let us recall

that (see [2])

Var(S) =

�

n

3

�

(p3− p6) +

�

n

4

��

4

2

�

(p5− p6).

This has order n4 due to the covariance terms. Let us briefly compare with the bound of [2]; this

paper delivers a bound for P(S ≥ A) which is sligthly larger than

exp



−
A2

6nE[Z] + 16
p

E[Z]A



 , E[Z] =
n(n− 1)(n− 2)

6
p3 (49)

(the actual formula is much more complicated; we have used that min(a−1, b−1) ≤ 2/(a + b) to

obtain this from Theorem 18 of [2]). One has 6nE[Z] ≥ 2

p2−p3 2σ2
∗ . For p fixed and n large, the

square root term in (48) is residual if A≪ n3; this is the moderate deviation case since the centering

term in (47) has order n3 (notice that S ≤ n3 w.p.1), and we get the right variance. In (49), a

change occurs when n5/2≪ A, and if we set A= Bn5/2 with B large, (49) leads to exp(−cnB) while

(47) behaves like exp(−cnB2).

4 Evaluation of constants under mixing assumptions

We give here informally some arguments to convince the reader that under standard ϕ-mixing

assumptions the constant q has the same order as the variance of the sum, and that w∞ and r∞ will

be small; under β -mixing assumptions one can control only rs for s <∞ and w1.

For more details about mixing we refer to [6], [7] and [3] (particularly Section 8 concerning random

fields).
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4.1 ϕ-mixing

The ϕ-mixing constant between two σ-fields A and B is defined as

ϕ(A,B) = sup
A∈A,B∈B

|P(B|A)− P(B)|.

It is well known, see reference [? ] p.27 or [12] p.278, that this implies that if Z is a zero-mean

B-measurable random variable

‖E[Z |A]‖∞ ≤ 2ϕ(A,B)‖Z‖∞.

Assume that X is a field over a part of Zd : each variable Xk of the field sits on some Pk ∈ Zd . G k
j

is

the σ-field generated by the j more distant points from Pk, and we take for simplicity H
k, j

i
= G k

i
.

Notice that the distance of Pk to Pk
j
, the jth closest point, is at least c j1/d , for some constant c. This

implies that standard ϕ-mixing assumptions between σ(Xk) and G k
j

rewrite

ϕ(G k
j ,σ(Xk))≤ ϕ∞,1((n− j)1/d) (50)

for some decreasing function ϕ∞,1 (for example exponential decay holds for finite range1 shift-

invariant Gibbs random fields [10] pp. 158-159; this contains a lot of examples). The subscripts∞
and 1 on ϕ mean that there is no restriction on the number of random variables containned in the

first σ-field, G k
j
, and there is only 1 variable in the second, σ(Xk); we use this traditionnal notation,

in particular for compatibility with [6].

On the other hand for i < j, j− i is smaller than the number of points in the annulus {x : ‖Pk
j
−Pk‖ ≤

‖x − Pk‖ ≤ ‖Pk
i
− Pk‖}, in particular, for some c

j − i ≤ c‖Pk
i − Pk‖d−1‖Pk

j − Pk
i ‖.

Hence ‖Pk
j
− Pk

i
‖ is at least c( j − i)(n − i)1/d−1 for some c. This implies that standard ϕ-mixing

assumptions between σ(Xk, X k
j
) and G k

i
, rewrite

ϕ(G k
i ,σ(Xk, X k

j ))≤ ϕ∞,2(( j− i)(n− i)1/d−1), i ≤ j (51)

for some decreasing function ϕ∞,2.

Equations (50) and (51) will imply, for i ≤ j ≤ k, and any measurable bounded functions f and g

‖E[ f (Xk)|G k
j ]‖∞ ≤ 2‖ f (Xk)‖∞ϕ∞,1((n− j)1/d)

‖E[g(Xk, X k
j )|G

k
i ]− E[g(Xk, X k

j )]‖∞ ≤ 2‖g(Xk, X k
j )‖∞ϕ∞,2(( j − i)(n− i)1/d−1).

The first equation leads to

‖E[Xk|G k
j ]‖∞ ≤ 2‖Xk‖∞ϕ∞,1((n− j)1/d)

‖E[XkX k
j |G

k
i ]− E[XkX k

j ]‖∞ ≤ 2m‖E[Xk|G k
j ]‖∞ ≤ 4m‖Xk‖∞ϕ∞,1((n− j)1/d)

1This means the existence of a constant c such that if k, l ∈ Zd are such that d(k, l)> c then Xk and X l are independent

conditionally to (X j) j /∈{k,l}.
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with m= supi ‖X i‖∞, and the second

‖E[XkX k
j |G

k
i − E[XkX k

j ]‖∞ ≤ 2m‖Xk‖∞ϕ∞,2(( j − i)(n− i)1/d−1).

Hence

‖E[XkX k
j |G

k
i ]− E[XkX k

j ]‖∞ ≤ 4m‖Xk‖∞min(ϕ∞,2(( j − i)(n− j)1/d−1),ϕ∞,1((n− j)1/d)).

We get with m1 =
∑

‖X i‖∞, and setting ϕ(x) = ϕ([x])

q ≤
∑

k≥i

‖X k
i ‖∞‖E[Xk|G k

i ]‖∞ ≤ 2m1m

∫ ∞

0

ϕ∞,1(x
1/d)d x = 2dm1m

∫ ∞

0

ϕ∞,1(x)x
d−1d x .

The integral is essentially the quantity B(φ) of [6], and Equations (21) and (22) may be seen as

improvements over (b)(i) and (ii) of Corollary 4 of [6]. We get for r∞

r∞ ≤ 3dm2m1

∫ ∞

0

ϕ∞,1(y)y
d−1d y + 4m2m1

∫ ∞

0

∫ ∞

0

min(ϕ∞,2((y − z)y1/d−1),ϕ∞,1(z
1/d))1z<y d ydz

≤ 3dm2m1

∫ ∞

0

ϕ∞,1(y)y
d−1d y + 4m2m1

∫ ∞

0

∫ ∞

0

ϕ∞,2((y − z)y1/d−11y>2z +ϕ∞,1(z
1/d)1z<y<2z)d ydz

≤ Cm2m1

∫ ∞

0

(ϕ∞,1(y) +ϕ∞,2(y))y
2d−1d y

for some constant C which depends only on d. The integral in the right hand side is essentially the

D(φ) of [6] page 86. If we refer to the independent case (Xk of order 1/
p

n) the factor m2m1 is of

order 1/
p

n, what makes the factor of t3 in (34) residual as far as t is smaller than
p

n (moderate

deviations).

The same estimates can be obtained for w∞.

4.2 β-mixing

ϕ-mixing is not always a realistic assumption: for a Markov chain, ϕ-mixing implies typically a

Doeblin condition; it is satisfied for ergodic finite state Markov chain, but on the other hand, a

non-trivial Gaussian autoregressive process is not ϕ-mixing.

β -mixing is a much more satisfactory measure of independence, cf [3]. The β -mixing constant

between twoσ-fields A and B represent the total variation between the actual measure on A⊗B and

the independence (product of marginal measures). A non-singular autoregressive process, as most

Markov chains, is β -mixing with exponentially decreasing coefficients [3]. If X is A-measurable and

β(A,B) is the β -mixing constant of these σ-fields, one has

‖E[X |B]‖s ≤ 2β(A,B)1/q‖X‖p,
1

p
+

1

q
=

1

s

(elementary consequence of Theorem 1.4 (a) of [? ]). This implies that w1 as well as rs, s <∞, can

be bounded as above using the β -mixing constants.
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A Technical inequalities

Proposition 12. The three pairs of functions

θ (x) = 0, ψ(x) = ex − x − 1

θ (x) = ζ(x+), ψ(x) = ζ(x−), ζ(x) = e−x + x − 1

θ (x) =
x2

6
, ψ(x) =

x2

3

satisfy

ex−θ (x) ≤ 1+ x +ψ(x). (52)

We have also

| tanh(x − θ (x)− log(1+ψ(y)))| ≤ 3m, |x |, |y | ≤ m. (53)

Proof. Everything will be more or less based on the inequality ex ≤ 1+ x .

Equation (52) is obvious for the first pair of functions. In the second case we have only to check for

x > 0; since in this case x − θ (x) = 1− e−x this reduces to proving that:

1− e−x ≤ log(1+ x).

The function log(1+ x) + e−x − 1 has a derivative (1+ x)−1 − e−x which is ≥ 0 since ex ≥ 1+ x;

hence the inequality is satisfied. The third case is the non negativity of the function

f (x) = 1+ x +
x2

3
− ex−x2/6.

This function satisfies

f ′(x) = 1+
2x

3
− (1−

x

3
)ex−x2/6

f ′′(x) =
2

3
− ((1−

x

3
)2−

1

3
)ex−x2/6 =

2

3

�

1− (1− x + x2/6)ex−x2/6
�

which is non negative since 1 − (1 − u)eu ≥ 0; f is convex. Since f ′(0) = 0 and f (0) = 0, we

conclude that f is non negative.

For the last inequality, we start with an upper bound on ψ(y). In the first case

ψ(y)≤ψ(|y |)≤ψ(m)≤ em− 1.

In the second case ψ(y) ≤ ψ(−m) ≤ em − 1 and in the third case ψ(y) ≤ m2/3 ≤ em − 1 (because

of the expansion of the exponential); in any case we have

log(1+ψ(y))≤ m. (54)

On the one hand

tanh(x − θ (x)− log(1+ψ(y)))≤ tanh(x)≤ m
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and on the other hand, thanks to (54), using that θ (x)≤ x2/2

tanh(log(1+ψ(y))− x + θ (x)≤ tanh(2m+m2/2)

≤min(2m+m2/2,1)

≤ 3m.

Proposition 13. For any a ≤ 0≤ b one has

ea
eb − 1

b
≤ 4 exp

�

min

�

b2

8
, a+ b

��

. (55)

Proof. We have indeed

exp

�

−
b2

8

�

eb − 1

b
= exp

�

−
b2

8

�

(eb/2+ 1)(eb/2− 1)

b

= e−b2/8(eb/2+ 1)2
tanh(b/4)

b

≤ (eb/2−b2/16+ e−b2/16)2
1

4

≤
1

4
(e+ 1)2

< 4.

Hence

ea
eb − 1

b
≤ 4 exp

�

min

�

b2

8

��

.

And clearly

e−a−bea
eb − 1

b
=

1− e−b

b
≤ 1.
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