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1 Introduction

In this paper we consider critical Nearest Particle Systems. A Nearest Particle System
(NPS) is a spin system on {0, 1}ZZ . For x ∈ ZZ and η ∈ {0, 1}ZZ , the flip rate at site
x for configuration η is given by

c(x, η) =

{

1 if η(x) = 1,
f(lη(x), rη(x)) if η(x) = 0,

where f is a real valued nonnegative function defined on ordered pairs (l, r), where
each coordinate is a strictly positive integer or infinity: lη(x) = x − sup{y < x :
η(y) = 1} and rη(x) = inf{y > x : η(y) = 1} − x (either or both possibly ∞).

Of particular interest are the so-called reversible NPSs. These are systems where
f(l, r) is of the form β(l)β(r)

β(l+r)
, f(l,∞) = f(∞, l) = β(l), f(∞,∞) = 0, where β

is a real valued nonnegative function on the strictly positive integers. This class of
particle systems was introduced by [13]. A NPS is reversible in the classical sense
only if f(., .) is of this form (see [7]). These processes are of mathematical interest
partly because there is an array of reversible Markov chain techniques with which to
analyze them. This paper considers reversible NPSs.
We will also require the condition

β(n)

β(n+ 1)
↓ 1 as n→∞. (∗)

The convergence of the quotient to one is equivalent to the reversible NPS being
Feller, a naturally desirable property. The assumption of monotonic convergence
down to one ensures that the process is attractive. This makes the process much
more mathematically tractable; see [7] for a complete treatment of NPSs as well as
of attractiveness.

In this paper we will use the adjective infinite to describe a reversible NPS on
{0, 1}ZZ , (ηt : t ≥ 0) such that a.s. for all t,

∑

x≤0 ηt(x) =
∑

x≥0 ηt(x) = ∞.
A reversible NPS (ηt : t ≥ 0) such that a.s. for all t,

∑

x≤0 ηt(x) = ∞ and
∑

x≥0 ηt(x) <∞ or such that a.s. for all t,
∑

x≥0 ηt(x) = ∞ and
∑

x≤0 ηt(x) <∞ will
be called semi-infinite. A right sided reversible NPS is a semi-infinite reversible NPS
for which for all time t, a.s. ,

∑

x<0 ηt(x) =∞ and
∑

x>0 ηt(x) <∞. For such processes
we denote the position of the rightmost particle at time t (sup{x : ηt(x) = 1}) by rt.
Similarly a left sided reversible NPS is a semi-infinite NPS for which a.s. for all time
t,
∑

x>0 ηt(x) =∞ and
∑

x<0 ηt(x) <∞. For such processes we denote the position of
the leftmost particle at time t, (inf{x : ηt(x) = 1}), by lt. Finally a finite reversible
NPS on {0, 1}ZZ(ηt : t ≥ 0) is one for which, a.s., for all t ≥ 0,

∑

x ηt(x) < ∞. In
similar fashion, we will speak of finite, infinite , semi-infinite, right sided and left
sided configurations η ∈ {0, 1}ZZ so that for instance a reversible NPS (ηt : t ≥ 0) on
{0, 1}ZZ is finite if and only if a.s. for every t ≥ 0, ηt is finite.
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In this article we will treat reversible NPSs corresponding to functions β such that
∑∞

n=1 β(n) < ∞ (in fact we will assume rather more, see (∗ ∗ ∗) below). In this
case, as is easily seen, a reversible NPS (ηt : t ≥ 0) is finite, infinite, right sided or
left sided if and only if the initial configuration, η0, is a.s. finite, infinite, right sided
or left sided respectively.

One has two notions of survival for a reversible NPS, η.. For finite systems one
says that η. survives if P η0(ηt 6= 0 ∀ t ≥ 0) > 0, where 0 is the trap state of all
0’s (similarly 1 will denote the configuration consisting of all 1’s) and P η(.) is the
probability measure for a reversible NPS starting from state η. For infinite systems,
one says that η. survives if there exists a non-trivial equilibrium measure µ. That is
a measure µ on {0, 1}ZZ so that for all continuous functions f defined on this space
and all positive t

∫

f(η)dµ =
∫

Ptf(η)dµ,

where (Pt)t≥0 is the semigroup for the reversible NPS. [4] proves that for all reversible
NPS with β satisfying (∗) and such that

∑∞
n=1 β(n) < ∞, the finite processes

survive if and only if
∑∞

n=1 β(n) > 1. In the infinite case with β(.) satisfying
(∗) there is survival if and only if either

∑∞
n=1 β(n) > 1 or

∑∞
n=1 β(n) = 1 and

∑∞
n=1 nβ(n) < ∞ (which certainly hold under our further assumption (∗∗∗) below).

Thus while conditions on β(.) for survival of finite and infinite reversible NPSs do not
coincide, the cases where

∞
∑

n=1

β(n) = 1, (∗∗)

are critical for both. In this paper we will restrict attention to a class of critical
reversible NPSs, i.e., reversible NPSs with β satisfying (∗) and (∗∗).

If the conditions (∗) and (∗∗) hold and the condition

n

(

β(n)

β(n+ 1)
− 1

)

→ k ∈ [1500,∞), (∗ ∗ ∗)

is also satisfied, then a non-trivial equilibrium measure exists and is equal to the
renewal measure on {0, 1}ZZ that corresponds to the probability measure β(·) on the
integers. Subsequently we will denote this renewal measure by Ren(β). It is known
(see e.g. [7]) that Ren(β) is the upper equilibrium for β-NPSs in the sense that it
is greater than any other equilibrium in the natural partial order on measures on
{0, 1}ZZ . The strong condition (∗ ∗ ∗) is similar to that imposed in [8] and is certainly
not optimal. However we have sought to avoid adding to the technical aspects of the
paper, since we cannot reduce the bound 1500 to a “realistic” bound. [10] discusses
the case

nα

(

β(n)

β(n+ 1)
− 1

)

→ v ∈ (0,∞) for 0 < α < 1
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where the scaling is different.

Henceforth, β(·) will denote a fixed positive function on the positive integers sat-
isfying (∗), (∗∗) and (∗ ∗ ∗). A β−NPS will be a critical reversible NPS whose flip
rates correspond to this fixed function β. In particular, the process will be reversible,
Feller, attractive and critical. In addition Ren(β) will denote the renewal measure
on {0, 1}ZZ associated with β(·).

We will assume that the β-NPS (ηt : t ≥ 0), is generated by a given Harris
system, which will also generate auxiliary comparison processes (see [1] for a general
treatment of Harris constructions). For this, we suppose that we are given for each
x ∈ ZZ two Poisson processes Dx and Bx, independent of each other and independent

over x ∈ ZZ, with Dx of rate 1 and Bx of rate M = (β(1))2

β(2)
, the maximum flip rate

from spin value 1 to value 0. The spin value (or simply spin) at site x can flip at time
t only if there is a jump in either Dx or in Bx at time t, i.e., t ∈ Dx or t ∈ Bx. The
process Dx corresponds to flips of 1’s at site x (or deaths of particles) and is simple:
if t ∈ Dx then ηt(x) = 0, irrespective of its value immediately preceding time t. The
Poisson process Bx corresponds to flips of 0’s to 1’s at site x (or births at site x).
For this process, associated to the i’th point ti ∈ Bx is a random variable Ux,i that
is uniform on [0, 1]. At time t = ti ∈ Bx, we have ηt(x) = 1 if either ηt−(x) = 1

or if Ux,i ≤ c(x,ηt−)
M

, where ηt− is the limiting configuration immediately before time
t. The uniform random variables Ux,i are independent as x and i vary and also are
independent of the Poisson processes {Bx, Dx}ZZ . If t is the i’th point of Bx we also
denote Ux,i by U

x,t. We may on occasion assume that additional independent Poisson
processes belong to the system.

In this paper, a gap (for a configuration η) is an interval on which the configuration
is zero. We say that configuration η has a gap of size R (or an R gap) in interval V,
if there exists an interval I of length R contained in V on which η is zero.

The aim of this paper is to consider how quickly a β-NPS, starting from a con-
figuration η0 distributed as Ren(β) conditioned upon having a large gap in some
large interval V , converges to the upper equilibrium measure, Ren(β). This question
is somewhat vague. We propose three more or less equivalent formulations of the
question. The first addresses the time for the gap to disappear, the second gives a
coupling notion of equilibrium and the third a distributional convergence result. In
all cases we consider a family of β-NPSs (ηNt : t ≥ 0) with N a positive integer so
that for a < b fixed,

A) ηN0 is identically zero on (aN, bN),
B) The distribution of the restriction of ηN0 to interval (−∞, [aN ]], ηN0 |(∞,[aN ]], is

the restriction of Ren(β) conditioned on ηN0 ([aN ]) = 1 (here [ ] denotes the integer
part :[x] is the greatest integer less than or equal to x),

C) The distribution of the restriction of ηN0 to interval [[(bN+1)−],∞), ηN0 |[[(bN+1)−],∞)
is Ren(β) conditioned on ηN0 ([(bN+1)−]) = 1 and is independent of ηN0 |(−∞,[aN ]]. (Here
[x−] denotes the greatest integer strictly less than x.)
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The interval (aN, bN) is said to be the initial gap. In order to talk of “the gap” at
time t for ηN· , we wish to define processes rN. and `N. and stopping time σN (w.r.t. the
natural filtration of the Harris system and η0) that satisfy the following conditions:

(I) ∀ t < σN , rNt < `Nt , ηNt (rNt ) = ηNt (`Nt ) = 1, and ηt(x) = 0 ∀ x ∈ (rNt , `
N
t );

(II) ∀ t ≥ σN , rNt = `Nt .

In particular, we wish σN to denote the time at which the gap vanishes. This is
slightly delicate because when a birth occurs within the gap, one needs to determine
whether or not that birth should be interpreted as a mere shrinking of the gap from
one side or the other or the vanishing time when the two edges meet in the middle.
Furthermore there are also times where a birth (or attempted birth) outside the gap
should be interpreted as one edge overtaking the other and which accordingly should
be regarded as the vanishing time. In both instances, our definition considers whether
or not the birth would have occurred in a related semi-infinite process as follows:
(1) rN0 = [aN ], `N0 = [(bN + 1)−], tN0 = 0;
(2) tN1 = inf{t > tN0 : ηt−(x) 6= ηNt (x) some x ∈ [rtN0 , `tN0 ], t ∈ Bx, Ux,t ≤ β(x −
rN0 )/M for some x > `N0 or t ∈ Bx, Ux,t ≤ β(`N0 − x)/M for some x < rN0 };
(3) for t ∈ (tN0 , t

N
1 ), r

N
t = rN

tN0
and `Nt = `N

tN0
;

(4)
(a) if ηN

tN1
(rN

tN0
) 6= 1, then

rNtN1
= sup{x < rNtN0

: ηNtN
1−
(x) = 1} and

`NtN1
= `NtN0

,

(b) if ηN
tN1
(`N

tN0
) 6= 1, then

rNtN1
= rNtN0

and

`NtN1
= inf{x > `NtN0

: ηNtN1 −
(x) = 1},

(c) if ηN
tN1
(x) = 1 some x ∈

[

`N
tN
0

+rN
tN
0

2
, `N

tN0

)

, then

(i) if Ux,tN1 ≤ β(x− rN
tN0
)/M, then

rNs = `NtN0
and `Ns = `NtN0

∀ s ≥ tN1 ,

σN = tN1 .

(ii) otherwise
rtN1 = rtN0 and `tN1 = x,
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(d) if ηN
tN1
(x) = 1 some x ∈

(

rN
tN0
,
`N
tN
0

+rN
tN
0

2

)

, then

(i) if Ux,tN1 ≤ β(`N
tN0
− x)/M, then

rNs = rNtN0
and `Ns = rNtN0

∀ s ≥ tN1 ,

σN = tN1 .

(ii) otherwise
`tN1 = `tN0 and rtN1 = x;

(e) If t ∈ Bx, Ux,t ≤ β(x− rN0 )/M for some x > `N0 , then

rNs = `NtN0
and `Ns = `NtN0

∀ s ≥ tN1 ,

σN = tN1 ;

(f) if t ∈ Bx, Ux,t ≤ β(`N0 − x)/M for some x < rN0 , then

rNs = rNtN0
and `Ns = rNtN0

∀ s ≥ tN1 ,

σN = tN1 .

The above inductive construction is repeated until such time as (4)(c)(i), (4)(d)(i),
(4)(e) or (4)(f) happen, at which point the full construction is achieved.

We will henceforth regard the “gap” at time t as being the interval (rNt , `
N
t ).

We now consider the evolution of rN. (and by reflection of `N. ). For rNt + x in
interval (rNt , `

N
t ), the flip rate at time t is

β(x)β(`Nt − rNt − x)

β(`Nt − rNt )
= β(x) + β(x)

(

β(`Nt − rNt − x)

β(`Nt − rNt )
− 1

)

.

For x fixed and (`Nt − rNt ) of order N this is (using assumption (***))

β(x) + β(x)

(

kx

`Nt − rNt

)

+ o(
1

N
).

We consider these three terms in turn. The first term, β(x), is the flip rate if
the spins to the right of rN. were set to zero (or equally the flip rate that obtains
if the 1’s to the right of rN. are ignored). The second term is small (of order 1

N
)

but non-negligible, and will be regarded as an “extra fliprate” while the third it will
eventually turn out is just a nuisance factor.
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Consider the process (ηR,N
t : t ≥ 0) where ηR,N

t (x) = Ix≤rNt
ηNt (x) is approximately

a rightsided β-NPS (at least if `Nt − rNt is large). It is easy to verify that for a right
sided β-NPS, (ηt : t ≥ 0), if the distribution of

Ξ0(x) = η0(x+ r0) for x ≤ 0

(recall r0 = sup{x : η0(x) = 1}) is Ren(β) restricted to {0, 1}(−∞,0] and conditioned
to have a 1 at the origin then for all t ≥ 0

Ξt(x) = ηt(x+ rt) for x ≤ 0

shares this distribution. We say, with a small abuse of terminology, that a right sided
β-NPS (ηt : t ≥ 0) is in equilibrium if Ξ0, as defined above, has the above distribution.
By considering Ren(β) restricted to [0,∞) and conditioned to have 1 at the origin,
this notion of equilibrium extends to left sided β-NPSs.

We say that a right sided configuration η0, at time 0, is supported by (−∞, x]
if its rightmost particle is at site x. We will use the following notation throughout
the article: Ren(x,y](β) will represent the measure Ren(β) restricted to {0, 1}(x,y]
and conditioned on there being a 1 at site y but with no conditioning on the open
boundary point. If the term (x, y] is replaced by [x, y], then Ren(β) is renewal measure
on {0, 1}[x,y] conditioned to have a 1 at sites x and y. Equally Ren(x,y)(β) is simply
the unconditioned restriction of Ren(β) to {0, 1}(x,y). Thus, for example, if η0 is an
equilibrium right sided configuration supported on (−∞, x], then its distribution is
Ren(−∞,x](β). Note that Ren(0,n](β) is not the same measure as Ren[1,n](β).

In much of the following we establish or quote results for right sided β − NPSs.
By symmetry the results also apply in an obvious fashion to left sided β−NPSs and
will be used in this way without comment.

In [11] it was shown:

Theorem 1 Let (ηRt : t ≥ 0) be a right sided β−NPS in equilibrium supported by
(−∞, 0] at time 0. Denote the position of its rightmost occupied site at time t by rt.
Then as N tends to infinity (

rN2t

N
: t ≥ 0) tends in distribution to a positive constant

σ times a standard Brownian motion.

For details of the invariance principle for the rightmost particle process (rt : t ≥ 0)
the reader is referred to [11]. Here and throughout the paper convergence in distri-
bution of a sequence of processes defined on an interval [0, T ] (respectively [0,∞))
is meant in the sense of Skorohod convergence on the space D[0, T ] (respectively
D[0,∞)).

In studying ηR,N
. (x) = Ix≤rN.

ηN. (x) up to time σN , we will be considering what can
be regarded as a rightsided β-NPS with extra flip rate to the right of rN. , which are of
order 1

N
, β(y) ky

`N. −rN.
y units to the right of rN. . These “extra” jumps will over a time

interval of order N 2 (suggested by the invariance principle above) contribute an effect
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of order N 2 × 1
N

and so cannot be ignored. In fact if we consider the (normalized)
process

(
`NN2t − rNN2t

N
: t ≥ 0),

it will (it turns out) tend in distribution to (Xt : t ≥ 0) the diffusion on [0,∞),
starting at value (b− a) for which 0 is a trap and so that

dXt =
√
2σdWt −

2

Xt

νdt

for Xt 6= 0, where W. is a standard Brownian motion, σ the constant fixed by Theo-
rem 1 and ν is equal to

∑

n knβ(n)c(n) for constant k given by (∗∗∗) and the positive
constants c(·) defined and discussed in Section 5.

We define for any d ∈ (1/2, 1) fixed and positive integer N ,

τN = inf{t > 0 : for ηNt there is no Nd gap in [−N 2, N2]}.

The choice of d is not important beyond the fact that it must be strictly below 1
and “not too small” so that for a β−NPS η. in Ren(β) equilibrium, the occurrence
of a Nd gap in interval [−N 2, N2] during time interval [0, λN 2] is an event of small
probability as N becomes large with λ held fixed. See the remark after the statement
of Theorem 2.

Theorem 2 Let σN , τN be as previously defined. For any fixed d ∈ (1/2, 1) as N
tends to infinity,

τN

N2
,

σN

N2

D→ τ

where τ is the hitting time of zero for the diffusion X. as above which starts from
value b− a.

Remark: In general the stopping times τN , σN should have little to do with one
another. A priori one could have a birth near the center of the gap (as defined
above) well before an interval of length of order N disappears. However the condition
(∗ ∗ ∗) makes such an occurrence highly unlikely. Equally it could be the case that
σN occurs well after the gap has been reduced in size to order N d. In point of
fact both stopping times turn out to be very close (to scale N 2) to stopping times
τN,ε = inf{t ≥ 0 : `Nt − rNt ≤ Nε} for ε small.

We can also consider ηN. to have achieved equilibrium in the following coupling
way : define (η̃Nt : t ≥ 0) to be the β-NPS run with the same Harris system as
(ηNt : t ≥ 0) so that η̃N0 is distributed as Ren(β) conditioned on η̃N0 (x) = ηN0 (x) ∀ x ∈
(−∞, [aN ]] ∪ [[bN + 1−]∞). Let τ̃N = inf{t : ηNt = η̃Nt } then
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Theorem 3 For τN , τ̃N defined as above,

|τ̃N − τN |
N2

pr→ 0.

Note that the distribution of η̃Nt is stochastically above Ren(β) ∀t and stochastically
below a β-NPS starting from all 1’s. Since this latter process tends to Ren(β) in

distribution as t tends to infinity we have that η̃Nt
D→ Ren(β) as t→∞ uniformly in

N .

Another approach to this question is to fix a cylinder function f and consider
E[f(ηNt )] for E[·] the expectation operator. For this, we need to introduce a Markov
process (X1

t , X
2
t ), t ≥ 0 on the set {(x, y) ∈ RI 2 : x ≤ y} for which all states (x, x), x ∈

RI are traps and so that for X1
t < X2

t ,

dX1
t = σdW 1

t + νdt
X2

t−X1
t
,

dX2
t = σdW 2

t − νdt
X2

t−X1
t
,

for W i
. independent Brownian motions and σ and ν strictly positive constants. Also,

for measure µ on {0, 1}ZZ and measurable function f, < µ, f > will represent
∫

f(η)dµ.

Theorem 4 Let f be a fixed cylinder function on {0, 1}ZZ and for every positive
integer N let ηN. be a β−NPS with ηN0 satisfying condition A,B and C of page 4. For
fixed t ≥ 0, as N tends to infinity

E[f(ηNN2t)]→ λt < Ren(β), f > +(1− λt)f(0)

where 0 denotes the configuration of all zeros,

λt = P (0 6∈ (X1
t , X

2
t ), τ > t) + P (τ ≤ t)

for process (X1
. , X

2
. ) described above with X

1
0 = a < b = X2

0 and τ = inf{t ≥ 0 :
X1

t = X2
t }.

Remark: We use τ to denote both a stopping time in Theorem 3 and a hitting time
in Theorem 2. However, as is easily seen the two τ ’s have the same distribution.

The main part of this paper consists in dealing with the evolution of right (and
so left) sided β-NPSs, ηR. , with a small extra flip rate to the right of the rightmost
particle. There are two issues to be addressed. The first is to quantify the effect of
the extra jumps on the evolution of the rightmost particle. The second is to show
that the extra jumps do not affect “too much” the distribution of

Ξt(x) = ηRt (x+ rt) for x ≤ 0.
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That is we wish to show that for relevant times t the distribution of the above con-
figuration is approximately Ren(−∞,0](β).

The paper is organized as follows: In Section 2 we assemble some simple mixing
results for β-NPSs and introduce some finite state comparison Markov chains. In
Section 3 we introduce, for positive integer n, a comparison Markov chain ηF,n

. on
state space {0, 1}(−n,0] to “track” the (non-Markov) process

(ηRt (rt − x)Ix∈(−n,0] : t ≥ 0)

for ηR. a rightsided β-NPS having rightmost occupied site process R. and with ηR0
distributed as Ren(−∞,0](β). The importance of this comparison chain is that (as will
be shown next in Section Four) the two processes can be coupled so that

ηRt (rt + x) = ηF,nt (x) for 0 ≤ t ≤ n4, −n/2 < x ≤ 0

with high probability. Given the good mixing properties of the chain ηF,n
. , this

amounts to showing that “with high probability ηR. has good mixing properties”.
Section 5 begins to investigate the effect of extra jumps to the right of r. for r. the
rightmost occupied site of a right sided β-NPS and shows the existence of constants
c(v) such that (in an averaging sense) the effect of an extra jump of v to the right by
r. on the longterm evolution of r. is essentially a shift by c(v). Section 6 applies these
results and considers the effect on the position of the rightmost occupied site for a
right sided β-NPS with an additional (low) rate of flips to the right of the rightmost
particle. The key idea is that due to mixing and the fact that the time between
“extra” jumps is typically large, the overall effect of the “extra” jumps is essentially
the sum over the effects associated with the “individual” jumps. Section 7 consid-
ers the distribution of a right sided β-NPS starting from distribution Ren(−∞,0](β)
with an additional flip rate to the right of the rightmost occupied site of the pro-
cess. If this total extra rate is of order 1

N
, then it is shown that on a time interval

[0, N 1+α] for 0 < α < 1
2
, that the distribution of the process is not very different from

Ren(−∞,0](β). A convergence in distribution result is shown for (
rN2t

N
: t ≥ 0) where

r. again denotes the position of the rightmost occupied site of the process. Section 8

extends this approach to give a limit law for the process ((
rN
N2t

N
,
`N
N2t

N
) : t ≥ 0). Finally

in the final section the technical details are supplied to obtain Theorems 2-4 from
this convergence in law

Simplifying assumptions: in order to reduce notation in the following we assume

σ = 1, a = 0, b = 1;

it will immediately be seen that the arguments given do not require special values of
a, b or σ for their validity, so while the assumption that σ = 1 represents a further
restriction on the class of β considered directly, the results given will be valid for all
β satisfying conditions (∗), (∗∗) and (∗ ∗ ∗).
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Some conventions: in this article we will use c, C and K and other letters to denote
constants which may vary from line to line (or even from one side of an equation to
the other).

For a typical positive integer n and positive c, the number nc will not be an integer,
however when an integer is demanded (such as in discussing a distance or position
for ZZ) we will take nc to represent the integer part of nc.

We will make extensive use of the indicator function IA. If A is an event then IA
is the random variable equal to 1 on the event A and equal to 0 on the complement
of A. If A is some logical condition, then IA will be one if A holds and 0 otherwise.
Ix∈A may also be used to specify a configuration in {0, 1}ZZ .

We will abuse notation and take the supremum of the empty set to be −∞ and
the infimum to be ∞.

For a cadlag process G. indexed by positive continuous time, Gt− will represent
the left hand limit of Gs as s tends up to t.

We will on occasion employ the usual o and O terminology: a quantity g(n),
indexed by a variable n, is said to be O(f(n)) as n tends to infinity if there exists a
finite K so that for n sufficiently large |g(n)| ≤ Kf(n); if K may be taken as small
as desired g(n) is said to be o(f(n)).

We will use the notation E[ ] to denote expectation. If we are dealing with a
Markov process and ν is a probability measure on the appropriate state space, Eν [ ]
and P ν( ) will denote respectively, the expectation and the probability for the process
starting from initial distribution ν. If ν is a point mass at η then Eη[ ] and P η( )
will be used instead of Eδη [ ] and P δη( ).

When arguing for asymptotic results in a variable n, it will be tacitly taken that
n is sufficiently large to justify asymptotic relations, e.g., it may be taken that n is
sufficiently large to justify β(l) ≥ 1

n3/2 ,∀l ≤ 1
n3/2(k+1) .

We will often use shifts by x ∈ ZZ, θx◦, of configurations where for η ∈ {0, 1}ZZ , (θx◦
η)(y) = η(y − x) for y ∈ ZZ.

For a function f defined on a set Ω, ||f ||∞ shall as usual denote supx∈Ω |f(x)|.

2 Background results for semi-infinite β-NPSs

In this section we assemble some results concerning semi-infinite β-NPSs in equi-
librium and “regeneration” or mixing results. These are taken from [8] as well as
[9].

Lemma 5 Let (ηt : t ≥ 0) be a right sided β-NPS with rightmost occupied site at
time t equal to rt. If η0 is distributed according to Ren

(−∞,0](β), we have

P (sup
s≤t
|rs| ≥ t1/2log2(t)) ≤ C

t(k−3)/2

where k is the constant fixed in condition (∗ ∗ ∗).
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Proof. This is Lemma 1.2 (i) in [8].

♦

The next lemma follows quickly from Lemma 4.3 of [8]

Lemma 6 Let ηR. , be a right sided β-NPS with η
R
0 distributed as Ren

(−∞,0](β), while
β-NPS η. is such that η0 ≡ ηR0 on (−∞, 0]. With probability tending to one as n tends
to infinity

ηs ≡ ηRs on (−∞,−n3/2] ∀ 0 ≤ s ≤ n5/2.

We now recall some finite state Markov chains used in [8]. Given an interval I we
let ZI

. be the Markov chain on {0, 1}I with 1’s fixed at the endpoints of I but otherwise
having flip rates of a β-NPS on the interior of I. We assume (unless otherwise stated)
that ZI

. will be generated by the same Harris system of Poisson processes as a given
β-NPS, η.. If the interval I is equal to [−n, n] we also denote the chain as Zn

. . If the
chain starts from all 1’s it is denoted by ZI,1

. . From the attractiveness property we
have, for a β-NPS η. starting with initial configuration equal to Z I

0 on the interior of
I, uniformly over intervals I, t and η0 that on I, ηt ≤ ZI

t ≤ ZI,1
t in the natural

partial order. Given an interval I of length 2n, we denote by Y I
. the Markov chain

on {0, 1}I with 1’s fixed at the endpoints of I, 0’s fixed within n1/3 of the endpoints
and other sites having flip rates corresponding to a β-NPS. Again Y I

. is taken to be
derived from the same Harris system as a relevant β-NPS η.. X

I
. is the Markov chain

derived from Y I
. for which the configuration that is zero on all interior sites of I is

forbidden.
A configuration η is said to be bad on an interval I of length 2n if the process Y I

.

with Y I
0 = η on I (except, of course within n1/3 of the endpoints of I where it is zero)

has probability at least n−k/6 of hitting the (forbidden for X I
. ) configuration that is

all 0’s on the interior of I for k the constant in condition (∗ ∗ ∗).

Proposition 7 Let (ηRt : t ≥ 0) be a right sided β-NPS in equilibrium supported by
(−∞, 0] at time 0 and let rt be the position of rightmost particle at time t. Then

(i) the probability that for some 0 ≤ t ≤ T, there is a gap of size n1/3 in interval
(rt − S, rt] is bounded above by K(T + 1)(S + 1)n−(k−1)/3,

(ii) the probability that for some 0 ≤ t ≤ T, θrt−x ◦ ηt|(−n,n) is bad for n ≤ x ≤ S is
bounded above by K(T + 1)(S + 1)n · n−k/6 where θrt−x ◦ ηt|(−n,n) denotes the
restriction to interval (−n, n) of the shift of configuration ηt by rt − x.

for some K not depending on n, S, T and k the constant of condition (∗ ∗ ∗).

Proof. This is essentially Lemma 2.2 in [8].
The following result is shown in the same (basic) fashion.
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Proposition 8 For (ηt : t ≥ 0) a β-NPS with η0 (and therefore ηt for all t) dis-
tributed as Ren(β) and for 0 ≤ T, S <∞,

(i) The probability that for some 0 ≤ t ≤ T, there is a gap of size n1/3 within spatial
interval [−S, S] is bounded by K(T + 1)(S + 1)n−(k−1)/3,

(ii) The probability that for some 0 ≤ t ≤ T, θx ◦ ηt|(−n,n) is bad for some |x| ≤ S is
bounded by K(T + 1)(S + 1)n · n−k/6

for k the constant of (∗ ∗ ∗) and for some K not depending on n, S or T .

Remark: The proof of these two results result simply relies on bounds for Ren(β)
or Ren(−∞,0](β) and (crude) upper bounds on the relevant total flip rate. As such the
conclusions also apply to the processes ηF,n. to be defined in the next section.

Lemma 9 Let n be a positive integer. For Xn
0 arbitrary in {0, 1}[−n,n]\0, If Xn

. and
Zn,1

. are derived from the same Harris systems, then for some constant C uniformly
in n and Xn

0 , outside of an event of probability Cn
2/nk/3,

Zn,1
n4 (x) = Xn

n4(x) ∀x ∈ [−4n/5, 4n/5].

Proof. This is Corollary 2.1 in [8].

♦

Lemma 10 Let n be a positive integer. Consider Zn
. and Y

n
. run with the same

Harris system. Suppose Zn
0 and Y

n
0 are derived from the restriction to (−n, n) of a

renewal process γ on ZZ (or a renewal process γ conditioned to have γ(x) = 1 for
some fixed x with |x| ≥ n) so that

(i) Zn
0 ≡ γ on (−n, n) and

(ii) Y n
0 ≡ γ on (−n+ n1/3, n− n1/3),

then there exists a finite constant c not depending on n such that

P (∃t ≤ n8so that Zn
t (x) 6= Y n

t (x) for some x ∈ (−4n/5, 4n/5)) ≤ c

nk/3−10
.

Proof. This is Lemma 4.3 in [8].

♦
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3 Introduction of a finite state comparison Markov

chain

As in [8] the main element in our attack is the use of spectral gap estimates applied
to finite state comparison Markov chains. This method has its roots in [5] and [2]
and was specifically applied to particle systems in [12]. We are ultimately interested
in analyzing semi-infinite β-NPSs and seeing how quickly they return to equilibrium
from a “reasonable” initial configuration. To this end we introduce a comparison
finite state Markov chain which will be “close” to the non-Markov process obtained
by looking at the n sites to the left of the rightmost particle of a right sided β-NPS
in equilibrium.

For n a positive integer we define a chain ηF,n. , on Ωn = {η ∈ {0, 1}(−n,0] : η(0) = 1}
via the jump rates q(η, ξ) = q1(η, ξ)+ q2(η, ξ)+ q3(η, ξ) where the qi(, ) are defined as
follows. For a configuration η ∈ Ωn, let j = j(η) = inf{−n < x ≤ 0 : η(x) = 1}. For
−n < x < 0, let ηx ∈ Ωn satisfy ηx(y) = η(y) if and only if x 6= y.

(i) For j ≤ x < 0

q1(η, η
x) =

{

1 if η(x) = 1,
β(lη(x), rη(x)) if η(x) = 0,

and q1(η, ξ) = 0 for other configurations ξ.

(ii) For −n < x < j, we have

q1(η, η
x) =

β̄(x+ n)β(j − x)

β̄(j + n)
, where β̄(r) =

∑

y≥r

β(y).

(iii) For 1 ≤ ` ≤ n, let ηF,+` ∈ Ωn be defined by:

ηF,+`(0) = 1
ηF,+`(x) = 0 if − ` < x < 0
ηF,+`(x) = η(x+ `) if − n < x ≤ −`.

q2(η, ξ) =

{

β(`) if ξ = ηF,+` some ` ∈ [1, n− 1];
β̄(n) if ξ = ηF,+n,

(and is zero if ξ is not of this form).

(iv) Let v = sup{x < 0 : η(x) = 1} ∨ −n. Then for ξ ∈ Ωn such that for −n − v <
x ≤ 0,

ξ(x) = η(x+ v),

q3(η, ξ) equals the Ren(−n,0](β) probability of ξ given ξ(0), ξ(−1), · · · ξ(−n −
v+1) , where, if v = −n there is no conditioning. Again if ξ is not of this form
q3(η, ξ) is zero.
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We can think of the jumps of this chain as corresponding to q1, q2 or q3 even
though it is possible to find η and ξ ∈ Ωn so that qi(η, ξ) is strictly positive for all
three values of i.

We think of a jump corresponding to q1 as being a flip, a jump from η to ηF,+l

corresponding to q2 is described, somewhat counterintuitively, as a positive shift by l,
(or a positive l-shift) while a jump of q3 type is a negative shift. To understand the
definitions the reader should keep in mind the goal: to provide a finite state Markov
chain that will well approximate a right sided β−NPS as seen n sites to the left of
its rightmost particle at site rt. Jumps governed by function q1 simply follow those
of the β−NPS not involving a change of rightmost particle. For the β−NPS the flip
rates for births occurring to the left of the leftmost occupied site of (rt−n, rt] depend
on the β−NPS outside this interval. Our comparison Markov chain takes them to
be the expected rates for the β−NPS if it were distributed as Ren(β) conditioned
on the configuration in interval (rt − n, rt]. The jumps that arise from function q2
correspond to the occurrence of jumps to the right of the rightmost particle for the
β−NPS and so in particular jumps of size n or greater will all result in the β−NPS
seeing nothing but 0s in the n− 1 sites to the left of the new rightmost occupied site.
The negative shifts for Markov chain ηF,n. correspond to the deaths of the rightmost
particle in the β−NPS. It is for this reason that the counterintuitive adjectives positive
and negative are applied to the various shifts. We note that for some η ∈ Ωn the flip
rates q2(η, η) or q3(η, η) may be strictly positive. Nonetheless for reasons given in the
next section, though in these cases the state of the Markov chain may not change we
may still regard a shift as having taken place. The chain ηF,n. is readily seen to be
an irreducible Markov chain on a finite state space and thus possessing of a unique
equilibrium.

Lemma 11 The Markov chain ηF,n. on {0, 1}(−n,0] defined by (i) to (iv) above is
reversible with respect to Ren(−n,0](β).

Proof. One simply checks directly the detailed balance equations.

♦
A key element in our approach is to use mixing properties for our comparison

Markov chains. Many desirable mixing inequalities follow from a good bound on the
spectral gap for the chain: the difference between the largest eigenvalue (which is
zero) for the Markov chain operator (acting on the space of L2 functions with respect
to Ren(−n,0](β) ) and the next largest eigenvalue.

The following is proven in [14] and follows in a straightforward manner from the
approach to spectral gap estimation employed in [9].

Proposition 12 Let Gap(ηF,n. ) be the spectral gap of the chain ηF,n. . There exists a
constant c ∈ (0,∞) such that for every positive integer n

n2 Gap(ηF,n. ) > c.
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4 The coupling

In this section we consider a natural coupling of finite comparison processes and right
sided processes with the property that if both the two processes are in equilibrium
and are initially “close” then they will remain so for a long time. Thus the mixing
properties of the former process (implied by Proposition 12 yield mixing information
for right sided β-NPSs. The chief result is Proposition 13 which is then applied to
obtain various regeneration results such as Proposition 15.

We begin by detailing a Harris system construction for the Markov chain ηF,n
. . We

suppose given independent Poisson processes

D′x for −n < x ≤ 0 of rate 1,

B′x for −n < x < 0 of rate M, plus independent U[0,1] random variables Gx
i

associated with the i’th point of B ′x for i = 1, 2 · · ·,

Vx of rate β(x) for 0 < x < n and Vn of rate β̄(n),

X of rate 1 plus independent U[0,1] random variables Hi associated with the
i’th point of X for i = 1, 2 · · ·.

We use the processes D′
x, B

′
x and random variables Gx

i to generate the flips for ηF,n. in
the same way as we use a Harris system to generate a β−NPS. The Poisson processes
Vl are used to generate positive l shifts, while the process X generates the negative
shifts with the associated random variables Hi being employed to determine which
configuration the process “negative shifts” to (for each of the finite η ∈ Ωn, we
partition [0, 1] into a finite number of intervals J1, J2, · · · Jr (r depends on η) which
are in 1-1 correspondence with the ξ1, ξ2, · · · ξr such that q3(η, ξj) > 0 so that for each

1 ≤ i ≤ r, q3(η, ξj) is equal to the length Ji. For t ∈ X, ηF,nt− = η, a negative shift to ξi
will occur if and only if the associated random variable H is in interval Ji). Thus even
though qi(η

F,n
t− , ηF,nt ) may be simultaneously positive for more than one i ∈ {1, 2, 3},

we can rigorously talk of positive shifts, negative shifts and flips.
As previously remarked, for some configurations η ∈ Ωn, q2(η, η) and/or q3(η, η)

are positive and so a positive or negative shift may well result in no change in the
chain ηF,n. .

We now couple a right sided β−NPS, (ηRt : t ≥ 0) for which at time t the po-
sition of the rightmost particle is rt and a finite comparison Markov chain, ηF,n. in
the “obvious” way. We suppose that we are given the Harris system {Bx}, {Dx} and
{Ux,i} −∞ < x <∞ generating ηR. . We take as our system above, generating ηF,n. ,

D′x for −n < x ≤ 0: t ∈ D′
x if and only if t ∈ Drt−+x

B′x for −n < x < 0: t ∈ B ′x if and only if t ∈ Brt−+x. The random variables Gx
i
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associated with t which is the i’th point of B ′x, will equal the corresponding random
variable Ux+rt−,j associated to t considered as an element of Bx+rt− .

A point t will belong to Vx for 0 < x < n if and only if rt − rt− = x; t ∈ Vn if and
only if rt − rt− ≥ n,

A point t will be in X if and only if rt − rt− is strictly negative and the random
variablesHi will be independent of the Harris system {Bx}, {Dx}, {Ux,i}−∞ < x <∞
and (ηRt : t ≥ 0).
The coupling given above is called the natural coupling.

In context, for the process ηF,n. on {0, 1}(−n,0] one can define rF,n0 = 0 and

rF,nt =
∑

0≤s≤t

∆F
s

where

∆F
s = ` if there is a positive ` shift of ηF,n. at time s(or

equivalently if and only if s ∈ V`);
∆F

s = −` if there is a negative shift of ηF,n. at time s and

sup{j < 0 : ηF,ns− (j) = 1} ∨ −n = −`;
∆F

s = 0 otherwise.

Again, to motivate our choice of adjectives in describing shifts, note that positive shifts
of ηF,n. correspond to positive changes of rF,n. , negative shifts to negative changes.
The random variables rF,nt for t ≥ 0 are not measurable with respect to the natural
filtration of ηF,n. (indeed according to the above definitions, it is possible that at in an
interval rF,n. may change while the process ηF,n. remains constant) and so we assume
that the filtration is suitably enlarged to accommodate rF,n. . For each t ≥ 0, we can
treat ηF,nt to be defined on (rF,nt − n, rF,nt ] by taking the spin value at site x + rF,nt

to equal that at site x for the originally defined chain. With a little abuse of our
notation, we will simultaneously regard the process (ηF,nt : t ≥ 0) as being defined on
{0, 1}(−n,0] and on {0, 1}(rFt −n,rFt ].

Proposition 13 Let ηR. be a right sided β-NPS with η
R
0 distributed as Ren

(−∞,0](β)
and let the site of the rightmost particle of ηRt at time t be rt. Let η

F,n
. be an equilibrium

comparison finite Markov chain defined on (rF,nt −n, rF,nt ] at time t with rF,n0 = r0 = 0,
naturally coupled with ηR. . Assume further η

R
0 = ηF,n0 on [−2n

3
, 0], then we have the

following

(i)

P (∃t ≤ n23/12 : rt 6= rF,nt ) ≤ Cn3n−k/6,
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(ii)

P (∃t ≤ n23/12 : ηRt (x) 6= ηF,nt (x) for some x ∈ [rF,nt − n

2
, rF,nt ]) ≤ Cn3n−k/6,

(iii)

P (rF,n
n23/12 6= rn23/24 or ηRn23/12(x) 6= ηF,n

n23/12(x) for some x ∈ [rF,n
n23/12 −

2n

3
, rF,n

n23/12 ])

≤ Cn3n−23k/288.

Remark: For ηR. and ηF,n. naturally coupled, we say the coupling breaks down on
time interval [S, T ], if there exists some t in this interval so that either rt 6= rF,nt or
ηRt (x) 6= ηF,nt (x) for some x ∈ [rF,nt − n

2
, rF,nt ].

Proof. We wish to argue that outside of the null set where points occur simulta-
neously for distinct and therefore independent Poisson processes, the event

{∃t ≤ n23/12 : rt 6= rF,nt or ηRt (x) 6= ηF,nt (x) for some x ∈ [rF,nt − n

2
, rF,nt ]}

is contained in the event A ∪B ∪ C where
A is the event

{ sup
s≤n23/12

|rs| ≥
n

12
}.

By Lemma 5 and the fact that k ≥ 1500, P (A) ≤ C
n(k−3)/2 < Cn10n−k/3.

B is the event

{∀s ≤ n23/12, there is no (n/15)1/3 gap for ηRs in (rs − n, rs]}c∪

{∀s ≤ n23/12, there is no (n/15)1/3 gap for ηF,ns in (rF,ns − n, rF,ns ]}c.
By Proposition 7 (which can be applied to process ηF,n. as well as to ηR. ), P (B) ≤
Cnn23/12/n(k−1)/3.
C is the event that for interval I = [− 39n

60
,−31n

60
] ⊂ [−2n

3
, 0], the processes Y I

. and ZI
.

run with the Harris system of ηR. and such that on (− 39n
60
,−31n

60
), ZI

0 (x) = ηR0 (x) and
on (−39n

60
+ (n/15)1/3,−31n

60
− (n/15)1/3), Y I

0 (x) = ηR0 (x), we have

∃s ≤ n23/12, x ∈ J so that Y I
s (x) 6= ZI

s (x),

where J is the central subinterval of I having length (n/15)1/3. By Lemma 10, P (C)
is bounded by Cn10/nk/3.

We first examine the consequences of A ∪B ∪C not occurring for process ηR. . By
attractiveness, on event Ac ∩ {∀s ≤ n23/12, there is no (n/15)1/3 gap for ηRs in (rs −
n, rs]},

∀s ≤ n23/12, x ∈ (−39n

60
,−31n

60
), Y I

s (x) ≤ ηRs (x) ≤ ZI
s (x)
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and so in particular on event (A ∪B ∪ C)c

∀s ≤ n23/12, x ∈ J, Y I
s (x) = ηRs (x) = ZI

s (x).

Analysing the chain ηF,n. for A ∪ B ∪ C not occurring is slightly more difficult
given the positive and negative shifts which potentially could violate “natural” at-
tractiveness relations, however a little thought shows this not to be a problem on
Ac ∩ {∀s ≤ n23/12, there is no (n/15)1/3 gap for ηF,ns in (rF,ns − n, rF,ns ]} for times
t < λ = inf{s : rs 6= rF,ns } and we have that on event (A ∪B ∪ C)c

∀s < n23/12 ∧ λ, x ∈ J, Y I
s (x) = ηRs (x) = ZI

s (x)

and so under these conditions

∀s < n23/12 ∧ λ, x ∈ J, ηRs (x) = ηF,ns (x).

Now observe that λ can only occur at a point in Drλ− and so (on event (A ∪ B)c) if
λ is less than or equal to n23/12, ηR. and ηF,n. will be unchanged on interval J at this
moment. Thus we have a.s. on event (A ∪B ∪ C)c that

∀s ≤ n23/12 ∧ λ, x ∈ J, ηRs (x) = ηF,ns (x).

But further on (A ∪ B ∪ C)c these two configurations are never identically zero on
J during this closed time interval. From the nearest particle nature of β−NPSs it
follows that

∀s ≤ n23/12 ∧ λ, x in or to the right of J, ηRs (x) = ηF,ns (x)

(where these values are defined). This gives a contradiction and completes the proof
of parts (i) and (ii).

To prove part (iii), we know the rightmost particles will not move more than n
12

for both processes, outside of an event of suitably small probability, from the first
part of our proof. So we only need to look at interval [− 5n

6
,−n

2
]. Now we need to

use the approach of [8], Section Two. First divide up [− 5n
6
,−n

2
] into 1 ≤ m ≤ Kn/N

equal disjoint naturally ordered intervals of length N = n23/48 ( so that N 4 = n23/12),
Ii. Now choose disjoint intervals Ji, 0 ≤ i ≤ m so that the left endpoint of Ii is the
center of Ji−1 and the right endpoint of Im is the center of Jm.

Let us consider processes ZIi,1
t , the β-NPS on {0, 1}Ii with 1’s fixed at the endpoints

of Ii and such that ZIi
0 ≡ 1 on Ii and Y

Ii
t the β-NPS on {0, 1}Ii with 1’s fixed at the

endpoints of Ii and 0’s fixed within N 1/3 of the endpoints and (subject to the above)
Y Ii
0 ≡ ηR0 on Ii. We also consider Y F,Ii

t the β-NPS on {0, 1}Ii with 1’s fixed at the
endpoints of Ii and 0’s fixed within N 1/3 of the endpoints and (subject to the above)
Y F,Ii
0 ≡ ηF,n0 on Ii.
Then
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(1) Outside of an event of probability n
23
12nN− 1

3
(k−1) (by Proposition 7), there is

no (N/2)
1
3 gap for ηRt or ηF,nt for 0 ≤ t ≤ n

23
24 , within n of rt = rFt .

(2) Outside of an event of probability C
n(k−3)/2 (by Lemma 5) |rs| ≤ 1

12
n.

(3) Outside of an event of probability C(n + N)N−k/6 (by Proposition 7 and the

definition of bad) ∀i, Y Ii
t , Y

F,Ii
t are not identically zero on the interior of Ii, ∀ t ≤ n

23
12 .

Similarly for the Y processes associated to the intervals Ji. So Y
Ii
t = XIi

t ∀t ≤ n23/12

and Y Ii,F
t = XIi,F

t .

(4) Outside of an event of probability C n
N
N2N−k/3 (by Lemma 9) ∀i and ∀x in

the central 4
5
of Ii, X

Ii
n23/12(x) = XF,Ii

n23/12(x) = Z i
n23/12(x).

We have that outside of an event of probability C(n10n−k/3 + n3n−23k/288) (from
(1) to (4) above),

Zi
n23/12(x) = ηRn23/12(x) = ηF,n

n23/12(x) = Y i
n23/12(x)

∀ i and ∀ x in the central 4
5
of Ii for all Ii ⊂ [−5n

6
,−n

2
].

Repeating this argument with Ji, we obtain that outside of an event of probability
C(n10n−k/3 + n3n−23k/288) ≤ Cn3n−23k/288

ηRn23/12(x) = ηF,n
n23/12(x) ∀ x ∈ [−5n

6
,−n

2
].

♦

By using the above proposition repeatedly, we have

Corollary 14 Let ηR. and η
F,n
. be as in Proposition 13 and let b be a real number

greater than 23/12, then there exists finite C not depending on b or on N such that

P (ηF,nt (x) 6= ηRt (x) for some x ∈ [rF,nt − n

2
, rF,nt ] or rFt 6= rF,nt for some t ≤ nb)

≤ Cnb−23/12 n3

n23k/288
.

Arguing in the same way we achieve

Proposition 15 Let ηR. , ξ
R
. be right sided β-NPSs generated by the same Harris sys-

tem both in equilibrium, initially supported on (−∞, 0] and such that ηR
0 = ξR0 on

(−n, 0]. Then outside of an event of probability Cn32−23/12/n23k/288, ηR
n23/12 = ξR

n23/12

on (−3n32,∞).
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This result is similar to “regeneration” results found in [8]; the difference is that
here the coupling includes the rightmost particles. We also mention two coupling
results which, though they do not make use of the the statement of Proposition 13,
can be obtained by similar finite state Markov chain comparisons and so belong here.

Lemma 16 Let δ be a fixed, strictly positive constant and ηR. a right sided equilibrium
β-NPS initially supported on (−∞, Nδ] where N is a positive integer. Let η1. be the
β-NPS for which all sites are initially occupied and run with the same Harris system
as ηR. . As N →∞, with probability tending to one, ηRN equals η

1
N on (−4N 2, 3Nδ

4
).

Lemma 17 Let ε ∈ (0, 1) be a fixed constant and f be a fixed increasing cylinder
function bounded in absolute value by 1 and let ξ. be a β-NPS such that ξ0(x) = Ix≤Nε.
There exists C ∈ (0,∞) not depending on N or ε so that for integers N sufficiently
large

E[f(ξt)] ≥ < Ren(β), f > − Cε,

uniformly over 0 ≤ t ≤ N 2ε3 .

(Here as before < µ, f > denotes
∫

fdµ.)

5 The convergence of E[rt]

In this section we consider the asymptotic behaviour of E[rt], for rt the position of
the rightmost particle at time t of a right sided β-NPS, ξR. , initially in equilibrium on
(−∞, 0] conditioned on the occupied sites in [−l, 0] at time 0 being precisely −l and
0 for a positive integer l. In fact we show that a limiting value exists. The plan of
attack is to use our finite state space Markov chains to show that dE[rt]

dt
is small for

large t. We also obtain some simple but useful bounds on the limit.

Lemma 18 Let l and n be positive integers and let ξR. be a right sided β-NPS with
ξR0 having distribution Ren

(−∞,0](β) conditioned on the occupied sites in [−l, 0] being
precisely −l and 0. Let rt be the rightmost occupied site of ξ

R
t for t ≥ 0. Let ξF,n.

be the finite state Markov chain naturally coupled with ξR. and so that ξ
F,n
0 = ξR0 on

(r0 − n, r0] = (−n, 0]. Let the associated rightmost particle functional be rF,n. and
consider ξF,nt to be defined on (rF,nt − n, rF,nt ] . Then

P (rF,nt 6= rt or ξ
F,n
t (x) 6= ξRt (x) for some x ∈ [rF,nt − n

2
, rF,nt ] and some t ≤ n4)

≤ Cn25/12lk+1
n3

n23k/288
.

456



Proof. Let ηR. be a right sided process starting in equilibrium on (−∞, 0] and let rηt
be the position of its rightmost particle at time t. Let ηF,n. be the finite state Markov
chain on {0, 1}(−n,0] naturally coupled with ηR. and starting with η0(x) = ηF,n0 (x) on
(−n, 0]. Denote by rF,n,η. its associated rightmost particle functional. Then

P (rFt 6= rt or ξ
F,n
t (x) 6= ξRt (x) for some x ∈ [rF,nt − n

2
, rF,nt ] for t ≤ n4)

= P (rF,n,ηt 6= rηt or ηF,nt (x) 6= ηRt (x) for some x ∈ [rF,n,ηt − n

2
, rF,n,ηt ] for t ≤ n4|Al)

where Al is the event that the two rightmost occupied sites of ηR0 are separated by
distance l. By Corollary 14, the above probabilities are

≤ C
n25/12

β(l)

n3

n23k/288
.

The conclusion follows as β(l) ≥ 1
lk+1 for l large.

♦

For a right sided configuration ξR, we define h(ξR) to be the distance between the
rightmost particle and the second rightmost particle . So for a process ξR. ,

h(ξRt ) = rt − sup{x < rt : ξ
R
t (x) = 1}.

It is helpful to note that

d

dt
E[rt] =

∞
∑

`=1

`β(`) − E[h(ξRt )],

is small for large t.
For ξF,n a finite configuration on {0, 1}(−n,0], we abuse notation by defining

h(ξF,n) = inf{−x > 0 : ξF,nt (x) = 1 for x < 0} ∧ n.

Let ξR. be as in Lemma 18 and denote by rt the position of its rightmost particle
at time t.

As previously stated, in this section, our goal is to bound above |∑ iβ(i) −
E[h(ξRn4)]| for right sided β-NPSs ξR. . First an elementary calculation gives

Lemma 19 There exists a constant c not depending on n so that for all positive
integers n,

c

nk−2
≥

∞
∑

i=n+1

(i− n)β(i) = |
∞
∑

i=1

iβ(i) − < Ren(−n,0](β), h > |
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Lemma 20 Let ξR. , ξ
F,n
. be as in Lemma 18, then for t ≥ 0 and finite C not depending

on t or l,

E[h2(ξF,nt )], E[h2(ξRt )] ≤
C

β(l)3/k
≤ Cl4,

E[h4(ξF,nt )], E[h4(ξRt )] ≤
C

β(l)6/k
≤ Cl7.

Proof. Given the similarity of proof, we only treat process ξR. and power 2.
By Hölder’s inequality

E[h2(ηRt )Ih(ηR0 )=`] ≤ (E[h2k/3(ηRt )])
3/k(P (h(ηR0 ) = `))1−3/k.

for (ηRt : t ≥ 0) a right sided β-NPS in equilibrium, initially supported on (−∞, 0],
so

E[h2(ξRt )] ≤ (E[h2k/3(ηRt )])
3/k(P (h(ηR0 ) = `))1−3/k/P (h(ηR0 ) = `).

= (E[h2k/3(ηRt )])
3/k/(P (h(ηR0 ) = `))3/k ≤ C

β(l)3/k
.

♦

Recall that Ren(−n,0](β) is the equilibrium distribution of (ξF,nt : t ≥ 0). It is easily
verified that

Lemma 21 There exists a constant ν < ∞ so that for every positive integer n and
every configuration η in {0, 1}(−n,0]

Ren(−n,0](β)({η}) ≥ e−νn.

This and the spectral gap bound, Proposition 12, yield,

Proposition 22 There exists finite positive constants c,K and C such that for all
positive integers n and ηF,n0 ∈ {0, 1}(−n,0],

(1) ∀A ⊂ {0, 1}(−n,0],

∣

∣

∣

∣

∣

∣

P ηF,n0 (ηF,nn4/2 ∈ A)
Ren(−n,0](β)(A)

− 1

∣

∣

∣

∣

∣

∣

≤ Ce−cn2

.

(2) |P F,n
n4 (h)(ηF,n0 )− < Ren(−n,0](β), h > | ≤ Ce−cn2

where for function f

P F,n
t (f)(ηF,n0 ) = EηF,n0 [f(ηF,nt )].

(3) |P F,n
n4 (h2)(ηF,n0 ) − < Ren(−n,0](β), h2 > | ≤ Ce−cn2

.
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See [9] or, for a general account, [2]. We can now prove

Proposition 23 Let l be a positive integer. For ξR. a right sided β-NPS with ξ
R
0

distributed as Ren(−∞,0](β) conditioned on h(ξR0 ) = `, there exists a constant C (valid
for all positive ` and t ≥ 0) so that

|
∑

iβ(i)− E[h(ξRt )]| ≤ C`7/4
(

lk+1t25/48
t3/4

t23k/1152

)3/4

.

Proof. We consider without loss of generality t of the form t = n4, n an integer.
We need only consider n large. We introduce ξF,n. on {0, 1}(−n,0] naturally coupled
with ξR. so that ξR0 and ξF,n0 agree on (−n, 0]. Let A be the event that either θrn4 ◦ ξRn4

and ξF,nn4 are not equal on (−n/2, 0] or that h(ξF,nn4 ) ≥ n/2. By Lemma 18 , P (A) ≤
2Clk+1n25/12 n3

n23k/288 .

We have seen in Proposition 22, (3), that for c, C not depending on n,|E[h(ξF,nn4 )]− <

Ren(−n,0](β), h > | ≤ Ce−cn2
and so

|E[h(ξF,nn4 )]−
∑

l

β(l)l| ≤ Ce−cn2

+ |
∞
∑

l=1

β(l)l− < Ren(−n,0](β), h > | ≤ C/nk−2

by Lemma 19. So

|E[h(ξRn4)]−
∞
∑

l=1

β(l)l| = |E[h(ξRn4)]− E[h(ξF,nn4 )] + E[h(ξF,nn4 )]−
∞
∑

l=1

β(l)l|

≤ |E[h(ξRn4)]− EF [h(ξF,nn4 )]| + C/nk−2 ≤ E[IAh(ξ
R
n4)] + EF [IAh(ξ

F,n
n4 )] + C/nk−2

since on event Ac, h(ξRn4) = h(ξF,nn4 ).
By the Hölder inequality

E[IAh(ξ
R
n4)] ≤ (E[h4(ξRn4)])1/4(P (A))3/4 ≤ Cl7/4

(

lk+1n25/12
n3

n23k/288

)3/4

by Lemmas 18 and 20. Similarly for E[IAh(ξ
F,n
n4 )] and the bound follows.

♦

Corollary 24 Let l be a positive integer and ξ l,R. be a right sided β-NPS so that
ξl,R0 (x) = δl(x) for x > 0 (where δ denotes Kronecker’s delta function) and ξ l,R0 on
(−∞, 0] has distribution Ren(−∞,0](β). Let rlt be the rightmost point of the process
at time t. Then E[rlt] converges to some c(l) > 0 as t → ∞ and uniformly over
l ≤ N 3/(2(k+1),

|E[rlN1/4 ]− c(l)| ≤ N−1/8.

for N sufficiently large.
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Proof. Of course the distribution of ξ l,R0 is simply that of ξR. in preceding propo-
sitions shifted l to the right. Therefore, for instance, Proposition 23 can and will be
used in analyzing ξl,R. without further comment.

For fixed l, as already noted, d
dt
(E[rlt]) exists and equals

∑∞
i=1 iβ(i)− E[h(ξlt)].

But from Proposition 23, we know that

|
∑

iβ(i)− E[h(ξlt)]| ≤ C`7/4
(

lk+1t25/48
t3/4

t23k/1152

)3/4

≤ C`kt−5

(as k ≥ 1500). Since
∫∞
1

1
t5
dt exists, c(l) = limt→∞E[rlt] exists.

Also |c(l)−E[rl
N

1
4
]| = | ∫∞N1/4

∑

iβ(i)−E[h(ξlt)]dt| ≤ C`7/4
∫∞
N1/4

(

t3/4t25/48lk+1

t23k/1152

)3/4
dt.

So (as k ≥ 1500) for l ≤ N 3/2(k+1)

|E[rlN1/4 ]− c(l)| ≤ N−1/8.

It remains to prove the strict positivity of the constants c(l). We first treat the
special case l = 1. We know that ηR. , a right sided β-NPS in equilibrium initially
supported on (−∞, 0] with rightmost occupied site at positive time t, rt, satisfies, by
reversibility, E[rt] = 0. Now if we condition on the event h(η0) = 1, the distribution of
η0 is stochastically above Ren(−∞,0](β). Therefore attractiveness allows us to conclude
that

E[rt|h(ηR0 ) = 1] ≥ 0.

Thus by the standard translation invariance properties,

E[r1t ] ≥ 1 ∀t ≥ 0.

For the general case we consider ηR. as above and introduce the event

B = {rt = 0 ∀ 0 ≤ t ≤ 1}.
It is elementary that conditioned on event B, ηR1 has distribution Ren(−∞,0](β)

and hence for all t ≥ 1, E[rt|B] = 0. Thus E[rt|Bc] = 0. We may use the same
Harris system to generate the processes ξl,R. and ηR. and, furthermore couple ξl,R0 and
ηR0 to be equal on (−∞, 0] (and so that ηRt ≤ ξl,Rt ∀t ≥ 0). Immediately we have
rlt ≥ rt ∀t ≥ 0. Let event B remain defined for process ηR. and let C be the event that
ξl,R1 (1) = 1. The important point is that event B ∩C has strictly positive probability
(albeit tending to zero as l tends to infinity), and that given either B ∩C or B ∩C c,
the conditional distribution of ηR1 is equilibrium supported on (−∞, 0]. Thus for t ≥ 1

E[rlt] = E[rltIBc ] + E[rltIB∩C ] + E[rltIB∩Cc ]

≥ E[rtIBc ] + E[rltIB∩C ] + E[rtIB∩Cc ]

= 0 + E[rltIB∩C ] + 0.

But by attractiveness and the fact that E[r1t ] ≥ 1 we have for all t ≥ 1, E[rlt] ≥
P (B ∩ C) > 0.
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♦

We will also need the following bound which is clearly far from optimal but ade-
quate to our needs. The proof is sketched since the ideas are already in place.

Lemma 25 For ξl,R. and rl. as in Corollary 24, there exists a constant K, not de-
pending on l, so that for all positive integers l, c(l) ≤ l +K.

Sketch of proof: Given ξl,R0 as in Corollary 24, we introduce ηl,R0 to equal ξl,R0
on (−∞, 0] and on [l,∞) and on [0, l] to have distribution Ren[0,l](β) conditionally
independent of ξl,R0 . By the attractiveness of the processes, it is sufficient to show
that for appropriately chosen K

E[rη,lt ] ≤ l +K

for all t where rη,lt is the rightmost particle of ηl,Rt for t ≥ 0. As in Proposition 23 we
have

E[rη,lt ] = l +
∫ t

0
(
∞
∑

n=1

β(n)n− E[h(ηl,Rt )])dt.

It suffices therefore to obtain a good bound for E[h(ηl,Rt )]. The key observation
is that there exists a strictly positive constant g not depending on the positive l
so that the Ren(−∞,0](β) probability that a configuration has a 1 at −l exceeds g.
Thus the distribution of ηl,R0 has bounded Radon-Nykodym derivative with respect to
Ren(−∞,l](β). Therefore arguing as in Proposition 23 we obtain the bound for t ≥ 1,

|
∑

iβ(i)− E[h(ξl,Rt )]| ≤ C

(

t25/48
t3/4

t23k/1152

)3/4

.

The result follows for K =
∫∞
1 C

(

t25/48 t3/4

t23k/1152

)3/4
dt + E[rη,l1 ].

♦

We will also have need of the following “regeneration” result.

Proposition 26 Given a positive integer N , a right sided β-NPS (ηRt : t ≥ 0) in
equilibrium and time T ≥ 0, there is a configuration γ with distribution Ren(−∞,0](β),
independent of σ{ηRs , s ≤ T}, so that for constant C (not depending on Nor T ),

outside of an event of probability C N33/16

N23k/(288)(16) ,
γ(x) = ηR

T+N1/4(rT+N1/4 + x) ∀x ∈ (−3N 2, 0].

Proof. We consider the finite comparison Markov chain (ηF,N
1/16

t : t ≥ T ) coupled

naturally with ηR. so that at time T , θRT
◦ηRT is equal to ηF,N

1/16

T on (−N 1/16, 0] where,
as before, r. denotes the position of the rightmost particle of ηR. . Given Proposition
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22, (1), we have that there exists random Y in {0, 1}(−N1/16,0] which is
(i) independent of σ{ηRs , s ≤ T }
and
(ii) equal to ηF,N

1/16

T+N1/4/2
(suitably shifted) outside of an event of probability e−cN1/8

.

Choose configuration ξR
T+N1/4/2

, independent of σ{ηRs s ≤ T} so that

a) ξR
T+N1/4/2

is in equilibrium supported on (−∞, 0] and

b) ξR
T+N1/4/2

is equal to Y on (−N 1/16, 0].

We now generate (ξRs : s ≥ T +N 1/4/2), starting from this configuration with the
same Harris system as ηR. and take γ to be ξT+N1/4 . The conclusion of the Proposition
follows from Propositions 13 and 15 and Lemma 5.

♦

6 A coupling result

We have established a good approximation for E[rl
N1/4 ] in the previous section. Given

the coupling results of Section 4, this can be used to gain information about E[rF,N
1/16

N1/4 ]

for a process starting in equilibrium conditioned on h(ηF,N
1/16

0 ) = l (see Lemma 28

below). This is then used to consider E[rF,N
1/16

N1+α ] for α ∈ (0, 1
2
) and for a ηF,N

1/16

.

process to which extra positive jumps are added at rate of order 1
N
. The essential

idea is that most “extra” jumps will not occur within N 1/4 of other “extra” jumps
and so when extra jumps occur the distribution of the process ηF,N

1/16

. will be close

to Ren(−N1/16,0](β) (extra jumps notwithstanding) and so an analogue of Corollary
24 may be applied. A problem to be addressed is the treatment of two extra jumps
which occur close together. In dealing with this (Lemma 29) we do not aim for an
optimal bound merely a sufficient one.

The section culminates in the result Proposition 30. This result is useful in proving
Theorems 2-4 as it identifies the drift term.

Recall that for our process (ηF,nt : t ≥ 0) on {0, 1}(−n,0] we have defined

rF,nt =
∑

0≤s≤t

∆F
s

in Section 4.

Lemma 27 Let ηR. be a right sided β−NPS with rightmost particle process r. and for
each positive integer n, let ηF,n. be a finite comparison Markov chain with right most
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particle process rF,n. . For fixed integer 4 ≤ ` ≤ (k − 1)/20 and each positive integer

n, let g(n`) = ERen(−∞,0](β)[(rn`)
2] and g′(n`) = ERen(−∞,0](β)[(rn`)

4]. Then

|ERen(−n,0](β)[(rF,nn` )2]− g(n`)| ≤ 1

n
,

and

|ERen(−n,0](β)[(rF,nn` )4]− g′(n`)| ≤ 1

n
.

Proof. We only concern ourselves with the first inequality; the second follows
in a nearly identical fashion. By the definitions of the two renewal measures we can
choose ηF,n0 and ηR0 so that

(1) ηF,n0 has the distribution Ren(−n,0](β),

(2) ηR0 has the distribution Ren(−∞,0](β),

(3) ηR0 |(−n,0] = ηF,n0 .

Let ηR. and ηF,n. be naturally coupled as in Proposition 13. By Corollary 14 the
probability that

ηF,nt |(−n/2,0] = ηRt ◦ θrt|(−n/2,0) 6= 0 ∀ 0 ≤ t ≤ n`,

is at least 1− Cn`−23/12 n3

n23k/288 . On this event rF,nn` = rn` . Denote the complement of
this event by A, so

|E[(rF,nn` )2]− g(n`)|
= |E[(rF,nn` )2IA]− E[(rn`)

2IA]|
≤ |E[(rF,nn` )2IA]|+ |E[(rn`)

2IA]|

and the proof of the lemma reduces to providing appropriate bound for these two
terms.

E[r2n`IA] ≤ (ERen(β)[(rn`)
4])1/2(P (A))1/2

≤ Kn`P (A)1/2,

by Proposition 3.2 of [8]. Equally we can easily bound E[(rFn`)
4] by Kn4` and so

(E[(rFn`)
4])1/2P (A)1/2 ≤ Kn2`P (A)1/2

and the result follows. ( Recall k ≥ 1500.)

♦

463



We now consider (for positive integer ` such that β(`) ≥ 1
N3/2 ), the expectation of

rF,N
1/16

N1/4 for rF,N
1/16

. the rightmost particle process associated with a finite comparison

Markov chain ηF,N
1/16

. initially distributed as Ren(−N1/16,0](β) conditioned on having

h(ηF,N
1/16

0 ) equal to `. By Corollary 24 for a right sided process, ηR. starting in
equilibrium with r0 = 0 conditioned on {h(ηR0 ) = l}, we know that for N large

|E[rN1/4 ]− (c(`)− `)| ≤ 1

N1/8
.

We expect a similar result here.

Lemma 28 For ηF,N
1/16

. as in Lemma 27 and positive integer l so that β(l) ≥ 1
N3/2 ,

|E[rF,N
1/16

N1/4 ]− (c(`)− `)| ≤ 2
1

N1/8
,

for N sufficiently large.

Proof. As with Lemma 18 we simply consider E[(rF,N
1/16

N1/4 − rN1/4)] for r. derived

from a right sided process, ηR. , initially equal to ηF,N
1/16

0 on (−N 1/16, 0] and distributed
as Ren(β) conditioned on h(ηR0 ) = `.

Suppose ηR. and ηF,N
1/16

. are naturally coupled as in Proposition 13. Let A be the
event that the natural coupling breaks down. Let ξR. be a right sided β−NPS with ξR0
distributed as Ren(−∞,0](β) and let ξR,N1/16

. be a comparison Markov chain naturally

coupled with ξR. and satisfying ξR0 = ξR,N1/16

0 on (−N 1/16, 0]. Let the position of the
rightmost particle of ξR. be denoted by rξ. and the rightmost particle functional of

ξR,N1/16

. be denoted by rξ,F,N
1/16

. . We will abuse notation and denote also by A, the
event corresponding to A, as previously defined in the proof of Lemma 27, but with
(ηR. , η

F,N1/16

. ) replaced by (ξR. , ξ
F,N1/16

. ).

|E[rF,N
1/16

N1/4 − rN1/4 ]| ≤ |E[(rF,N
1/16

N1/4 − rN1/4)IA]|+ |E[(rF,N
1/16

N1/4 − rN1/4)IAc ]|

= |E[(rF,N
1/16

N1/4 − rN1/4)IA]|

≤ E[|rF,N1/16

N1/4 |IA] + E[|rN1/4 |IA]

≤ E[|rξ,F,N1/16

N1/4 |IA]
β(`)

+
E[|rξ

N1/4 |IA]
β(`)

≤ N3/2E[|rξ,F,N1/16

N1/4 |IA] +N 3/2E[|rξ
N1/4IA|]

by the condition on l. But

E[|rξ,F,N1/16

N1/4 IA|] ≤ (E[(rξ,F,N
1/16

N1/4 )2])1/2P (A)1/2 by Cauchy Schwarz

≤ CN 1/8P (A)1/2 by the previous lemma.
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Similarly for E[|rξ
N1/4IA|] and so the result follows by Proposition 13 and Corollary

24.

♦

In our analysis we will have to deal with perturbations of the Markov chain

(ηF,N
1/16

t : t ∈ [0, N 1+α]) for a constant 0 < α ≤ 1/2. We suppose that we are given a

Harris system that generates a comparison Markov chain in equilibrium, ηF,N1/16

. . For
two positive integer valued random variables X1 and X2 with support on [1, N 3/2(k+1)]

and a fixed time s ∈ [0, N 1/4], we say ξF,N
1/16

. is the (X1, X2, s)-perturbation of ηF,N
1/16

.

if

(i) ξF,N
1/16

0 is equal to ηF,N
1/16

0 after a positive shift by X1,

(ii) for t ∈ (0, s), ξF,N
1/16

t evolves according to the rules for ηF,N
1/16

. applied to the
Harris system given, as detailed at the start of Section 4

(iii) at fixed time s, ξF,N
1/16

. undergoes a positive shift by X2,

(iv) for t > s, ξF,N
1/16

t evolves according to the rules for ηF,N
1/16

. applied to the
Harris system given as in Section 4.

For such a chain the rightmost functional rξ,F,N
1/16

. is defined in the same way

as rF,N
1/16

. with positive shifts X1, X2 contributing to the functional, so for instance

rξ,F,N
1/16

0 = X1 and not 0.
We shall need the following crude bound

Lemma 29 Let N be a positive integer, s ∈ [0, N 1/4] and ξF,N
1/16

. be a (X1, X2, s)-

perturbation of equilibrium finite comparison chain ηF,N
1/16

. where X1, X2 are i.i.d.
positive integer valued random variables also independent of the Harris system gen-
erating ηF,N

1/16

. with

for 1 ≤ i ≤ N 3/2(k+1) P (X1 = i) =
γ(i)β(i)

∑N3/2(k+1)

j=1 γ(j)β(j)

where for all 1 ≤ i ≤ N 3/2(k+1), 0 ≤ γ(i) ≤ c1γ(1)i.

Then |E[rξ,F,N
1/16

s+N1/4 ]| < KN 1/8 for K depending on c1 but not on N .

Proof. In this proof C will denote a constant depending on c1 but not on N . This
constant may change from line to line (or within a line).

|E[rξ,F,N
1/16

s+N1/4 ]| is less than the sum |E[rξ,F,N
1/16

s+N1/4 − rξ,F,N
1/16

s− ]| + |E[rξ,F,N
1/16

s− −
rξ,F,N

1/16

0 ]|+E[X1]. Given condition (∗∗∗) on function β(.) and the conditions on the

function γ(.) we immediately have E[X1] ≤
∑N3/2(k+1)

j=1 c1jβ(j)j/β(1) <∞, supposing
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as we may, that c1 > 1. It remains to bound the first two terms. We bound the two
separately.

Let V be the Radon-Nykodym derivative of the distribution of ξF,N
1/16

0 with respect
to Ren(−N1/16,0](β). Since V (ξ) = cγ(i) (for c = c(c1)) on h(ξ) = i, i ≤ N 3/2(k+1); = 0
for h(ξ) > N 3/2(k+1) it is easily seen, using the conditions on γ(.) that V possesses
all moments less than k − 2’th order and that the bounds do not depend on N . By
Hölder’s inequality

|E[rξ,F,N
1/16

s− − rξ,F,N
1/16

0 ]| ≤ ERen(−N1/16,0](β)[|V (ηF,N
1/16

0 )rF,N
1/16

s |]

≤ (ERen(−N1/16,0](β)[V 3/2])2/3(ERen(−N1/16,0](β)[|rF,N1/16

s |3])1/3 ≤ KN 1/8

by Lemma 27.
In the same way let W be the Radon-Nykodym derivative of the distribution of

ξF,N
1/16

s with respect to Ren(−N1/16,0](β).

|E[rξ,F,N
1/16

s+N1/4 − rξ,F,N
1/16

s− ]| ≤ E[X2] + |ERen(−N1/16,0](β)[W (ηF,N
1/16

0 )rF,N
1/16

N1/4 ]|

≤ C + (ERen(−N1/16,0](β)[W 3/2])2/3(ERen(−N1/16,0](β)[|rF,N1/16

N1/4 |3])1/3

≤ (C + (ERen(−N1/16,0](β)[W 3/2])2/3)N1/8.

So it remains to bound ERen(−N1/16,0](β)[W 3/2].

Now let the Radon-Nikodym derivative of ηF,N
1/16

s− with respect to measureRen(−N1/16,0](β)

be Vs. For l an integer between 1 and N 1/16 and ξ ∈ ΩN1/16
with h(ξ) = l we have

W (ξ)Ren(−N1/16,0](β)({ξ}) = P (ξF,N
1/16

s = ξ) = P (X2 = l)
∑

η∈A(ξ)

P (ξF,N
1/16

s− = η)

(where A(ξ) = {η : η(x) = ξ(x− l) for 0 ≤ −x < n− l}; note that the integer l is a
function of configuration ξ and so no suffix l is required for A(ξ))

≤ Cβ(l)l
∑

η∈A(ξ)

Vs(η)Ren
(−N1/16,0](β)({η})

= CRen(−N1/16,0](β)({ξ})lG(ξ),

where

G(ξ) =

∑

η∈A(ξ) Vs(η)Ren
(−N1/16,0](β)({η})

∑

η∈A(ξ)Ren(−N1/16,0](β)({η}) .

Thus, we conclude, W (ξ) ≤ ClG(ξ) = Ch(ξ)G(ξ) and so

E[W 3/2] ≤ C
∑

ξ∈ΩN1/16

Ren(−N1/16,0](β)({ξ})h(ξ)3/2(G(ξ))3/2.
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By Holder’s inequality this is less than







∑

ξ∈ΩN1/16

Ren(−N1/16,0](β)({ξ})h(ξ)6






1/4





∑

ξ∈ΩN1/16

Ren(−N1/16,0](β)({ξ})(G(ξ))2







3/4

.

So, since all moments of h exist uniformly in N 1/16, to bound E[W 3/2] it will suffice
to bound

∑

ξ∈ΩN1/16

Ren(−N1/16,0](β)({ξ})(G(ξ))2 =
[N3/2(k+1)]
∑

l=1

β(l)
∑

ξ:h(ξ)=l

Ren(−N1/16,0](β)({A(ξ)})G(ξ)2.

But for each l in the summation range, the sets A(ξ) form a partition of ΩN1/16
as ξ

ranges over configurations on which h equals l. Also by Jensen’s inequality for any
ξ ∈ ΩN1/16

,

Ren(−N1/16,0](β)({A(ξ)})G(ξ)2 ≤
∑

η∈A(ξ)

(Vs)
2(η)Ren(−N1/16,0](β)({η}).

Therefore for each suitable l,
∑

ξ:h(ξ)=lRen
(−N1/16,0](β)({A(ξ)})G(ξ)2 ≤< Ren(−N1/16,0](β), (Vs)

2 > .
Hence

[N3/2(k+1)]
∑

l=1

β(l)
∑

ξ:h(ξ)=l

Ren(−N1/16,0](β)({A(ξ)})G(ξ)2 ≤

[N3/2(k+1)]
∑

l=1

β(l) < Ren(−N1/16,0](β), (Vs)
2 > < < Ren(−N1/16,0](β), (Vs)

2 > .

Since < Ren(−N1/16,0](β), (Vs)
2 > ≤ < Ren(−N1/16,0](β), V 2 > and all moments of V

less than k − 2 exist, we are done.

♦

We now consider a Markov chain on ΩN1/16
which is a (slight) modification of the

chain ηF,N
1/16

. . We say that ξF,N
1/16

. is a (γ,N)- modification of ηF,N
1/16

. for
(i) N a positive integer,
(ii) γ : {1, 2, 3, · · · , [N 3/2(k+1)]} → RI +,

if it is a chain with the same jump rates as ηF,N
1/16

. except that the positive shifts by l

for l ≤ [N 3/2(k+1)] occur at rate β(l)(1+ γ(l)
N

). In this section we will only consider γ so
that for some c1 ∈ (1,∞), γ(1) < c1 ,∀ 2 ≤ i ≤ N 3/2(k+1), 0 ≤ γ(i) ≤ c1iγ(1), so that
the preceding lemma may be applied. We can define as before the associated rightmost
particle functional rγ,N

1/16

. For our modified finite comparison Markov chains, we
consider the extra jumps to be produced by Poisson processes V l, 1 ≤ l ≤ [N 3/2(k+1)]
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of rate γ(l)β(l)/N separate from and independent of the Poisson processes generating

a finite comparison Markov chain ηF,N
1/16

. so that a point in V l engenders a positive

l shift for ξF,N
1/16

. . Thus we can speak of “extra” jumps unambiguously, as jumps
corresponding to points in ∪lV

l and we can define A, the event that at most two of the
extra jumps occur within time N 1/4 of each other during the time interval [0, N 1+α],
no jumps occur within time N 1/4 of the endpoints of time interval [0, N 1+α]. It is
elementary that P (A) ≥ 1− CN2α

N3/2 −C/N 3/4. (The bound C/N 3/4 for the probability

of the event that an extra point occurs in intervals [0, N 1/4] or [N 1+α − N1/4, N1+α]
is clear given the rate of extra jumps. By elementary large deviations on Poisson
processes we have for some finite c, C depending on c1 but not on N , that with
probability at least 1 − Ce−cNα

, at most 2CNα extra jumps occur in time interval
[0, N 1+α]. By the strong Markov property, the number of extra jumps among the
first 2CNα which have the property that another extra jump occurs in the N 1/4 time
units following their own arrival, is exactly a Binomial with parameters 2CN α and
C ′/N3/4. We can then apply elementary inequalities to this random variable to obtain
the required bound. Then

Proposition 30 Let c1 ∈ (1,∞). Suppose that (γ,N) are such that, γ(1) < c1 and
∀ 2 ≤ i ≤ N 3/2(k+1), γ(i) ≤ c1iγ(1).

Let α be a constant in (0, 1/2) and ξF,N
1/16

. be a (γ,N)- modification of ηF,N
1/16

.

with ξF,N
1/16

0 distributed as Ren(−N1/16,0](β) and let rγ,N
1/16

. be the associated rightmost
particle process. For A the event above,

|E[rγ,N
1/16

N1+α |A]−Nα
[N

3
2(k+1) ]
∑

i=1

c(i)γ(i)β(i)| ≤ C
(

N3α/4 +Nα−1/8 +N1/8
)

for C depending on c1 but not further on γ or on N and c(i) equal to the constants
of Corollary 24.

Remark: The time interval [0, N 1+α] and time N 1+α can be replaced by [0,W ] and
W respectively for any W in the interval [N 1+α/2, 2N 1+α] and the result will remain

valid with Nα∑[N
3

2(k+1) ]
i=1 c(i)γ(i)β(i) replaced by W

N

∑[N
3

2(k+1) ]
i=1 c(i)γ(i)β(i).

Proof. We condition on the event A described above. Let the V be the (ran-
dom) number of extra jumps and let the times of the extra jumps, that is jumps
corresponding to times t ∈ ∪lV

l be

0 < N 1/4 < t1 < t2... < tV < N1+α −N1/4.

V is a Poisson (cNα) random variable for c =
∑N3/2(k+1)

l=1 β(l)γ(l), conditioned on A,
an event of probability at least 1/2 ( for large N), so (as is easily seen from direct

calculation using Stirling’s formula) outside of an event of probability e−hNα/2

there are between cNα −N3α/4 and

cNα +N3α/4 extra jumps
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for h > 0 depending on c1 but not on N or α. We easily obtain the bound

E[|rγ,N1/16

N1+α |I{|V−cNα|≥N3α/4}] ≤ N 2N1+αe−hNα/2/2.

Now suppose that the extra jump, occurring at ti is a positive shift by xi. Then the
xi are independent identically distributed random variables with law P (xi = j) =

γ(j)β(j)/c where for j ≤ [N
3

2(k+1) ], 0 ≤ γ(j)/c ≤ c1j/β(1), as the conditioning

event A is independent of the sizes of the extra jumps. The value E[rγ,N
1/16

N1+α |A] is the
expectation (taken over ti, xi) of

E[rγ,N
1/16

N1+α |t, x]

=
V
∑

i=1

xi +
∫ N1+α

0

(

∞
∑

1

β(i)(i ∧N 1/16)− E[h(ξF,N
1/16

s )|t, x]
)

ds.

We suppose first that, in fact, none of the extra jump times ti occur within time N 1/4

of another. We divide up [0, N 1+α] into intervals

Ii = [ti, ti +N1/4] i = 1, · · ·V
and Jh h = 1, · · ·V + 1,

the remaining ordered intervals, J1 = [0, t1], J2 = [t1 +N1/4, t2] and so on.

As our process starts with distribution Ren(−N1/16,0](β), the integral
∫

J1

(

∑∞
1 β(i)(i ∧N 1/16)− E[h(ξF,N

1/16

s )|t, x]
)

ds is just equal to the corresponding in-

tegral for a non-perturbed equilibrium process ηF,N
1/16

. ,

∫

J1

(
∞
∑

1

β(i)(i ∧N 1/16)− ERen(−N1/16,0](β)[h(ηF,N
1/16

s )])ds = 0.

For h > 1, Jh = [th−1 + N1/4, th) with tV+1 taken to be N 1+α. For s in Jh we have
by the independent increments property of Poisson processes,

E[h(ξF,N
1/16

s )|t, x] = E[h(ξF,N
1/16

s )|tj, xj, j < h].

But Proposition 22 (2) yields

|E[h(ξF,N
1/16

t )|tj, xj, j < h]−
∞
∑

i

β(i)(i ∧N 1/16)| ≤ e−CN1/8

for t ∈ Jh and so

|
V+1
∑

h=1

∫

Jh

(

∞
∑

β(i)(i ∧N 1/16)− E[h(ξF,N
1/16

s )|t, x]
)

ds| ≤ N 1+αe−CN1/8

.
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We now consider intervals Ij = [tj, tj +N1/4]. By Proposition 22 (1),

|P (ξF,N
1/16

tj = χ)− Ren(−N1/16,0](β)({η : η = χ})
Ren(−N1/16,0](β)({η : h(η) = xj})

| ≤ e−cN1/8

.

Thus
∫

Ij
(Σβ(i)(i ∧N 1/16)− E[h(ξF,N

1/16

s )|t, x])ds

=
∫ N1/4

0

(

Σβ(i)(i ∧N 1/16)− ERen(−N1/16,0](β)[h(ηF,N
1/16

s )|h(ηF,N1/16

0 ) = xj]
)

ds

+O(e−cN1/8

N1/4N1/16) .

But by Lemma 28 this term is within CN−1/8 of c(xj)− xj and we have that

|E[rγ,N
1/16

N1+α |t, x]− Σc(xj)| ≤ K VN−1/8

and so (recall xi are i.i.d., independent of ti), on event
A ∩ { no two extra jumps are within N 1/4 of each other },

|E[rγ,N
1/16

N1+α |t]− V
N3/2(k+1)
∑

i=1

c(i)γ(i)β(i)| ≤ K VN−1/8. (+)

For the remaining part of event A where there is exactly one extra jump followed
within N 1/4 by another, suppose that the extra jumps occur at t1 < t2 < · · · < tV
and that j is the unique integer between 1 and V such that tj < tj+1 < tj +N1/4.
Again we divide up the interval [0, N 1+α] into intervals:

Ii = [ti, ti+N1/4 ] i = 1, · · · j − 1

Ij = [tj, tj+1+N1/4 ]

Ii = [ti+1, ti+1+N1/4 ] i = j + 1, · · ·V − 1

and Jh h = 1, · · ·V

the remaining naturally ordered intervals, so that Jh = [th−1 + N1/4, th] for h ≤ j
(and taking t−1 +N1/4 to be 0); = [th +N1/4, th+1] for h > j (and taking tV+1 to be
N1+α).

We have just as before that for k 6= j
∫

Ik

(Σβ(i)(i ∧N 1/16)− E[h(ξF,N
1/16

s |t, x])ds

=
∫ N1/4

0
Σβ(i)(i ∧N 1/16)− ERen(−N1/16,0](β)[h(ηF,N

1/16

s )|h(ηF,N1/16

0 ) = xk]ds

+O(e−cN1/8

N1/4N1/16)
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and

|
V
∑

h=1

∫

Jh

∞
∑

β(i)(i ∧N 1/16)− E[h(ξF,N
1/16

s )|t, x]ds| ≤ N 1+αe−cN1/8

.

Thus, using Lemma 29 to bound the increment over Ij by KN
1/8, we obtain on event

A ∩ { two extra jumps are within N 1/4 of each other },

|E[rγ,N
1/16

N1+α |t]− V
N3/2(k+1)
∑

i=1

c(i)γ(i)β(i)| ≤ K VN−1/8 +KN 1/8.

Using this and (+) and integrating over t (and also using our bound for the ex-
pectation on event {|V − cN 1+α| > N 3/4} we obtain the result.

♦

7 Perturbed semi-infinite β−NPSs
In this section we consider classes of NPSs which are right sided (though obviously the
results obtained will transfer to the analogous left sided processes) and are perturba-
tions of β-NPSs in that the flip rates for sites to the left of or equal to the rightmost
occupied site are those of a β-NPS. The key element in their analysis is Girsanov’s
Theorem which enables us to transfer various large deviations, regeneration and sta-
bility results from equilibrium right sided β-NPSs to the “perturbed” processes. We
also prove a weak convergence result, the argument given being a simpler prototype
for the weak convergence arguments given in proving Theorems 2-4. We state the
following result not for its novelty or difficulty (it simply follows from Brownian em-
bedding) but simply to illuminate the approach and to motivate technical results that
follow.

Proposition 31 Let α be fixed in (0, 1). For each positive integer N let (WN
i ), i ≥ 1

and (WN ′
i ), i ≥ 1 be sequences of random variables so that for each T positive and

fixed,
(i) with probability tending to one WN

i = WN ′
i for 1 ≤ i ≤ TN 1−α as N tends to

infinity,
(ii) E[WN ′

i |F i−1] = 0, E[(WN ′
i )2|F i−1]/N

1+α → 1 uniformly in i as N tends to
infinity, where F0 is the trivial σ-field and for r ≥ 1, F r = σ{WN ′

i , i ≤ r},
(iii) ∀N ≥ 1, E[(WN ′

i )4|F i−1]/N
2(1+α) ≤ K where K does not depend on N , then

(XN
t : t ≥ 0) =





∑[tN1−α]
i=1 WN

i

N
: t ≥ 0





converges in distribution to standard Brownian motion.
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Throughout this section γ(.) will be a positive function on the positive integers
such that

γ(1) < c1,∀i ≥ 2, γ(i) ≤ c1iγ(1),

for c1 a positive constant. Let Γ(c1) denote the set of positive functions on the positive
integers satisfying this constraint. A NPS, (ξNt : t ≥ 0) is called a (γ,N) perturbed
β-NPS if its flip rates c(x, ξN) are































1 if ξN(x) = 1

β(`ξN (x), rξN (x)) =
β(`

ξN
(x))β(r

ξN
(x))

β(`
ξN
(x)+r

ξN
(x))

if ξN(x) = 0 and `ξN (x), rξN (x) <∞
βN(`ξN (x),∞) = β(`ξN (x))(1 +

γ(`
ξN
(x))

N
) if ξN(x) = 0 and `ξN (x) <∞ rξN (x) =∞

βN(∞, rξN (x)) = β(rξN (x))(1 +
γ(r

ξN
(x))

N
) if ξN(x) = 0 and `ξN (x) =∞ rξN (x) <∞.

The similarity with the (γ,N) modifications of the finite state space processes is
not accidental. Unless otherwise stated we will assume in the following that ξN0 is
distributed as Ren(−∞,0](β). We denote the position of the rightmost particle of ξNt
by rξ,Nt . We prove the following proposition.

Proposition 32 For (γ,N) perturbed β-NPS (ξNt : t ≥ 0) as defined above starting
from initial distribution Ren(−∞,0](β),

(
rξ,NtN2

N
: t ≥ 0)

D→ (Xt : t ≥ 0) as N →∞,
where

X0 = 0 dXt = dWt + vdt, and v =
∞
∑

`=1

β(`)γ(`)c(`)

for the constants c(.) defined by Corollary 24 and W. is a standard Brownian motion.

A result of this flavour was proven for a process denoted as ηN
′

t in [8] but in this case
the process in question was defined so that ∀t θrN′t

◦ηN ′t had distribution Ren(−∞,0](β).

For us the fact that, as seen from the rightmost particle, ξNt does not have distribution
Ren(−∞,0](β) will constitute the major difficulty.

The above result is of intrinsic interest but also introduces the main approach of
Section 8 and intermediate results (Propositions 36-38) shown in the course of proving
Proposition 32 will also be needed in our proof of Theorem 2.

The main tool for us will be the Girsanov’s formula.

Lemma 33 Consider the space Ω of cadlag functions from RI + to right sided config-
urations ω in {0, 1}ZZ , equipped with the usual Skorohod topology. Let Q be the law on
Borel subsets of Ω for which the paths are a (γ,N) perturbed β-NPS, while P is the
law for the β-NPS, both laws having ω(0) distributed as Ren(−∞,0](β). Fix α ∈ (0, 1].
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Let N(r)(= N(r, ω)) for ω ∈ Ω be the number of times that the rightmost site jumps
r units to the right during the time interval [0, TN 1+α]. Then Q and P a.s. N(r) is
defined for every positive integer r and

dQ

dP

∣

∣

∣

∣FTN1+α

= e−cTNα

Π∞r=1

(

1 +
γ(r)

N

)N(r)

for c =
∞
∑

r=1

β(r)γ(r),

where dQ
dP

∣

∣

∣

∣FTN1+α

denotes the Radon-Nikodym derivative of Q with respect to P on

the sigma-field generated by the paths on the time interval [0, TN 1+α].

This follows directly from [6] page 320. This result is stated for finite state Markov
chains but the extension to our case is minor.

Lemma 34 Let Q and P be as in Lemma 33. For positive integer ` < k−1, α ∈ [0, 1],

T ≥ 0 fixed and all N sufficiently large, EP





(

dQ
dP

∣

∣

∣

∣FTN1+α

)`


 ≤ K`,T,c1 for some

finite K`,T,c1 depending on T, c1 and ` but not on N or on the particular γ ∈ Γ(c1)
underlying measure Q.

Proof. By the preceding lemma,

(

dQ
dP

∣

∣

∣

∣FTN1+α

)`

= e−cT `Nα
Π∞r=1

(

(

1 + γ(r)
N

)`
)N(r)

and under P the random variables N(r) are independent Poisson random variables
of mean Tβ(r)N 1+α, thus

EP





(

dQ

dP

∣

∣

∣

∣FTN1+α

)`


 = exp(−cT `Nα)Π∞r=1 exp

(

Tβ(r)N 1+α[(1 +
γ(r)

N
)` − 1]

)

= Π∞r=1 exp

(

Tβ(r)N 1+α[(1 +
γ(r)

N
)` − 1− γ(r)

N
`]

)

(for exp(x) = ex),

≤ Π∞r=1 exp



Tβ(r)
∑̀

j=2

(

`

j

)

γ(r)j
1

N j−2





= Π`
j=2 exp

(

T

N j−2

(

`

j

)

∞
∑

r=1

β(r)γ(r)j
)

< K`,T,c1

since γ ∈ Γ(c1) and
∑∞

r=1 β(r)r
j is summable for j < k − 1.

♦
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Lemma 35 Let Q and P be as in Lemma 33. For fixed α < 1
2
, there exists a constant

K = K(α, c1, T ) , not depending on N or the particular γ ∈ Γ(c1), so that

P

(

∣

∣

∣

∣

dQ

dP

∣

∣

∣

∣FTN1+α

− 1
∣

∣

∣

∣

≥ 1

N (1−α)/3

)

≤ KN1+αN2/10

Nk/10
,

Q

(

∣

∣

∣

∣

dQ

dP

∣

∣

∣

∣FTN1+α

− 1
∣

∣

∣

∣

≥ 1

N (1−α)/3

)

≤ KN1+αN2/10

Nk/10
.

Proof. It is only necessary to establish a bound for large N . We treat explicitly

the first inequality. We write dQ
dP

∣

∣

∣

∣FTN1+α

as

exp

[

−
∞
∑

r=1

γ(r)β(r)TNα +N(r) log

(

1 +
γ(r)

N

)]

,

for N(r) defined as in Lemma 33. Thus it is a question of dealing with

∞
∑

r=1

(

N(r) log(1 +
γ(r)

N
)− γ(r)β(r)TNα

)

=

[N1/10]
∑

r=1

(

N(r) log(1 +
γ(r)

N
)− γ(r)β(r)TNα

)

+
∞
∑

r=[N1/10]+1

(

N(r) log(1 +
γ(r)

N
)− γ(r)β(r)TNα

)

.

Now with P (or Q) probability at least 1− TN1+α

N(k−2)/10K (for K not depending on N or
T ; in the following K may be increased but it will always retain this property), there
are no jumps of r. by more than [N 1/10] to the right in the interval of time [0, TN 1+α],
in which case

|
∞
∑

r=[N1/10]+1

log(1 +
γ(r)

N
)N(r)− γ(r)β(r)TNα| =

∞
∑

r=[N1/10]+1

γ(r)β(r)TNα

≤ TNαc1
∞
∑

r=[N1/10]+1

rβ(r) ≤ 1

4N (1−α)/3
for N large ,

since, for r large, rβ(r) < 1
r12 . The other sum can be written

[N1/10]
∑

r=1

(log(1 + γ(r)
N

)− γ(r)
N

)N(r)

+
[N1/10]
∑

r=1

γ(r)
N

(N(r)− β(r)TN 1+α).
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The first part is necessarily negative and, by a Taylor series argument, its absolute
value is bounded by

[N1/10]
∑

r=1

γ(r)2

2N2
N(r) ≤ γ(1)2c21

2N2

[N1/10]
∑

r=1

r2N(r) <
γ(1)2c21
2N9/5

[N1/10]
∑

r=1

N(r)

since γ ∈ Γ(c1). Under P,
∑[N1/10]

r=1 N(r) is simply a Poisson random variable of

parameter TN 1+α∑[N1/10]
r=1 β(r) < 2TN 1+α. For large N, 4TN 1+α < N18/10

3γ(1)2c21N
(1−α)/3 by

the fact that α ∈ (0, 1
2
). So, except on a set of exponentially small probability in N,

∑[N1/10]
r=1 N(r) ≤ N18/10

3γ(1)2c21N
(1−α)/3 , which implies that off this small set |∑[N1/10]

r=1 (log(1+
γ(r)
N

)− γ(r)
N

)N(r)| ≤ 1
4N(1−α)/3 .

It remains to consider

U =
1

N

[N1/10]
∑

r=1

γ(r)(N(r)− β(r)TN 1+α) =
1

N

[N1/10]
∑

1

γ(r)Xr

where Xr are independent centered Poisson r.v.s of variance β(r)TN 1+α. Calculat-
ing as in Lemma 34 we find that for c = ±N (1−α)/2

E[ecU ] = exp(
[N1/10]
∑

r=1

β(r)TN 1+α(ec
γ(r)
N − 1− c

γ(r)

N
)) ≤ K.

So, by usual Tchebychev exponential bounds we find

P





1

N
|
[N1/10]
∑

1

γ(r)Xr| ≥
1

4N (1−α)/3





≤ K exp(−hN (1−α)/6),

where K,h do not depend on N . Thus we have that outside a set of probability
KN1+αN2/10

Nk/10 for large N ,

∣

∣

∣

∣

∣

∞
∑

r=1

(

N(r) log(1 +
γ(r)

N
)− γ(r)β(r)TNα

)∣

∣

∣

∣

∣

≤ 3

4N (1−α)/3

which will (for large N) imply that | dQ
dP

∣

∣

∣

∣FTN1+α

− 1| ≤ 1
N(1−α)/3 . We can obtain a

similar bound with probability Q if we, for instance, consider 1
N

∑[N1/10]
r=1 γ(r)[N(r)−

β(r)(1 + γ(r)
N

)TN 1+α] instead of 1
N

∑[N1/10]
r=1 γ(r)[N(r)− β(r)TN 1+α].

♦
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From this result we can easily transfer results from equilibrium distribution pro-
cesses to our perturbed processes.

We obtain the following from Lemma 5.

Proposition 36 Let α ∈ (0, 1/2) and ξN. be a (γ,N) perturbed β-NPS for γ ∈ Γ(c1),
initially distributed as Ren(−∞,0](β) with rightmost particle rξ,N. . The probability that,
for s ≤ N 1+α −N1/4 fixed,

|rξ,N
s+N1/4 − rξ,Ns | ≥ N 1/8 log3N

is bounded by K/N k/24 for K depending on c1 but not on N ; the probability that

sup
s∈[0,N1+α]

{|rξ,Ns − rξ,N0 |} ≥ N (1+α)/2 log3N

is less than KN 2/10+1+α/Nk/10 where again K does not depend on N .

Proof. We prove the result on canonical path space with probabilities Q and P
being as in Lemma 35. We simply use the inequality, valid for any event A in FN1+α ,

Q(A) ≤ 2EQ[
dP

dQ

∣

∣

∣

∣FN1+α

IA]+Q({dP
dQ

∣

∣

∣

∣FN1+α

<
1

2
}) ≤ 2P (A)+Q({dP

dQ

∣

∣

∣

∣FN1+α

<
1

2
}).

So for instance
Q({|rξ,N

s+N1/4 − rξ,Ns | ≥ N 1/8 log3N})

≤ 2P ({|rs+N1/4 − rs| ≥ N 1/8 log3N}) + Q({dP
dQ

∣

∣

∣

∣FN1+α

<
1

2
}),

where we have omitted the superscripts on r to emphasize that under probability
P , the rightmost particle process is simply that of a rightsided β-NPS. By Lemma 5
the first term is bounded by 2K/N k/24, while by Lemma 35, the second probability

is bounded by K′N1+αN2/10

Nk/10 . The first result follows (after increasing K) as the first
bound is dominant. Similarly for the second part except that the second bound is
now the dominant one.

♦

Again employing the inequality Q(A) ≤ 2P (A)+Q({ dP
dQ

∣

∣

∣

∣FN1+α

< 1
2
}), Proposition

8 becomes

Proposition 37 For ξN. and r
ξ,N
. as in Proposition 36, the probability that for some

t ∈ [0, N 1+α], ξNt has a N
1/3 gap in [rξ,Nt −N3, rξ,Nt ] is bounded by KN 2/10+1+α/Nk/10

for constant K not depending on N .
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We can also use the Radon-Nykodym derivative to get effective bounds on moments
of rξ,Nt .

Proposition 38 Let ξN. and r
ξ,N
. be as in Proposition 36 and let A be an event of

probability 1− o(1) as N becomes large. Then

E
[

(rξ,NN1+α)2|A
]

N1+α
= 1 + o(1) and E

[

(

rξ,NN1+α

)4 |A
]

/N2(1+α) ≤ K,

for K not depending on N . Equally for time N 1+α replaced with N 1+α −N1/4.

Proof.

As

E
[

(

rξ,NN1+α

)2 |A
]

=
E
[

(

rξ,NN1+α

)2
IA

]

P (A)
,

it is only necessary to analyse the number

E
[

(

rξ,NN1+α

)2
IA

]

.

This equals (and here again we omit the superscripts on r to emphasize that with
respect to the probability P , the underlying process is simply a rightsided β-NPS)

EP

[

(rN1+α)2
dQ

dP

∣

∣

∣

∣FN1+α

IA

]

= EP
[

r2N1+αIA
]

+

EP

[

r2N1+α

(

dQ

dP

∣

∣

∣

∣FN1+α

− 1

)

IA

]

.

By Proposition 3.2 of [8] the first term is equal to N 1+α(1+o(1)) as N becomes large.
The magnitude of the second term is bounded by

EP
[

r2N1+α

1

N
1−α

3

]

+ EP

[

r2N1+α

∣

∣

∣

∣

dQ

dP

∣

∣

∣

∣FN1+α

− 1
∣

∣

∣

∣

I| dQ
dP
|F

N1+α
−1|> 1

N
1−α

3

]

≤ 2N 1+α 1

N
1−α

3

+ EP

[

r2N1+α

∣

∣

∣

∣

dQ

dP

∣

∣

∣

∣FN1+α

− 1
∣

∣

∣

∣

I| dQ
dP
|F

N1+α
−1|> 1

N
1−α

3

]

for N large. The last term above, by Hölder’s inequality is less than

(

EP
[

|rN1+α |k/2
])4/k

(

E[
∣

∣

∣

∣

dQ

dP

∣

∣

∣

∣FN1+α

− 1
∣

∣

∣

∣

k/4

]

)4/k (

P (
∣

∣

∣

∣

dQ

dP

∣

∣

∣

∣FN1+α

− 1
∣

∣

∣

∣

>
1

N
1−α

3

)

)1−8/k

≤ CkN
1+α

(

N1+αN2/10

Nk/10

)1−8/k

by Lemmas 34 and 35. Thus first part of the lemma follows. The second part is
proven in the same manner. The inequalities with N 1+α replaced by N 1+α−N1/4 are
shown in an entirely similar way.
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♦

A (γ,N) perturbation of a β-NPS, ξN. , can be coupled naturally with a (γ,N)

modification ξF,N
1/16,N

. of the Markov chain ηF,N. as in Proposition 13 so that “extra”
jumps occur simultaneously for both processes. In accordance with previous defini-
tions we say that with the above coupling (ξN. , ξ

F,N1/16,N
. ) remain successfully coupled

on time interval [0, V ] if ∀t ∈ [0, V ],

θrξ,Nt
◦ ξNt ||[−N1/16/2,0) = ξF,N

1/16,N
t ||[−N1/16/2,0) 6= 0

and (with the obvious definition), rξ,Nt = rF,N
1/16,N

t .
As our Radon-Nykodym derivative is really a derivative on families of Poisson pro-

cesses, the Radon-Nykodym derivative given in Lemma 33 also serves as the derivative
of the law of (ξN. , ξ

F,N1/16,N
. ) with respect to that of (ηR. , η

F,N1/16

. ), where ηR. is a right

sided β-NPS staring from Ren(−∞,0](β) and ηF,N
1/16

. is the finite state comparison
Markov chain naturally coupled with ηR. . We therefore obtain, using the argument of
Proposition 36,

Proposition 39 Let γ ∈ Γ(c1) and ξ
N
. be a (γ,N)-perturbed β−NPS, initially dis-

tributed as Ren(−∞,0](β), and naturally coupled with (γ,N) modification ξF,N
1/16,N

. so

that initially ξN. and ξ
F,N1/16,N
. agree on (−N 1/16, 0]. The probability that the natural

coupling between ξN. , ξ
F,N1/16,N
. does not break down on interval [0, N 1+α] is at least

1−KN (1+α)−23/(12.16) N3/16

N23k/(16)(288) .

Arguing as before we obtain the following complement to Proposition 38.

Corollary 40 For γ, ξN. , r
ξ,N
. as in Proposition 39, let A be the event that on time

intervals [0, N 1/4] and [N 1+α − N1/4, N1+α], there are no extra jumps (equally put,
on this time interval the process evolves as β−NPS) and that there are at most two
“extra” jumps occurring within N 1/4 of each other. Then

|E[rξ,Ns |A]−Nα
N

3
2(k+1)
∑

i=1

c(i)γ(i)β(i)| ≤ C
(

N3α/4 +Nα−1/8 +N1/8
)

for s = N 1+α or N 1+α − N1/4 where c(i) i = 1, 2, · · · are the constants defined in
Corollary 24.

Proof. We treat explicitly the case s = N 1+α. Let the underlying probability mea-
sure be Q. We suppose that N is so large that Q(A) ≥ 1/2 (see discussion preceding

Proposition 30). We consider the comparison (γ,N) modified Markov chain, ξF,N
1/16

. ,

which is naturally coupled with process ξN. . Denote by rγ,N
1/16

. its rightmost particle
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process. Let the event that the coupling breaks down be C. We have, as argued
previously,

|EQ[rξ,NN1+α |A]− EQ[rγ,N
1/16

N1+α |A]| ≤ EQ[|rξ,NN1+α |IC |A] + EQ[|rγ,N1/16

N1+α |IC |A].

To bound the second term of the righthand side we use the inequalities

EQ[|rξ,NN1+α |IC |A] ≤ EQ[|rξ,NN1+α |IC ]/Q(A) ≤ 2EQ[|rξ,NN1+α |IC ])

= 2EP [|rξ,NN1+α |IC
dQ

dP
],

for P the measure with respect to which ξN. , ξ
F,N1/16

. are non perturbed processes.
By Hölder’s inequality this is less than

= 2(EP [|rξ,NN1+α |4])1/4(EP [(
dQ

dP
)4])1/4(P (C))1/2.

By Proposition 3.2 of [8] the first factor is bounded by CN (1+α)/2, the second is
bounded by K4,1,c1 by Lemma 34, while P (C) is bounded by KN 3/16N−23k/(16 288) by

Proposition 13, thus by our extreme lower bound for k we have EQ[|rξ,NN1+α |IC |A] ≤
2EP [|rξ,NN1+α |IC dQ

dP
] < KN 1/8. Similarly but also making use of Lemma 27 we have

EQ[|rγ,N1/16

N1+α |IC |A] < KN 1/8.
Thus we have (for large values of N)

|EQ[rξ,NN1+α |A]− EQ[rγ,N
1/16

N1+α |A]| ≤ KN 1/8.

The result follows from Proposition 30.

♦

Proposition 26 and Lemma 35 yield the following.

Proposition 41 Let T ≥ 0 and let (ξNt : t ≥ 0) be a (γ,N) perturbed β−NPS,
starting from initial distribution Ren(−∞,0](β) for γ ∈ Γ(c1). Let r

ξ,N
. be its rightmost

particle process. Then for N 1/4 ≤ V ≤ N 1+α, conditioned on the event that there
are no extra jumps on time intervals [0, N 1/4] and [V − N 1/4, V ] and that at most
two extra jumps occur within N 1/4 of each other, outside of an event of probability
C N33/16

N23k/(288)(16) +KN 1+αN2/10/Nk/10,

ξNV+N1/4 = ΩV+N1/4 on (rξ,NV − 3N 2,∞)

where (Ωs : s ≥ V + N 1/4) is a (γ,N) perturbed β−NPS run with the same Harris
system as ξN. and θrξ,N

V +N1/4
◦ΩV+N1/4 is a configuration with distribution Ren(−∞,0](β),

independent of σ{ξNs s ≤ V }.
Furthermore, outside of an event of this probability, the rightmost particles of ξNt

and Ωt will agree for V + N 1/4 ≤ t ≤ TN 2 and for each t in this range Ωt and ξ
N
t

will agree on the interval [rξ,Nt − 2N 2, rξ,Nt ].
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We are now ready to prove Proposition 32.

Proof of Proposition 32
We prove weak convergence on [0, 1]; the general case is an automatic extension. By
Proposition 36, it is enough to show convergence for the process (XN

t : t ≥ 0) where

XN
t =

[tN1−α]
∑

j=1

(

rξ,NjN1+α − rξ,N(j−1)N1+α

)

=
[tN1−α]
∑

j=1

Vj.

We fix 1/2 > α > 1/4. We write

Vj = rξ,NjN1+α − rξ,N(j−1)N1+α = Uj + ωj

where
Uj = rξ,N

jN1+α−N1/4 − rξ,N(j−1)N1+α , and ωj = Vj − Uj.

As before we split up the Poisson process generating ξN. into the “equilibrium” Poisson

processes and an independent set of Poisson processes Sx
. generating at rate γ(x)β(x)

N

jumps x to the right of rξ,Nt at time t. That is the {Sx
. } generate the extra jumps.

We have (see the discussion preceding Proposition 30) with probability bounded
by KN 1−α( 1

N3/4 + N2α

N3/2 ) = o(1) that ∀ 0 ≤ j ≤ N 1−α the event A(j) occurs, where
A(j) is the event
( I) no extra points occur in time intervals [(j − 1)N 1+α, (j − 1)N 1+α + N1/4] and
[jN1+α −N1/4, jN1+α]
(II) at most two extra points are within N 1/4 of each other in [(j − 1)N 1+α, jN1+α].

Given this we have, conditioned on ∩jA(j) by repeatedly applying Proposition 41

at times V = jN 1+α −N1/4, that outside of an event of probability
(

KN33/16N1−α

N23k/(288)(16)

)

Uj are equal to U ′j where U ′j are i.i.d. random variables equal in distribution to

rN,ξ

N1+α−N1/4 conditioned on the event that at most two extra points are within N 1/4 of

each other in [0, N 1+α −N1/4] and no extra jumps in [0, N 1/4]. By Proposition 36,

|ωj| ≤ N 1/8 log3N for each j

with probability tending to one as N tends to infinity. The result now follows from
Proposition 31 with WN

i equal to Uj − E[U ′j] and WN ′
i equal to U ′j − E[U ′j], given

Proposition 38 and Corollary 40.

♦

Before concluding this section we state a result which belongs in this section but
will be used in the next. We suppose given a filtration {F t : t ≥ 0} containing
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the natural filtration of the Harris system but with respect to which the underlying
Poisson processes remain Poisson processes. We construct the process as follows:
We take γ0 ∈ Γ(c1) and ξN0 to be measurable with respect to F 0 and distributed
as Ren(−∞,0](β); on the interval [N 1/4, N1+α − N1/4), ξN. evolves under the given
Harris system as a (γ0, N) perturbed β-NPS. On the intervals [0, N 1/4] and [N 1+α −
N1/4, N1+α], ξN. evolves as a β−NPS. For i = 1, 2, · · ·, we take γi ∈ Γ(c1), measurable
with respect to F iN1+α−N1/4 and on the interval, [iN 1+α+N1/4, (i+1)N 1+α−N1/4), ξN.
evolves under the given Harris system as a (γi, N) perturbed β-NPS. On the intervals
[iN 1+α, iN 1+α +N1/4), ([i+ 1)N 1+α −N1/4, (i+ 1)N 1+α] it evolves under the Harris
system as a β-NPS. We call such a process a piecewise (Γ(c1), N) perturbed process.
The following is a consequence of Proposition 41 and Lemma 6,

Proposition 42 Fix finite positive T and c1 and 1/2 > α > 1/4. For the process
defined above, ξN. , let the rightmost occupied site at time t be denoted by r

ξ,N
t . There

exist processes (ηN,i
t : t ≥ iN 1+α) for i = 1, 2, · · ·TN 1−α so that

(i) θrξ,N
iN1+α

◦ ηN,i
iN1+α has distribution Ren(−∞,0](β) independent of θrξ,N

jN1+α
◦ ηN,j

jN1+α for

j < i and of F iN1+α−N1/4,
(ii) on the time interval [iN 1+α+N1/4, (i+1)N 1+α−N1/4), ηN,i

. evolves under the given
Harris system as a (γi, N) perturbed β−NPS; on the intervals [iN 1+α, iN 1+α +N1/4]
[(i+ 1)N 1+α −N1/4, (i+ 1)N 1+α] it evolves as a β−NPS,
(iii) with probability tending to one as N tends to infinity (with T and c1 fixed) for
all i ≤ TN 1−α and t ∈ [iN 1+α, (i+ 1)N 1+α], ηN,i

t (x) = ξNt (x) ∀ x ≥ rξ,Nt − 2N 2.

In the next section we will also use (γ,N)-perturbed β-NPS to refer to left sided
β-NPSs and we will speak of piecewise (Γ(c1), N) perturbed left sided β-NPSs. The
obvious definition will apply.

8 Convergence results

In this section we apply Proposition 42 to establish a weak convergence result for

the joint process ((
rN
N2t

N
,
`N
N2t

N
) : t ≥ 0). Recall from the discussion in the introduction

that for ηL,N
t (x) = ηNt (x)Ix≤rNt

and ηR,N
t (x) = ηNt (x)Ix≥`Nt

, the two processes evolve
“almost” as perturbed β-NPSs.

The principal difficulty to be confronted is that the “extra jump” rates for the two
processes are dependent on previous evolutions and on each other. We address this
problem by introducing processes (rN,+

. , `N,+
. ) and (rN,−

. , `N,−
. ) to which Proposition

42 may be directly applied and so that with large probability rN,−
t ≤ rNt ≤ rN,+

t for
t ≤ τN,ε = inf{s : `Ns − rNs ≤ εN}. We first give the definitions of these auxiliary

processes, then we establish weak convergence results for the processes ((
rN,+

N2t

N
,
`N,+

N2t

N
) :

t ≥ 0) and ((
rN,−

N2t

N
,
`N,−

N2t

N
) : t ≥ 0). We then show our weak convergence result for

((
rN
N2t

N
,
`N
N2t

N
) : t ≥ 0) by establishing an (with large probability) ordering relation.
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In showing weak convergence we will use the following analogue of Proposition
31, which again follows from Brownian embedding arguments which are left to the
reader.

Proposition 43 For each positive integer N , let (V N
i ,WN

i ), i ≥ 1 and (V N,′
i ,WN,′

i ), i ≥
1 be sequences of pairs of random variables such that with respect to the natural fil-
tration {FN

r }r≥0 generated by (V N,′
i ,WN,′

i ), i ≥ 1, for each r ≥ 1,
(i) the random variables V N,′

r and WN,′
r are conditionally independent given F r−1,

(ii) E[V N,′
r |F r−1] = E[WN,′

r |F r−1] = 0.
Further suppose that for each positive λ and r ≥ 1,
(a) E[(V N,′

r )2|FN
r−1]/N

4/3 and E[(WN,′
r )2|FN

r−1]/N
4/3 → 1 as N tends to infinity uni-

formly in 1 ≤ r ≤ λN 2/3,
(b) for each r,N ≥ 1, E[(V N,′

r )4|FN
r−1]/N

2(4/3) + E[(WN,′
r )2|FN

r−1]/N
2(4/3) ≤ K

where K does not depend on N or r,
(c) V N

i = V N,′
i ,WN

i = WN,′
i for all 1 ≤ i ≤ λN 2/3 with probability tending to one as

N tends to infinity. Then

(XN
t : t ≥ 0) = (

∑[tN2/3]
i=1 (V N

i ,WN
i )

N
: t ≥ 0)

converges in distribution to standard two dimensional Brownian motion.

Recall that ηN. has ηN0 ≡ 0 on (0, N) and ηN0 |(−∞,0] and ηN0 |[N,∞) are independent
and distributed respectively as Ren(−∞,0](β) and Ren[N,∞)(β). We introduced pro-
cesses rN. , `

N
. in the introduction to be the endpoints of what we consider to be the

gap.
Let λ be fixed but arbitrarily large. We now introduce semi-infinite comparison

processes (to which Proposition 42 may be directly applied)

(ηL,N,±
t : t ≥ 0) with rightmost particles (rN,±

t : t ≥ 0)

(ηR,N,±
t : t ≥ 0) with leftmost particles (`N,±

t : t ≥ 0)

so that (as we will see in Proposition 47 and Corollary 48) with probability tending
to one as N →∞ for t < τN,ε,± = inf{t > 0 : `N,±

t − rN,±
t < Nε} ∧ λN 2,

ηL,N,−
t ≤ ηL,N

t ≤ ηL,N,+
t and ηR,N,−

t ≤ ηR,N
t ≤ ηR,N,+

t ,

where ηL,N
t (x) = ηNt (x)Ix≤rNt

and ηR,N
t (x) = ηNt (x)Ix≥`Nt

. We note (and apologize for)
the fact that, at variance with the conventions of Theorem 1, the suffix R will now
denote leftsided processes (which are on the right of rightsided processes denoted with
suffix L). Both ηL,N,±

. and ηR,N,±
. will be generated by the same Harris system as ηN. .

All four processes will depend on ε for their time domain of meaningful definition but
we suppress reference to this in the notation.
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We define recursively ηL,N,+
. , ηR,N,+

. to be piecewise (Γ(C
ε
), N) perturbed β−NPSs

for suitable C (see Lemma 44 later for justification) as follows:
For iN 4/3 +N1/4 ≤ t ≤ (i+ 1)N 4/3 −N1/4, with iN 4/3 −N1/4 < τN,ε,+ (otherwise

we need not bother with a definition),
ηL,N,+
. evolves under the given Harris system as a right sided (γ i

+, N) perturbed β-
NPS where the function γi

+(l) is zero for l > N 3/2(k+1) and for l ≤ N 3/2(k+1) is given

by γi
+(l) =

(

β(L+
i −N4/5−`)

β(L+
i −N4/5)

− 1
)

N where L+i = `N,+

`N4/3−N1/4 − rN,+

iN4/3−N1/4 . That is with

flip rates f+i (·, ·) on time interval [iN 4/3 + N1/4, (i + 1)N 4/3 − N1/4] given by the
following:

f+i (`, r) =
β(`)β(r)

β(r + `)
for `, r finite ,

for ` ≤ N 3/2(k+1), f+i (`,∞) =
β(`)β(L+

i −N4/5−`)

β(L+
i −N4/5)

for L+i = `N,+

iN4/3−N1/4 − rN,+

iN4/3−N1/4

= β(`)
(

1 +
(

β(L+
i −N4/5−`)

β(L+
i −N4/5)

− 1
))

= β(`)
(

1 +
γi+(`)

N

)

;

for ` > N 3/2(k+1), f+i (`,∞) = β(`).

For the remaining times (in intervals of the form [iN 4/3, iN 4/3 + N1/4) or [iN 4/3 −
N1/4, iN 4/3]), ηL,N,+

. evolves as a rightsided β-NPS. Similarly ηR,N,+
. evolves as a left

sided (γi
+, N) perturbed β−NPS with flip rates given by

f+i (`, r) =
β(`)β(r)

β(r + `)
for `, r finite ,

f+i (∞, r) = β(r)

(

1 +
γi
+(r)

N

)

.

We similarly define ηL,N,−
. , ηR,N,−

. so that they evolve as perturbed (Γ(C
ε
), N) β-

NPSs (see Lemma 44 below) with

γi
−(l) =







(

β(L−i +N4/5−`)

β(L−i +N4/5)
− 1

)

N if ` ≤ N 3/2(k+1);

0 otherwise,

and L−i = `N,−

iN4/3−N1/4 − rN,−

iN4/3−N1/4 for i so that iN 4/3 −N1/4 < τN,ε,−.
In generating the “extra” jumps for these four processes we still use the given

Harris system and auxiliary random variables and will not introduce any additional
Poisson processes. This is to maintain closeness to the original process.

In order to use previous results we must verify that the γ i
± satisfy appropriate

boundedness conditions.

Lemma 44 Let γi
± be as defined above. Uniformly over possible γ

i
± we have on i

such that iN 4/3 −N1/4 < τN,ε,±,
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sup
`≤N3/2(k+1)

|k − γi
±(`)L

±
i

`N
| → 0 as N →∞.

In particular there exists C < ∞ so that for all N sufficiently large and i such that
τN,ε,± < iN 4/3 −N1/4, the γi

± defined above belong to Γ(C
ε
).

Thus for the above perturbed systems the results of the previous section and of
Lemma 29 and Proposition 30 are applicable.

Proposition 42 (and for part (2) Proposition 36) can be applied to the processes
to show

Proposition 45 For the joint process (ηL,N,+
. , ηR,N,+

. ) we have that
(1) there exist processes

(ηN,j,L
t : t ≥ jN 4/3), (ηN,j,R

t : t ≥ jN 4/3) for j = 1, 2, · · ·λN 2/3

so that
(i)θrN,+

jN4/3
◦ ηN,j,L

jN4/3 has distribution Ren
(−∞,0](β) independent of

θ`N,+

kN4/3
◦ ηN,k,R

kN4/3 for k ≤ j,

θrN,+

kN4/3
◦ ηN,k,R

kN4/3 for k < j,

and of
σ{ηL,N,+

s , ηR,N,+
s : s ≤ jN 4/3 −N1/4}.

θ`N,+

jN4/3
◦ ηN,j,R

jN4/3 has distribution Ren
[0,∞)(β) independent of

θ`N,+

kN4/3
◦ ηN,k,R

kN4/3 for k < j,

θrN,+

kN4/3
◦ ηN,k,L

kN4/3 for k ≤ j,

and of
σ{ηL,N,+

s , ηR,N,+
s : s ≤ jN 4/3 −N1/4}.

(ii) on the time interval [jN 4/3+N1/4, (j+1)N 4/3−N1/4), ηN,j,L
. , ηN,j,R

. evolve under
the given Harris system as a (γ+j , N) perturbed β−NPS conditioned not to have two
“extra” jumps within N 1/4 of each other; on the intervals [jN 4/3, jN4/3+N1/4), [(j+
1)N 4/3 −N1/4, (j + 1)N 4/3] they evolve as a β−NPS,
(iii) with probability tending to one as N tends to infinity (with λ fixed) for all
j : jN4/3 −N1/4 < λN 2 ∧ τN,ε,+ and t ∈ [jN 4/3, (j + 1)N 4/3],

ηN,j,L
t (x) = ηL,N,+

t (x) ∀ x ≥ rN,+
t − 2N 2
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and
ηN,j,R
t (x) = ηR,N,+

t (x) ∀ x ≤ `N,+
t + 2N 2.

(2) with probability tending to one as N tends to infinity for all j so that jN 4/3 −
N1/4 < τN,ε,+ ∧ λN 2

sup
jN4/3−N1/4<t<(j+1)N4/3

|rN,+
t − rN,+

jN4/3−N1/4 | < N 4/5/5.

Analogous results hold for (ηL,N,−
. , ηR,N,−

. ).

Remark: We suppose fixed such a collection of processes {ηN,j,R
. , ηN,j,L

. }. Given part
(1), part (2) is a simple consequence of Proposition 36.

Proposition 46 The pairs of random processes

(XN
t , Y

N
t )t∈[0,λ] =

(

rN,+
N2t∧τN,ε,+

N
,
`N,+
N2t∧τN,ε,+

N

)

t∈[0,λ]

and

(UN
t , V

N
t )t∈[0,λ] =

(

rN,−
N2t∧τN,ε,−

N
,
`N,−
N2t∧τN,ε,−

N

)

t∈[0,λ]

both converge in distribution to (X1
t∧τε , X

2
t∧τε) where X1

0 = 0, X2
0 = 1, and for

t < τ ε = inf{t : X2
t −X1

t = ε} ∧ λ,
dX1

t = dW 1
t + cdt

X2
t−X1

t
, dX2

t = dW 2
t − cdt

X2
t−X1

t
,

for independent Brownian motions W i
. and where c =

∑∞
`=1 β(`)k`c(`).

Proof. First by Proposition 45,(2) and Proposition 36 the processes

(XN
t , Y

N
t )t∈[0,λ]

and
(

XN,′

t , Y N,′

t

)

t∈[0,λ]
=





rN,+

N4/3[N2/3t]∧T+

N
,
`N,+

N4/3[N2/3t]∧T+

N





t∈[0,λ]

satisfy
sup

s∈[0,λ]

|XN
t −XN,′

t |+ |Y N,′

t − Y N
t |

pr−→ 0.

Here T+ = inf{jN 4/3 : j ≥ 0, jN 4/3 ≥ τN,ε,+}.
Secondly again by Proposition 45, (2), we have

for

XN,′′

t =
1

N

[N2/3t]∧(T+/N4/3)
∑

j=1

(

rN,+

(j+1)N4/3−N1/4 − rN,+

jN4/3

)

Y N,′′

t =
1

N

[N2/3t]∧(T+/N4/3)
∑

j=1

(

`N,+

(j+1)N4/3−N1/4 − `N,+

jN4/3

)
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that
sup

s∈[0,λ]

|XN,′

t −XN,′′

t |+ |Y N,′

t − Y N,′′

t | pr−→ 0.

Furthermore, by Proposition 45,(1), we have with probability tending to one as N →
∞, for all t ∈ [0, λ]

XN,′′

t =
1

N

[N2/3t]∧(T+/N4/3)
∑

j=1

(

rN,j,L

(j+1)N4/3−N1/4 − rN,j,L

jN4/3

)

Y N,′′

t =
1

N

[N2/3t]∧(T+/N4/3)
∑

j=1

(

`N,j,R

(j+1)N4/3−N1/4 − `N,j,R

jN4/3

)

,

where rN,j,L
. (respectively `N,j,R

. ) is the rightmost occupied site (respectively leftmost
occupied site) of ηN,j,L

. (respectively ηN,j,R
. ) the processes fixed after Proposition 45.

Define, for T+ > (i− 1)N 4/3,

V N,′
i = rN,i−1,L

iN4/3−N1/4 − rN,i−1,L

(i−1)N4/3 − E[rN,i−1,L

iN4/3−N1/4 − rN,i−1,L

(i−1)N4/3 |Gi−1],

WN,′
i = `N,i−1,L

iN4/3−N1/4 − `N,i−1,L

(i−1)N4/3 − E[`N,i−1,L

iN4/3−N1/4 − `N,i−1,L

(i−1)N4/3 |Gi−1],

and Gi = σ{WN,′
j , V N,′

j : j ≤ i}. For T+ ≤ (i − 1)N 4/3 we can arbitrarily define

V N,′
i ,WN,′

i so that they are in conformity with the hypotheses of Proposition 43.
It is readily seen that {(XN,′′

. , Y N,′′

. )}∞N=1 is tight (and any limit is continuous) and
that, by Corollary 40 and Lemma 44

1

N

[N2/3t]∧(T+/N4/3)
∑

j=1

E[`N,i−1,L

iN4/3−N1/4 − `N,i−1,L

(i−1)N4/3 |Gi−1]−
∫ t∧(τN,ε,+/N2)

0

cds

XN,′′
s − Y N,′′

s

converges in probability to zero for c =
∑∞

`=1 β(`)k`c(`). It therefore follows easily
from Proposition 45, given Proposition 38 and Corollary 40 (where the bounds hold
uniformly for γ ∈ Γ(C/ε)) and Proposition 43 that (XN,′′

. , Y N,′′

. ) converge in distri-
bution to (X1

t∧τε , X
2
t∧τε) for X

1
0 = 0, X2

0 = 1
dX1

t = dW 1
t + cdt

X2
t−X1

t
, dX2

t = dW 2
t − cdt

X2
t−X1

t
, for c =

∑∞
`=1 β(`)k`c(`)

(details are standard and left to the reader). Thus the result holds for (XN
. , Y

N
. ).

We have, using identical arguments, that the same distributional convergence result
holds for

(UN
t , V

N
t )t∈[0,λ] =

(

rN,−
N2t∧τN,ε,−

N
,
`N,−
N2t∧τN,ε,−

N

)

t∈[0,λ]

.

♦
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Proposition 47 Let XN
. , Y

N
. , UN

. and V N
. be as in Proposition 46. As N tends to

infinity sup0≤t≤λ{|XN
t −UN

t |+ |Y N
t − V N

t |} tends to zero in probability. Furthermore
with probability tending to one as N tends to infinity,

∀ 0 ≤ t ≤ τN,ε,+ ηL,N,+
t ≥ ηL,N,−

t , ηR,N,+
t ≥ ηR,N,−

t

and
∀ 0 ≤ t ≤ τN,ε,− ηL,N,+

t ≥ ηL,N,−
t and ηR,N,+

t ≥ ηR,N,−
t .

(In the last inequalities we replace ε by ε/2 for the definition of processes ηR,N,+
. and

ηL,N,+
. so that they are meaningfully defined up to time τN,ε,− with high probability.)

Proof. We assume that the following three events all hold:
(1) ∀j : jN 4/3 −N1/4 < τN,ε,+,

sup
t∈[jN4/3−N1/4,(j+1)N4/3]

|rN,+
t − rN,+

jN4/3−N1/4 | < N 4/5/5;

(2) there does not exist t < τN,ε,+ such that ηL,N,+
t has aN 1/3 gap in [rN,+

t −2N 2, rN,+
t ],

(3) ∀t < τN,ε,±, |rN,±
t | ≤ N 3/2.

We also assume the analogous events hold for ηR,N,±
. . That these events occur with

probability tending to one as N ends to infinity is a consequence of Proposition 45,
Proposition 36 and Proposition 37.

The problem to be confronted is that the perturbed β-NPSs are not attractive.
Nonetheless, as we will see, it is “close” to being attractive.

Suppose that jN 4/3 −N1/4 < τN,ε,+ and

ηL,N,+
s ≥ ηL,N,−

s , ηR,N,+
s ≥ ηR,N,−

s , ∀s ≤ jN 4/3

then we have that L+j ≥ L−j and so during the time interval [jN 4/3, (j +1)N 4/3] the
flip rate ` to the right of the rightmost particle of ηL,N,+

. ,

f+j (`,∞) ≥ f−j (`,∞) = β(`)(1 +
γi
−(l)

N
),

the flip rate of ηL,N,−
. at the site ` to the right of its rightmost particle. Both functions

f±j (`,∞) are decreasing in ` as quotient β(j)
β(j+1)

is decreasing.
The relation

ηL,N,+
t ≥ ηL,N,−

t

cannot be violated by a death at a site; furthermore by the attractiveness of the
original (unperturbed) β-NPS it is immediate that this inequality cannot be violated
by a birth at a site x to the left of rN,−

. by the attractiveness of β−NPSs. Thus
we are left with dealing with births to the right of rN,−

. . Since, as noted above, for
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` < `′, f−j (`′,∞) ≤ f+j (`,∞) we need only consider births at site x ∈ (rN,−
t , rN,+

t )

where also x ≤ rN,−
t +N3/2(k+1). Now the flip rate for ηL,N,−

. at such a site is equal to

β(x− rN,−
t )β(rN,−

t + L−j − x)

β(L−j )

which will automatically be less than the flip rate at site x (if it is vacant) for process
ηL,N,+
. unless there is a gap of size εN −N 4/5 for this process in interval [rN,−

t , rN,+
t ].

It is readily seen that provided event (3) occurs, this event is contained in the
event

{∃ a Nε/2 gap for ηL,N,+
. in [rN,+

t −N3/2, rN,+
t ] for some t ∈ [jN 4/3, (j + 1)N 4/3]}.

That is event (2) must fail (for N sufficiently large).
From this we see that if events (1)-(3) hold we must have the desired domination

for all t ∈ [jN 4/3, (j + 1)N 4/3] for j such that jN 4/3 − N1/4 < τN,ε,+. Similarly for
ηR,N,+
. and ηR,N,−

. . That is

UN
t ≤ XN

t Y N
t ≤ V N

t ∀t ≤ τN,ε,+.

Since (XN
. , Y

N
. ) and (UN

. , V
N
. ) have the same limiting distribution, this is easily seen

to imply
sup
0≤t≤λ

|UN
t −XN

t |+ |V N
t − Y N

t |
pr−→ 0 (++).

The relations for t ≤ τN,ε,− are handled similarly.

♦

We are now in a position to deal with

((Rt, Lt) : t ≥ 0) =

(

(
rNN2t

N
,
`NN2t

N
) : t ≥ 0

)

.

Corollary 48 With probability tending to one as N tends to infinity

∀ 0 ≤ t ≤ τN,ε,+ ηL,N,+
t ≥ ηL,N

t ≥ ηL,N,−
t ,

and
ηR,N,+
t ≥ ηR,N

t ≥ ηR,N,−
t .

Proof. Again suppose that conditions (1)-(3) of the previous proposition hold.
There are three slight differences to the previous case. Firstly the “extra” jumps
of, for instance, ηL,N,+

. are restricted to sites at most N 3/2(k+1) to the right of the
rightmost particle, while no such restriction applies to process ηL,N

. . However it will
be clear that the probability of such jumps occurring will be small. Secondly the flip
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rates for process ηL,N
. on the time interval [jN 4/3, (j + 1)N 4/3] will change in a way

depending on ηR,N
. and so the processes must be considered together. Thirdly on

time intervals of the form [iN 4/3, iN 4/3 + N1/4] or [(i + 1)N 4/3 − N1/4, (i + 1)N 4/3]
the processes ηR,N

. and ηL,N
. have extra jump rates while ηR,N,±

. and ηL,N,±
. do not.

However, as with the discussion preceding Proposition 30, we have that the probability
that this extra rate on such intervals produces extra jumps before time λN 2 is small
and so we do not consider this possibility further.

We consider the event that the domination relations ηL,N,+
t ≥ ηL,N

t , ηR,N,+
t ≥ ηR,N

t

are first violated at time t ∈ [jN 4/3, (j+1)N 4/3] and that the inequality breaks down
for the first pair of processes . We wish to show that if properties (1)-(3) hold, then
an event of small probability is entailed. As argued previously this violation can only
occur with a birth to the right of rNt for process ηL,N

. We can and do take t to belong
to [jN 4/3 +N1/4, (j + 1)N 4/3 −N1/4]. There are now two cases to consider

a) x ∈ (rNt , r
N,+
t ∧ rNt + N3/2(k+1)): this can be treated with the same argument

that showed the relations ηL,N,−
. ≤ ηL,N,+

. , provided (2) and (3) hold.

b) x > rNt + N3/2(k+1): in this case there may be no extra flip rate at site x for
process ηL,N,+

. , however the probability that ηL,N
. admits an extra jump of this size on

[jN4/3, τN,ε,+∧(j+1)N 4/3] is readily seen to be dominated byKλN 2/3/(εN)(N 3(k−3)/2(k+1)).
Thus the chance that such a jump occurs for any relevant j while ηL,N,+

. dominates
ηL,N
. is bounded by KN/N 3(k−3)/2(k+1) which tends to zero as N tends to infinity and
therefore may be neglected.

Similarly we have that the relation

ηL,N,−
t ≤ ηL,N

t or ηR,N,−
t ≤ ηR,N

t

can only be violated by a birth at a site x ∈ (rN,−
t , rNt ) or in (lNt , l

N,−
t ). However

given the (a-priori) lack of regularity of ηL,N
. the argument given for (ηL,N,−

. , ηL,N,+
. )

does not work with the pair (ηL,N,−
. , ηL,N,

. ). However we know by Proposition 46 and
previous arguments of this proof) that, with probability tending to one as N tends
to infinity before this inequality is violated

(A) rN,−
t− ≤ rNt− ≤ rN,+

t−

and
(B) rN,+

t− − rN,−
t− ≤ εN/2.

Together (A) and (B) ensure that the flip rate for( ηL,N
. vacant sites ) x in (rN,−

t , rNt )
for process ηL,N

. exceeds that for process ηL,N,−
. .

Thus we are done.

♦
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Remark: To see that the desired domination relations hold asymptotically with prob-
ability one up to time τN,ε,− we simply observe that by (++) with probability tending
to one as N tends to infinity τN,ε/2,+ > τN,ε,−. We have thus established a convergence
in distribution result:

Corollary 49 For each ε > 0,
(

(
rNN2t∧τN,ε

N
,
`NN2t∧τN,ε

N
) : t ≥ 0

)

D−→
(

(X1
t∧τε , X

2
t∧τε) : t ≥ 0

)

for (X1
. , X

2
. ) as in Proposition 46. Also as N tends to infinity

∥

∥

∥

∥

∥

τN,ε

N2
− τN,ε,+

N2

∥

∥

∥

∥

∥

→ 0

and
∥

∥

∥

∥

∥

τN,ε

N2
− τN,ε,−

N2

∥

∥

∥

∥

∥

→ 0

in probability.

9 Proof of Theorems

Given Corollary 48, Theorems 2-4 announced in the introduction are very intuitive.
The essential technical issues to be broached are
a) To show that for each δ > 0, ∃ε > 0, N0 < ∞ so that ∀N ≥ N0, P (| τN

N
− τN,ε

N
| >

δ) ≤ δ (and similarly for σN and τ̃N),
b) To show for t ≤ τN the distribution of ηNt “reasonably” to the left of rNt is close
to Ren(β) (and similarly to the right of `Nt ).
Corollary 49 is almost enough to prove Theorem 3, to supplement it we wish to
record some “regeneration” results: We aim to show that for large t and “most”
configurations, Ptf(η) is close to < Ren(β), f > for a fixed cylinder function f (here
“most” means with respect to Ren(β) or Ren(−∞,M ](β) where M is large compared
to
√
t). This phenomenon is related to the regeneration properties of equilibrium

β-NPSs. Since the arguments are minor reformulations of work already done in [8]
we will simply sketch the approach to the proofs.

Definition: A right sided configuration η0 with rightmost particle at position r
is said to be Nα -rich if for η′0 chosen conditionally independently of η0, given r0 with
distribution Ren(−∞,r0−Nα](β) and η., η

′
. generated with the same Harris system, the

probability that r′t, the rightmost particle of η′t is not less than rt for some t in [0, N 2)
or that η′.is not dominated by η. on [r0 − 2N 2,∞) over time interval [Nα, N2] is at
most N−k/96 . We similarly define Nα -rich for left sided processes.
The idea is that a rich configuration has good regeneration properties and that over
interval [Nα, N2], a process beginning from a rich configuration evolves similarly to
a process beginning from a one sided equilibrium distribution.
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Proposition 50 For (ηRt : t ≥ 0) a right sided β-NPS in equilibrium, there exists a
finite K not depending on N or on λ so that

P (ηRs is not N
1/4 − rich ∀ 0 ≤ s ≤ λN 2) ≤ λKN 4N−k/96.

Sketch: For definiteness we consider right sided processes. Following Lemma 5 we
can show that outside of an event of probability N−k/16 for every s ∈ [0, λN 2] the
conditional probability that in the next N 1/4 units of time rt changes by N 1/4/2 is
bounded by N 2N−k/16.

Similarly by Proposition 7 the probability that for some s ∈ [0, λN 2], ηRs is bad
for some 2N 1/16 interval within [rs− 2N 2, rs] or that the conditional probability that
in the next N 1/4 time units there is a N 1/48 gap for ηt in [rs − 2N 2, rs] is bounded
by λKN 4N−k/96. Given this we can use the regeneration argument of [8] or that of
Proposition 13 to obtain the claimed result.

Given Lemma 33 and Proposition 45, we can easily show the following.

Corollary 51 With probability tending to one as N tend to infinity, for all t ≤
τN,ε,± ∧ λN 2, the configurations ηL,N,±

t , ηR,N,±
t , as previously defined, are N 1/4-rich.

The following is a consequence of the definition of Nα-rich, Proposition 50 and
Schinazi’s invariance principle.

Corollary 52 Fix 1 > ε > 0 and cylinder function f . There exists constant C not
depending on ε or N so that if η0 is a right sided configuration with rightmost occupied
site in (εN,N) that is N 1/4-rich, then uniformly on s ∈ [N 1/2, N2ε] and such η0,

∣

∣

∣

∣

Eη0 [f(ηs)]− < Ren(β), f >
∣

∣

∣

∣

≤ Cε||f ||∞,

for N sufficiently large.

Using the regeneration results of [8] or of [9] we easily show the following.

Proposition 53 Fix strictly positive t and ε with ε < t. For (ηs : s ≥ 0) a β-NPS in
Ren(β) equilibrium (or stochastically greater than this) with natural filtration {F s}s≥0
and f a fixed cylinder function, the event

{∃s ≤ N 2(t− ε) :
∣

∣

∣

∣

E[f(ηN2t)|F s]− < Ren(β), f >
∣

∣

∣

∣

≥ ε}

has probability less than ε for N sufficiently large.

The following is the key result in addressing problem a) stated at the start of this
section and so we supply the proof. We know that if an equilibrium right sided β-
NPS has rightmost occupied site sufficiently to the left of the leftmost occupied site
of an equilibrium left sided β-NPS, then the two will evolve almost independently
even though they may be generated by the same Harris system. We wish to show
that if initially the separation is small with respect to N , then the rightmost particle
of the right sided β-NPS will become definitely bigger than the leftmost particle of
the leftsided process in time that is small with respect to N 2.
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Proposition 54 Let ε > 0 be fixed. Let ηR. be a right sided β-NPS, initially in
equilibrium with rightmost particle at the origin and let ηL. be a left sided β-NPS
also initially in equilibrium with leftmost particle at x for 0 ≤ x ≤ Nε. Suppose
processes (ηR. , η

L
. ) are generated by the same Harris system and T

ε = inf{s > 0 :
rs > ls +Nε/8} where r. is the rightmost particle of ηR. and l. is the leftmost particle
of ηL. , then there exists a strictly positive c and a finite C (not depending on N, x or
ε) so that for all N sufficiently large, uniformly in appropriate x,

P (T ε > N2ε) ≤ Cεc.

Proof. Let {F s}s≥0 be the natural filtration of the Harris system but with F s

augmented so that ηL0 and ηR0 are measurable with respect to F 0. Let

V = inf{s ≥ 0 : h(ηLs ) > N 1/6 or h(ηRs ) > N 1/6 or ηLs or ηRs are not N 1/4 − rich }.

Then we have by Proposition 50 and elementary calculations that P (V ≤ N 2ε) ≤
KN4N−k/96.

We define successively the stopping times τi for
log2

1
ε

3
≥ i ≥ 0, by τ0 = 0, and

τi = inf{t > τi−1 : rt−lt > Nε/8 or lt−rt ≥ (2(lτi−1
−rτi−1

)∨2εN)∧(ε2N222i+τi−1)}.

Observe here that our definition of stopping times τi entails that

τ log2
1
ε

3
−1
≤

log2
1
ε

3
−1

∑

i=1

ε2N222i < N2ε− ε2N222
log2

1
ε

3 .

Observe also that for

τi < V, lτi − rτi ≤ 2iεN(1 +
N1/6

εN
)i ≤ 2 2iεN

for all i ≤ log2
1
ε

3
if N is large. Thus for j ≤ log2

1
ε

3
, on {τj−1 < V } we have (by the

definition of rich and Schinazi’s invariance principle) that, with δN = (lτi−1
− rτi−1

∨
εN)/2,

P (rδ2N2+τi−1
> 2Nδ + rτi−1

, inf
s∈[τi−1, δ2N2+τi−1]

rs > −Nδ/10 + rτi−1
|F τi−1

) ≥ g > 0

and for the same g,

P (`δ2N2+τi−1
< −2Nδ + `τi−1

, sup
s∈[τi−1, δ2N2+τi−1]

`s < Nδ/10 + `τi−1
|F τi−1

) ≥ g > 0.

Here for a stopping time FT is the usual sigma field of information “up to time ” T .
Thus by the FKG inequality which applies to the above increasing (in the natural
sense with respect to subsequent points of the Harris system) events

P (rτi − lτi ≥ Nε/8|F τi−1
) > g2
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provided that N is large enough. Thus we deduce P (T ε > N2ε) < P (V < N 2ε) +

g2
1
3
log2(

1
ε
).

The result follows.

♦

Proof of Theorem 3

Recall that
τN = inf{t > 0 : there is no N d gap for ηNt in [−N 2, N2]}

τN,ε = inf{t > 0 : `Nt − rNt ≤ Nε},

τN,ε,− = inf{t > 0 : `N,−
t − rN,−

t ≤ Nε}.
By Proposition 8 applied to η̃N. (which is stochastically above the renewal equilibrium)
with S = N 2 and T = λN 2 (and Corollary 49) we have that τ̃N ∧ λN 2 is at least
both τN ∧λN 2 and τN,ε∧λN 2 with probability tending to one as N tends to infinity.
Also with probability tending to one as N tends to infinity, by Proposition 47,

τN,ε,− ≤ τN,ε ∧ λN 2 ≤ τN ∧ λN 2.

So (by the arbitrariness of λ and the fact that as λ → ∞, P (τN,ε,− < λN 2) tends to
one uniformly in N) to show the theorem it will suffice to show that for δ > 0 fixed,
there exists ε so that for all N sufficiently large, the probability that

τ̃N ≥ τN,ε,− + δN 2

is less than δ.
Let A1 be the event that either ηL,N,−

τN,ε,− or ηR,N,−
τN,ε,− are not N 1/4-rich. By Corollary

51, P (A1)→ 0 as N tends to infinity.
Let (ξLt : t ≥ τN,ε,−), (ξRt : t ≥ τN,ε,−) be semi-infinite β−NPSs run with the

given Harris system and so that

θrN,−

τN,ε,−−N1/4 ◦ ξLτN,ε,−

has distribution Ren(−∞,0](β),

θ`N,−

τN,ε,−+N1/4 ◦ ξRτN,ε,−

has distribution Ren[0,∞)(β) and these two distributions are mutually independent
and independent of the Harris system. Let A2 be the event that for some t with
τN,ε,− + N2 ≥ t ≥ τN,ε,− + N1/4 and some x ∈ [rN,−

τN,ε,− − N2,∞), ξLt (x) > ηNt (x)

or for some t so that τN,ε,− + N2 ≥ t ≥ τN,ε,− + N1/4 and some x ∈ (−∞, `N,−
τN,ε,− +
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N2], ξRt (x) > ηNt (x). By the definition of N 1/4-rich and Proposition 47, P (A2) tends
to zero as N tends to infinity.

Define for t ≥ τN,ε,−, rLt to be the rightmost occupied site for ξLt and lRt the leftmost
occupied site of ξRt . Let

Sε = inf{t > τN,ε,− +N1/4 : rLt > lRt + εN/9}.

By Proposition 50 and Proposition 54 and Lemma 5, event A3,

{Sε > τN,ε,−+N2ε or rLt > lRt +εN/8+N
1/3 or ξRSε is not N

1/4−rich or ξLSε is not N
1/4−rich }

has probability less than Cεc for N large.
We define (ηSε,1 : t ≥ Sε) to be the β-NPS run with the given Harris system

starting, at time Sε from all 1s. By the definition of N 1/4−rich and Lemma 16, the
event

A4 = Ac
3 ∩ {∃x ∈ [lRSε +Nε/20, lRSε + 2N 2) : ξRSε+N(x) < η

Sε,1
Sε+N(x) or

∃x ∈ [rLSε − 2N 2, rLSε −Nε/20)ξLSε+N(x) < η
Sε,1
Sε+N(x)}

has probability tending to zero as N becomes large.
So, by attractiveness on (A1 ∪ A2 ∪ A3 ∪ A4)c, we have

ηNSε+N(x) ≥ η
Sε,1
Sε+N(x) ≥ η̃NSε+N(x) ∀ x ∈ [rLSε − 2N 2, lRSε + 2N 2].

We have easily that event A5 = {|rLSε |+ |rLSε | ≥ N 3/2/100} has probability tending
to zero as N tends to infinity.

Thus by Lemma 6 we have on the complement of the union of events Ai, i =
1, 2, · · · 5 that ηNSε+N = η̃NSε+N . That is

lim sup
N→∞

P
(

τ̃N > τN,ε,− + εN 2 + εN
)

≤ Cεc.

We are done by the arbitrariness of ε > 0.

♦

Proof of Theorem 2 By definition, for N large enough τN ∧ λN 2 ≥ τN,ε ∧ λN 2

unless for some s ≤ τN,ε ∧λN 2, |rNs | or |`Ns | exceed N 3/2 (an event whose probability
tends to zero as N becomes large by Corollary 49), equally it is clear that the event
{σN < τN,ε ∧ λN 2} is contained in the union of events

{∃t ≤ λN 2, x ≥ Nε

2
: t ∈ BrNt−+x, U

x,t ≤ β(x)}

{∃t ≤ λN 2, x ≥ Nε

2
: t ∈ B`Nt−−x, U

x,t ≤ β(x)}.
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Thus {σN < τN,ε∧λN 2} has probability bounded by 2λN 2∑

x≥Nε β(x). We conclude

P (τN ∧ σN < τN,ε ∧ λN 2)→ 0.

Furthermore, by Proposition 8, we have that P (τN > τ̃N) tends to zero as N tend to
infinity, which implies, given Theorem 3, that

P (τN > τN,ε,− + 2εN 2) ≤ Cεc

for N large. For σN we simply observe that if processes (ηL,′
s , ηR,′

s : s ≥ τN,ε,−) satisfy
ηL,′
τN,ε,− = ηL,N

τN,ε,− and evolve under the given Harris system as one sided β-NPSs, then
(by Corollary 48) with probability tending to one as N tend to infinity, σN is less than
or equal to the the minimum of λN 2 and the first time the rightmost particle of ηL,′

.

exceeds the leftmost particle of ηR,′
. . Thus, in the notation of the proof of Theorem

3, P (σN < Sε) tends to zero as N tends to infinity and so by the proof of Theorem 3

lim sup
N→∞

P (σN > τN,ε,− + 2εN 2) ≤ Cεc.

Thus we have that

lim sup
N→∞

P (λN 2 ∧ (τN ∨ σN) > τN,ε,− + 2εN 2) ≤ Cεc.

The result now follows from the arbitrariness of λ and the fact that, by Proposition
54 and Proposition 46 , the limit in distribution as N → ∞ and then ε → 0 of
τN,ε/N2 ∧ λ is τ ∧ λ.

♦

Proof of Theorem 4
We will use the (easily proven) facts that the distributions of the stopping times τ and
τ ε defined for the diffusions (X1

. , X
2
. ) have no atoms and that at time t, conditioned

on {τ > t}, the laws of X i
t have no atoms without proof. We consider f , a cylinder

function supported on [−M,M ]. We assume without loss of generality that f is
increasing with f(0) = 0 and f(1) ≤ 1. We fix ε > 0. Recall τN,ε,− = inf{t : `N,−

t −
rN,−
t ≤ Nε} ∧ λN 2. We suppose that λ > t. We write

E[f(ηNN2t)] = E[f(ηNN2t)IτN,ε,−≤N2(t−3ε)] (A)
+ E[f(ηNN2t)IτN,ε,−>N2(t−3ε)IM≤rN,−

N2(t−3ε)
−Nε1/4 ] (B)

+ E[f(ηNN2t)IτN,ε,−>N2(t−3ε)I−M≥`N,−

N2(t−3ε)
+Nε1/4 ] (C)

+ E[f(ηNN2t)IτN,ε,−>N2(t−3ε)IrN,−

N2(t−3ε)
<M+Nε1/4, `N,−

N2(t−3ε)
>−M−Nε1/4 ]

Case (A): E[f(ηNN2t)IτN,ε,−≤N2(t−3ε)] is at least
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P (τN,ε,− < N2(t− 3ε)) inf
s<N2(t−ε)

{E[f(η̃t)|F s]}

−P (τN,ε,− < N2(t− 3ε), τ̃N > N2(t− ε)).

By Proposition 53 and Proposition 54, as well as the proof of Theorem 3 we have
that (A) exceeds

(< Ren(β), f > −ε)(P (τN,ε,− < N2(t− 3ε))− ε) − 2Cεc

for N large.
Case (B): We assume without loss of generality that N 2(t−3ε) is of the form jN 4/3.

By the increasing property of function f , Corollary 51, Corollary 48 and Lemmas 16
and 17, we have that E[f(ηNN2t)IτN,ε,−>N2(t−3ε)IM≤rN,−

N2(t−3ε)
−Nε1/4 ] exceeds

(< Ren(β), f > −Cε)P (rNN2(t−3ε) ≥M +Nε1/4, τN,ε,− ≤ N2(t− 3ε))

and (C) has a corresponding bound. We conclude that

lim infN→∞E[f(ηNN2t)]

≥ (< Ren(β), f > −ε)P (τN,ε,− < N2(t− 3ε))

+ < Ren(β), f > P (rN,−
N2(t−3ε) ≥M +Nε1/4, τN,ε,− ≥ N2(t− 3ε))

+ < Ren(β), f > P (`N,−
N2(t−3ε) ≤ −(M +Nε1/4), τN,ε,− ≤ N2(t− 3ε))

− 2Cεc − 2Cε.

Letting ε→ 0 we conclude via Proposition 46 that

lim inf
N→∞

E[f(ηNN2t)] ≥ λt < Ren(β), f > .

For the converse inequality we proceed with similar arguments: Recall τN,ε,+ =
inf{t > 0 : `N,+

t − rN,+
t ≤ Nε} ∧ λN 2. Fix δ > 0, δ << ε2. By attractiveness

and the increasing property of f ,

E[f(ηNN2t)] ≤ P (τN,ε,+ ≤ N2(t− δ))PN2δf(1)

+ P (τN,ε,+ > N2(t− δ), rN,+
N2(t−δ) > −Nε−M)PN2δf(1)

+ P (τN,ε,+ > N2(t− δ), rN,+
N2(t−δ) ≤ −Nε−M, lN,+

N2(t−δ) < Nε+M)PN2δf(1)

+ P (|rN,+
N2t − rN,+

N2(t−δ)|+ |l
N,+
N2t − lN,+

N2(t−δ)| ≥ Nε ∪ {τN,ε,+ ∈ [N 2(t− δ), N 2t]})
+ P (A(N, t))

where A(N, t) is the event

{τN,ε,+ > N2t} ∩ {∃s ≤ tN 2 : η`,Ns 6≤ η`,N,+
s or ηR,N

s 6≤ ηR,N,+
s }.
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So

E[f(ηNN2t)] ≤ PN2δf(1)[P (τN,ε,+ ≤ N2(t− δ))

+ P (τN,ε,+ > N2(t− δ), rN,+
N2(t−δ) > −Nε−M)

+ P (τN,ε,+ > N2(t− δ), rN,+
N2(t−δ) ≤ −Nε−M, lN,+

N2(t−δ) < Nε+M)]

+ C(ε, δ)

for all N where for fixed ε large (by Propositions 47 and 46), C(ε, δ)→ 0 as δ → 0.
For given ε, we choose δ so that C(ε, δ) < ε; then we have

lim supN→∞E[f(ηNN2t)] ≤ ε

+PN2δf(1)[P (τN,ε,+ ≤ N2(t− δ)) + P (τN,ε,+ > N2(t− δ), rN,+
N2(t−δ) > −Nε−M)

+ P (τN,ε,+ > N2(t− δ), rN,+
N2(t−δ) ≤ −Nε−M, lN,+

N2(t−δ) < Nε+M)].

Now letting ε tend to zero we obtain lim supN→∞E[f(ηNN2t)] ≤ λt < Ren(β), f > .
We are done.

♦
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