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1 INTRODUCTION

Suppose that
(

Ω, (Ft)t≥0,P
)

is a filtered probability space satisfying the usual conditions,
and that

(

Zt; t ≥ 0
)

is a continuous, adapted process taking values in [0,∞) which satisfies
the stochastic differential equation

Zt = x+

∫ t

0
1(Zs>0)dWs + θ

∫ t

0
1(Zs=0)ds, (1.1)

where
(

Wt; t ≥ 0
)

is a real-valued Ft-Brownian motion and x ≥ 0 and θ ∈ (0,∞) are
constants. We say that Z is sticky Brownian motion with parameter θ started from x.
Sticky Brownian motion arose in the work of Feller [6] on strong Markov processes taking
values in [0,∞) that behave like Brownian motion away from 0. The parameter θ determines
the stickiness of zero: the cases (which we usually exclude) θ = 0 and θ = ∞ correspond
respectively to Brownian motion absorbed or instantaneously reflected on hitting zero. For
θ ∈ (0,∞) sticky Brownian motion can be constructed quite simply as a time change of
reflected Brownian motion so that the resulting process is slowed down at zero, and so
spends a non-zero amount of (real) time there. However here our interest will be focused
on it arising as a solution of the stochastic differential equation (1.1). This equation does
not admit a strong solution, in order to construct Z it is necessary to add to the driving
Brownian motion W some extra ‘randomness’. The nature of this randomness was first
investigated in [15]. More recently it has been shown (Warren, [16], and Watanabe, [17],
following Tsirelson, [13]) that the filtration (Ft)t≥0 cannot be generated by any Brownian
motion.

The main object of study in this paper is a coalescing flow on R+ which we denote by
(

Zs,t; 0 ≤ s ≤ t <∞
)

, where each Zs,t is an increasing function from R+ to itself. We may
describe the flow rather informally in terms of the motion of particles. For any t and x
the trajectory h 7→ Zt+h(x) describes the motion of a particle which starts at time t from a
position x. We shall be concerned with a flow in which this motion is determined by a sticky
Brownian motion. Away from zero, particles move parallel to each other- which means that
the SDEs (similar to equation (1.1)) which describe their trajectories are all driven by the
same Brownian motion W . Particles collide while visiting zero and thereafter they move
together- and the map Zs,t is typically neither injective nor surjective.

The stochastic differential equation (1.1) was studied in [15]. There it was shown that the
solution is weak, and that for each t, assuming Z0 = 0, the conditional distribution of Zt

given the entire path of the driving Brownian motion W is given by:

P
(

Zt ≤ z|σ(Ws; s ≥ 0)
)

= exp(−2θ(Wt + Lt − z)) z ∈ [0,Wt + Lt], (1.2)

where Lt = sups≤t(−Ws).

An interpretation of (1.2) was given in [15] which we can summarise loosely as follows.
Define a process ξ via

ξt = Wt + sup
s≤t

(

−Ws

)

t ≥ 0. (1.3)

ξ is then a Brownian motion reflected from zero. Each excursion of ξ from zero gives rise to
a rooted tree. Each time t determines a path in the tree corresponding to the excursion of
ξ which straddles t. This path starts from the root of the tree and is of length ξt. If times
s and t are both straddled by the same excursion then the paths they determine co-incide
from the root for a length Is,t = infh∈[s,t] ξh, and thereafter differ. The reader not familar
with the correspondence between trees and excursions may consult Aldous [1] or [2]. Next



Figure 1: The trajectories of three particles in a typical realization of the flow. The upper particle
never hits zero and its trajectory is a translate of the driving Brownian motion. The middle particle
has started from a critical height- it just hits zero and from then on follows the same trajectory as
the lowest particle which was started from zero. The dotted line shows the path that would be taken
by the middle particle if the boundary were not sticky.

we add marks to these trees according to a Poisson point process of intensity 2θ. We can
then construct the sticky Brownian motion Z from these marked trees via, for each t ≥ 0,

Zt =

{

0 if the path corresponding to t is not marked,

ξt − ht otherwise,
(1.4)

where ht is the distance along the path corresponding to t from the root to the first mark.
Notice that not all the marks carried by the trees are used in constructing the process Z in
this way.

In this paper the description of the previous paragraph is extended to the flow
(

Zs,t; s ≤ t
)

of
sticky Brownian motions. By replacing the single sticky Brownian motion by an entire flow
we make natural use of all the marks on the trees. A discrete version of the correspondence
between a flow and a family of marked trees is illustrated in Figures 2 and 3.

Section 2 of the paper details the construction of the flow. We begin with a process
(

Xt; t ≥
0
)

, taking values in R∞ which solves an infinite family of stochastic differential equations.
From X we are able to construct the flow in a pathwise manner.

In Section 3 we show that a generalization of (1.4) holds for the process X. There exists a
family of marked trees such that the components X (1), X(2), . . . , X(k), . . . of X satisfy

X
(k)
t =

{

0 if the path corresponding to t carries fewer than k marks,

ξt − h
(k)
t otherwise,

(1.5)

where h
(k)
t is the distance along the path corresponding to t from the root to the kth mark.

A consequence of this description of the process X is that it may be identified with a simple
path-valued Markov process similar in nature to the Brownian snake of Le Gall [8]; the
difference being that the white noise along the branches of the tree is replaced with Poisson
noise. For an interpretation in terms of killing in superprocesses, see Watanabe [18]. A



Figure 2: Three typical trajectories for a discrete version of the flow. As in Figure 1 the dashed
line is to illustrate the effect of the sticky boundary.

Figure 3: Showing some marked trees consistent with Figure 2. The driving random walk
determines a family of trees. The vertical edges of the trees are marked by independently
tossing a coin for each edge. This carries the information about the stickiness of the bound-
ary. A particle at the origin at time n will move to level 1 at time n + 1 if the driving
walk makes an upward step between times n and n+ 1 and the corresponding edge carries
a mark.



closely related construction involving Poisson marking of trees is described by Aldous and
Pitman [3].

In the final section we consider the flow as a noise, in the sense of Tsirelson [11] and [12].
The flow Z has independent stationary increments, in that, for any 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn
the random maps Zt0,t1 , Zt1,t2 , . . . Ztn−1,tn are independent and for s ≤ t and h > 0 the maps
Zs,t and Zs+h,t+h have the same distribution. We will write Fs,t for the σ-algebra generated
by
(

Zu,v; s ≤ u ≤ v ≤ t
)

. Following Tsirelson the doubly indexed family
(

Fs,t; s ≤ t
)

is
called a noise. It is a non-white noise because, as we shall see, there is no Brownian motion
whose increments generate it.

2 CONSTRUCTING THE FLOW

Let R∞ denote the space of real-valued sequences with the product topology. We will
denote (for reasons shortly to become clear) the canonical process on the space C

(

R+,R∞
)

of continuous R∞-valued paths by Xt =
(

Wt, X
(1)
t , X

(2)
t . . .

)

. Often we use the notation

X
(0)
t = Wt + sups≤t(−Ws).

Theorem 1. Let θ ∈ (0,∞). There exists a unique probability measure P on C
(

R+,R∞
)

such that the canonical process
(

Xt; t ≥ 0) satisfies the following.

• The first component, W , is a Brownian motion starting from 0 with respect to the
filtration generated by X.

• For k ≥ 1, the processes X(k) are non-negative and the following SDEs are satisfied:

X
(1)
t =

∫ t

0
1
{X

(1)
s >0}

dWs + θ

∫ t

0
1
{X

(1)
s =0}

ds,

X
(k)
t =

∫ t

0
1
{X

(k)
s >0,... ,X

(1)
s >0}

dWs + θ

∫ t

0
1
{X

(k)
s =0,X

(k−1)
s >0,... ,X

(1)
s >0}

ds, k ≥ 2.

Proof. We begin by proving that P is unique. Let P(n) denote the restriction of P to the
σ-algebra F (n) generated by W,X(1), . . . , X(n). Since the union of such σ-algebras is an
algebra generating the entire Borel σ-algebra, it suffices to prove that each P(n) is unique.

Let, for any k ≥ 1,

A
(k)
t =

∫ t

0
1
{X

(k)
s =0,X

(k−1)
s >0,... ,X

(1)
s >0}

ds, A
(k+)
t =

∫ t

0
1
{X

(k)
s >0,X

(k−1)
s >0,... ,X

(1)
s >0}

ds,

and denote their right-continuous inverses by α(k) and α(k+) respectively. We shall see

shortly that A
(k)
∞ = A

(k+)
∞ = ∞ with probability one, and so we may define, for any k ≥ 1

and for 0 ≤ u <∞,

B(k)
u =

∫ α
(k)
u

0
1
{X

(k)
s =0,X

(k−1)
s >0,... ,X

(1)
s >0}

dWs,

B(k+)
u =

∫ α
(k+)
u

0
1
{X

(k)
s >0,X

(k−1)
s >0,... ,X

(1)
s >0}

dWs.

For each n, under P(n), the processes B(1), . . . , B(n), B(n+) must be independent Brownian
motions, as a consequence of Knight’s theorem on orthogonal martingales (see [9], Chapter



V, Theorem 1.9). Hence if we can recover W,X (1), . . . , X(n) from them, the measure P(n)

will be determined uniquely.

Now, we may write,

X
(k)
t = B

(k+)

A
(k+)
t

+ θA
(k)
t .

Since the lefthandside is non-negative, and A(k) grows only when it is zero, we recall that
the Lemma of Skorokhod (see [9], Chapter VI, Lemma 2.1) tells us that,

θA
(k)
t = S

(k)

A
(k+)
t

,

where we denote,

S(k)
u = sup

h≤u

(

−B
(k+)
h

)

.

Note that,

A
((k−1)+)
t = A

(k)
t +A

(k+)
t =

1

θ
S

(k)

A
(k+)
t

+A
(k+)
t .

When k = 1 we may take the lefthandside to be given by A
(0+)
t = t. We can now check

the earlier claim that A
(k)
∞ = A

(k+)
∞ = ∞. If, for some k, we had A

(k+)
∞ < ∞ then repeated

application of the preceeding equation would give A
(0+)
∞ < ∞- a falsehood. So we deduce

thatA
(k+)
∞ =∞, but then we have A

(k)
∞ = S

(k)
∞ /θ =∞ with probability one.

Denote by σ(k) the inverse of the continuous, strictly increasing function:

u 7→ 1

θ
S(k)
u + u.

Then, we find that,

(*) B
((k−1)+)
t = B

(k+)

σ
(k)
t

+B
(k)

t−σ
(k)
t

,

and

(**) A
(k+)
t = σ

(k)

A
((k−1)+)
t

.

These two relations hold even for k = 1 provided that we take B
(0+)
t = Wt and A

(0+)
t = t.

Now for any fixed n we can use (*) to recover B(0+), . . . , B(n+) from B(1), . . . , B(n), B(n+).
Moreover we can then use (**) to obtain A(1+), . . . , A(n+), and then, finally, we obtain
X(1), . . . , X(n), since

(***) X
(k)
t = B

(k+)

A
(k+)
t

+ S
(k)

A
(k+)
t

.

More precisely we are able to write, for any finite set of times t1, t2, . . . , tm, the m(n+ 1)-

tuple Wt1 , X
(1)
t1

, . . . , X
(n)
t1

, . . . , . . . ,Wtm , X
(1)
tm

, . . . , X
(n)
tm

as a jointly measurable function of

B(1), . . . , B(n), B(n+), and this determines P(n) on a generating π-system. This completes
the proof of uniqueness.

To prove existence we construct, for each n the probability measure P(n) on
(

C
(

R+,R∞
)

,F (n)
)

from the law of an (n + 1)-tuple of processes W,X (1), . . . , X(n). This



sequence of measures is consistent (by virtue of the uniqueness property just obtained), and
we may take P to be its projective limit.

Fix n ≥ 1. To construct W,X(1), . . . , X(n) we start with n + 1 independent Brownian
motions denoted by B(1), . . . , B(n), B(n+) and, as in the proof of uniqueness, define, in turn,

B((n−1)+), B((n−2)+), . . . B(0+), by means of (*). Then, starting from A
(0+)
t = t, we define via

(**) increasing processes A(1+), . . . A(n+), and finally we use (***) to obtain the processes
X(1), . . . , X(n) and take W = B(0+). We must show that the processes so constructed
satisfy the appropriate SDEs, and that W is a Brownian motion. We do so via an inductive
argument.

Suppose for some k we have established that for r = 1, 2, . . . , (k−1) the process X (r) satisfies

the appropriate SDE and that A
(r+)
t =

∫ t

0 1{X(r)
s >0,X

(r−1)
s >0,... ,X

(1)
s >0}

ds. Then, using (**) and

(***),

∫ t

0
1
{X

(k)
s >0,X

(k−1)
s >0,... ,X

(1)
s >0}

ds =

∫ t

0
1
{X

(k)
s >0}

dA((k−1)+)
s =

∫ A
((k−1)+)
t

0
1{

B
(k+)

σ
(k)
v

+S
(k)

σ
(k)
v

>0

}dv =

∫ A
(k+)
t

0
1
{B

(k+)
u +S

(k)
u >0}

(

1

θ
dS(k)

u + du

)

= A
(k+)
t ,

because the measure dS
(k)
u is carried by the set {u : B

(k+)
u +S

(k)
u = 0}. A similar calculation

shows
∫ t

0
1
{X

(k)
s =0,X

(k−1)
s >0,... ,X

(1)
s >0}

ds =

∫ t

0
1
{X

(k)
s =0}

dA((k−1)+)
s =

∫ A
(k+)
t

0
1
{B

(k+)
u +S

(k)
u =0}

(

1

θ
dS(k)

u + du

)

=
1

θ
S

(k)

A
(k+)
t

.

Call the common value A
(k)
t and note that this identifies the second term on the righthand-

side of (***). It remains to identify the first term as a stochastic integral against W .

Write Wt = Mt + Nt where Nt = B
(k+)

A
(k+)
t

and Mt = B
(1)

A
(1)
t

+ . . . + B
(k)

A
(k)
t

and observe that

dMtdMt = dA
(1)
t + . . .+ dA

(k)
t while dNtdNt = dA

(k+)
t . Next we can write:

∫ t

0
1
{X

(k)
s >0,X

(k−1)
s >0,... ,X

(1)
s >0}

dWs =

∫ t

0
1
{X

(k)
s >0,X

(k−1)
s >0,... ,X

(1)
s >0}

dMs +

∫ t

0
1
{X

(k)
s >0,X

(k−1)
s >0,... ,X

(1)
s >0}

dNs.

The first integral must be identically zero because the zero set of the integrand supports the

measure dMtdMt while the second integral is simply B
(k+)

A
(k+)
t

. Applying the above arguments

for k = 1, 2, . . . , n we deduce that all the necessary SDEs are satisfied.

The remaining issue is to verify that W is a Brownian motion with respect to the filtration
generated by W,X(1), . . . , X(n). Suppose that B(k+) is a Brownian motion with respect to

some filtration G(k) and that G(k)
∞ is independent of the Brownian motion B(k). Let G(k−1)

be the filtration generated by

σ
(

B
(k)

s−σ
(k)
s

; s ≤ t
)

and G(k)

σ
(k)
t

.

Then it is easy to check that both the time changed Brownian motions

(

B
(k)

t−σ
(k)
t

; t ≥ 0

)

and
(

B
(k+)

σ
(k)
t

; t ≥ 0

)

are G(k−1)
t -martingales and hence that B((k−1)+), defined using (*) is also.



But B((k−1)+), having quadratic variation process t, is thus a G(k−1)
t -Brownian motion by

Lévy’s characterization. If we apply this argument successively, firstly for k = n and G (n)

the natural filtration of B(n+) then for k = n − 1, . . . , 2, 1 we find that W = B(0+) is a
G(0)-Brownian motion. But the processes W,X (1), . . . , X(n) are all G(0)-adapted and we are
finished.

In the following we will work with the probability space given by this theorem, and with
respect to the filtration denoted by

(

Ft
)

t≥0
, the smallest right-continuous and P-complete

filtration to which X is adapted. Since we want to construct the flow Z from X in a pathwise
manner we need to restrict ourselves to a subset of C

(

R+,R∞
)

on which X is sufficiently
well behaved. Our first task is to identify such a subset.

For each t let N̂t denote the smallest k ≥ 0 such that X
(k+1)
t is zero, or be infinity if no such

k exists. As we shall see the process
(

N̂t; t ≥ 0
)

must be treated with respect; it is very

singular. For any s ≤ t let N̂s,t = inf{N̂h : s ≤ h ≤ t}.

Lemma 2. The following hold with probability one.

• For every t ≥ 0 the sequence
(

X
(k)
t

)

k≥0
is decreasing and if X

(k)
t = X

(k+1)
t then

X
(k)
t = X

(k+1)
t = 0.

• N̂t <∞ except for a set of t having Lebesgue measure zero, and N̂s,t <∞ for all s < t.

Proof. We continue to use notation as introduced in the proof of the preceeding theorem.
We will show that, for all u and k,

B((k−1)+)
u + S(k−1)

u ≥ B
(k+)

σ
(k)
u

+ S
(k)

σ
(k)
u

,

with equality only if both sides are 0. Then by taking u = A
((k−1)+)
t we deduce

X
(k−1)
t ≥ X

(k)
t

for all t, and with equality only if both sides are 0.

Recall that

B
((k−1)+)
t = B

(k+)

σ
(k)
t

+B
(k)

t−σ
(k)
t

= B
(k+)

σ
(k)
t

+ S
(k)

σ
(k)
t

+B
(k)

t−σ
(k)
t

− S
(k)

σ
(k)
t

=

(

B
(k+)

σ
(k)
t

+ S
(k)

σ
(k)
t

)

+

(

B
(k)

t−σ
(k)
t

− θ(t− σ
(k)
t )

)

.

In view of the definition of σ
(k)
t we have that t− σ

(k)
t , and hence the second bracketed term

above, is constant on each component of the set

S =

{

t : B
(k+)

σ
(k)
t

+ S
(k)

σ
(k)
t

> 0

}

.

Consequently

S
(k−1)
t = sup

h≤t−σ
(k)
t

(

−(B(k)
h − θh)

)

,



and hence

B
((k−1)+)
t + S

(k−1)
t ≥ B

(k+)

σ
(k)
t

+ S
(k)

σ
(k)
t

.

Moreover we only obtain equality here if t − σ
(k)
t is an instant at which h 7→ B

(k)
h − θh

attains a new minimum. Since B(k) is independent of B(k+) and σ(k) the probability of this
occurring for t belonging to S is zero.

Let us prove the second assertion of the lemma: that N̂s,t is finite for all s < t with
probability one. On applying Itô’s formula we find that, for any λ > 0, and any k ≥ 1,

exp
{

−λX
(k)
t

}

− exp
{

−λX
(k)
0

}

=

− λ

∫ t

0
exp

{

−λX(k)
s

}

dX(k)
s + 1

2
λ2 exp

{

−λX(k)
s

}

dX(k)
s dX(k)

s =

− λ

∫ t

0
exp

{

−λX(k)
s

}

1
{X

(k)
s >0,... ,X

(1)
s >0}

dWs

− θλ

∫ t

0
exp

{

−λX(k)
s

}

1
{X

(k)
s =0,X

(k−1)
s =0,... ,X

(1)
s >0}

ds

+ 1

2
λ2

∫ t

0
exp

{

−λX(k)
s

}

1
{X

(k)
s >0,... ,X

(1)
s >0}

ds.

Thus

exp
{

−λX
(k)
t − 1

2
λ2t
}

+

∫ t

0
e−

1

2
λ2s
{

θλ dA(k)
s + 1

2
λ2
(

dA(k)
s + . . .+ dA(1)

s

)

}

is a bounded martingale. Taking expectations, and letting t→∞ we calculate that:

E
[
∫ ∞

0
e−

1

2
λ2sdA(k)

s

]

=
1

θλ

(

2θ

2θ + λ

)k

.

Summing over k, since

∞
∑

k=1

1

θλ

(

2θ

2θ + λ

)k

=
2

λ2
,

we deduce that, with probability one, for all t,

∞
∑

k=1

A
(k)
t = t.

But the measure of the set {t : N̂t = k − 1} is equal to A
(k)
t for 0 ≤ k < ∞, and so the set

{

t : N̂t =∞
}

has measure zero, and a complement dense in R+.

It is not true that with probability one N̂t is finite for all t. For each k, the set {t : N̂t > k}
is open and dense, and thus by virtue of Baire’s Category Theorem the set {t : N̂t =∞} =
∩k{t : N̂t > k} is dense.

We now describe a result that will eventually lead to the independent increments property
of the flow. If W (1) and W (2) are independent Brownian motions starting from zero and
t0 some fixed time, then the process W defined by

Wt =

{

Wt(1) if t ≤ t0,

Wt0(1) +Wt−t0(2) if t ≥ t0,



and obtained by splicing
(

Wt(2); t ≥ 0
)

onto the end of the path
(

Wt(1); 0 ≤ t ≤ t0
)

is itself
a Brownian motion. A more complicated procedure is given in the following lemma which
generalizes this construction.

Lemma 3. Suppose we are given two independent processes X(1) and X(2) each distributed
according to the law given by Theorem 1. Fix some t0, and construct a process X as follows.
For each x ≥ 0 let

T (x) = t0 + inf{t : Wt(2) = −x},

and let Tk = T (X
(k)
t0

(1)) for k ≥ 1, and T0 =∞. Define W via

Wt =

{

Wt(1) if t ≤ t0,

Wt0(1) +Wt−t0(2) if t ≥ t0.

Similarly for k ≥ 1, take X
(k)
t = X

(k)
t (1) for t ≤ t0 and then let

X
(k)
t = X

(k)
t0

(1) +Wt −Wt0 for t0 ≤ t ≤ Tk.

Continue by letting

X
(k)
t = X

(r)
t−t0

(2) when t ∈
[

Tk−r+1, Tk−r
)

r = 1, 2, . . . , k.

Then the process X is also distributed according to the law determined by Theorem 1.

Proof. As remarked previously W is a Brownian motion, and indeed it is a Brownian motion
with respect to the filtration generated by X since any increment Wu −Wt is independent
of
(

Xs; 0 ≤ s ≤ t
)

. Note also that the times Tk are stopping times with respect to this
filtration.

Observe that t 7→ X
(k)
t is continuous- in fact at the times Tk, Tk−1, . . . T1, at which continuity

is in doubt, it is zero. This is because, for any r, we have X
(0)
Tr−t0

(2) = 0 and so by Lemma
2:

X
(k)
Tr−t0

(2) = 0 k ≥ 0.

Consider a time interval
(

Tm+1, Tm
)

( this may be empty-it does not matter). For s belong-

ing to this interval we have X
(1)
s > X

(2)
s > . . . > X

(m)
s > 0, and so, for any k = m+ r > m,

1
{X

(k)
s >0,... ,X

(1)
s >0}

= 1
{X

(k)
s >0,... ,X

(m+1)
s >0}

= 1
{X

(r)
s−t0

(2)>0,... ,X
(1)
s−t0

(2)>0}
,

and likewise,

1
{X

(k)
s =0,X

(k−1)
s >0,... ,X

(1)
s >0}

= 1
{X

(r)
s−t0

(2)=0,X
(r−1)
s−t0

(2)>0,... ,X
(1)
s−t0

(2)>0}
.

Now making use of the SDE satisfied by X (r)(2) we obtain,

dX(k)
s = dX

(r)
s−t0

(2) =

1
{X

(r)
s−t0

(2)>0,... ,X
(1)
s−t0

(2)>0}
dWs−t0(2) + θ1

{X
(r)
s−t0

(2)=0,X
(r−1)
s−t0

(2)>0,... ,X
(1)
s−t0

(2)>0}
ds

= 1
{X

(k)
s >0,... ,X

(1)
s >0}

dWs + θ1
{X

(k)
s =0,X

(k−1)
s >0,... ,X

(1)
s >0}

ds.

Puting together the intervals (Tm+1, Tm) for m = k−1, . . . , 0 we find that X (k) satisfies the
appropriate SDE and the result follows from the uniqueness assertion of Theorem 1.



Notice how to recover
(

Xt(1); 0 ≤ t ≤ t0
)

and
(

Xt(2); t ≥ 0
)

from X. The former is simply
the restriction of X to times t ≤ t0. While W (2) is given by Wt(2) = Wt+t0 − Wt0 the

recovery of X(r)(2) for r ≥ 1 is more involved. Since Tm = inf{t ≥ t0 : X
(m)
t = 0} if

t0 ≤ t < Tm then X
(m)
t > 0 and

N̂t = inf{k : X
(k+1)
t = 0} ≥ m.

Also N̂Tm+1 ≤ m since X
(m+1)
Tm+1

= 0, and so for t ∈ [Tm+1, Tm) we have

N̂t0,t = inf{N̂h : t0 ≤ h ≤ t} = m.

Consequently we have

X
(N̂t0,t+r)
t = X

(r)
t−t0

(2) r ≥ 1.

The special case r = 1 deserves attention:

X
(N̂t0,t+1)
t = X

(1)
t−t0

(2)

which as t ≥ t0 varies is a sticky Brownian motion starting from zero at time t = t0. This
is the key to the construction of the flow from X.

Theorem 4. Define for all 0 ≤ s < t <∞, functions Zs,t : R+ 7→ R+, by

Zs,t(x) =

{

X
(N̂s,t+1)
t for 0 ≤ x ≤ Us,t,

Wt −Ws + x for Us,t < x.

where sups≤h≤t
(

Ws−Wh

)

is denoted by Us,t. We complete the definition of Z by taking Zt,t

to be the identity for all t.

Then with probability one Z possesses the properties of a flow: for all 0 ≤ s ≤ t ≤ u <∞,

Zs,u = Zt,u ◦ Zs,t.

For all x ∈ R+ and any s ≥ 0,

t 7→ Zs,t(x) is continuous as t ≥ s varies.

Moreover this trajectory satisfies the stochastic differential equation,

Zs,t(x) = x+

∫ t

s

1(Zs,u(x)>0)dWu + θ

∫ t

s

1(Zs,u(x)=0)du.

The doubly indexed process
(

Zs,t; 0 ≤ s ≤ t < ∞
)

has independent and stationary in-
crements: for any 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn the random maps Zt0,t1 , Zt1,t2 , . . . Ztn−1,tn are
independent and for s ≤ t and h > 0 the maps Zs,t and Zs+h,t+h have the same distribution.

Proof. Fix s < t < u. We evaluate the composition Zt,u

(

Zs,t(x)
)

in four distinct and
exhaustive cases. First note the following estimate,

(*) X
(N̂s,t+1)
t ≤Wt −Ws + Us,t.

which we will verify below. Note also the following property of N̂ which is an easy conse-
quence of its definition:



(**) N̂s,u = min
{

N̂s,t, N̂t,u

}

.

Let

T = inf{h ≥ t : X
(N̂s,t+1)
h = 0}.

CASE 1. Suppose that x > Us,t and Wt − Ws + x > Ut,u. These conditions may be
interpreted as saying that a particle started from x at time s does not reach zero by time
u. Then,

Zt,u

(

Zs,t(x)
)

= Zt,u

(

Wt −Ws + x
)

= Wu −Ws + x.

CASE 2. Suppose that x ≤ Us,t and X
(N̂s,t+1)
t > Ut,u. This time the particle starting from

x at time s hits zero before time t but then does not visit zero during the interval [t, u]. We

have T > u, and so for 1 ≤ k ≤ N̂s,t + 1, and h ∈ [t, u], we have X
(k)
h > 0, so (recall always

Lemma 2) N̂t,u ≥ N̂s,t + 1 and whence by virtue of (**) N̂s,u = N̂s,t and,

Zt,u

(

Zs,t(x)
)

= Zt,u

(

X
(N̂s,t+1)
t ) = X

(N̂s,t+1)
t +Wu −Wt = X

(N̂s,t+1)
u = X

(N̂s,u+1)
u .

CASE 3. Suppose that x ≤ Us,t and X
(N̂s,t+1)
t ≤ Ut,u. The particle starting from x at time

s visits 0 during both intervals [s, t] and [t, u]. Then, t ≤ T ≤ u, and so N̂t,u ≤ N̂s,t, whence,
using (**) again, N̂t,u = N̂s,u. Thus,

Zt,u

(

Zs,t(x)
)

= Zt,u

(

X
(N̂s,t+1)
t ) = X

(N̂t,u+1)
u = X

(N̂s,u+1)
u .

CASE 4. Suppose that x > Us,t and Wt−Ws+x ≤ Ut,u, so that the particle starting from x
at time s visits 0 during the interval [t, u] but not during [s, t]. Combining these inequalities

with that denoted by (*) above, X
(N̂s,t+1)
t ≤ Ut,u, so t ≤ T ≤ u and and we may argue as

for the preceding case that N̂t,u = N̂s,u. Thus

Zt,u

(

Zs,t(x)
)

= Zt,u

(

Wt −Ws + x) = X
(N̂t,u+1)
u = X

(N̂s,u+1)
u .

Finally note that x > Us,u if and only if CASE 1 holds, and so we have demonstrated the
required composition property.

Construct X as in the preceding lemma from two independent copies X(1) and X(2) taking
the splicing time t0 to be equal to s, then we commented following Lemma 3 that

X
(N̂s,t+1)
t = X

(1)
t−s(2),

and it is also the case that

Us,t = sup
0≤h≤t−s

(

−Wh(2)
)

= U0,t−s(2).

By virtue of Lemma 2 we can now deduce equation (*) above since

X
(1)
t−s(2) ≤ X

(0)
t−s(2) = Wt −Ws + Us,t.

We can also prove that Z has stationary, independent increments from this splicing. The
map Zs,t can be written in terms of X(2) as

Zs,t(x) =

{

X
(1)
t−s(2) for 0 ≤ x ≤ U0,t−s(2),

Wt−s(2) + x for U0,t−s(2) < x.



Thus Zs,t is determined from X(2) in the same way that Z0,t−s is determined from X and
so has the same law as Z0,t−s. The construction also shows that Zs,t is independent of
(

Zu,v; 0 ≤ u ≤ v ≤ s
)

, this being determined by X(1).

Finally note that t 7→ X
(1)
t−s(2) is for t ≥ s a sticky Brownian motion starting from zero and

this is the same as t 7→ Zs,t(0). More generally

Zs,t(x) =

{

x+Wt −Ws s ≤ t ≤ τ,

Zs,t(0) t ≥ τ

where τ = inf{t ≥ s : x+Wt −Ws ≤ 0}, from which we may easily deduce that t 7→ Zs,t(x)
is, for t ≥ s, a sticky Brownian motion starting at time s from x, and that this trajectory
satisfies the SDE as claimed.

Lemma 5. We may recover the process X from the flow: for each t,

{

Zs,t(0) : 0 ≤ s < t
}

=
{

X
(k)
t : k ≥ 1

}

.

Proof. To see this note first that the inclusion

{

Zs,t(0) : 0 ≤ s < t
}

⊆
{

X
(k)
t : k ≥ 1

}

.

follows from the very definition of Zs,t(0) as X
(k)
t for some k. This inclusion is in fact an

equality as the following argument shows. For each k ≥ 1 let

g
(k)
t = sup{s ≤ t : X

(k)
t = 0},

then X
(k)
h = Wh −W

g
(k)
t

for h ∈ [g
(k)
t , t]. Now, using the fact that the X

(k)
t take distinct

values for different k unless equal to zero, we see that:

N̂
g
(k)
t ,t

= inf
{

r : X
(r+1)
h = 0 for some h ∈ [g

(k)
t , t]

}

= k − 1,

unless g
(k)
t = t and X

(k)
t = 0. It follows that Z

g
(k)
t ,t

(0) = X
(k)
t for all k such that X

(k)
t > 0.

Finally note that if, for some k we have X
(k)
t = 0 then Zs,t(0) = 0 also for s sufficiently close

to t. Thus regardless of the value of X
(k)
t there is always some s < t with Zs,t(0) = X

(k)
t .

The maps Zs,t were expected to have a simple form on the basis of the verbal description
given in the introduction. For an initial position x sufficiently large the motion is simply
a ‘translate’ of W . Whereas for all values x less than or equal to some critical level, the
corresponding particles have reached zero between times s and t and coalesced. We can
identify the map Zs,t with a point

(

Xs,t, Us,t, Vs,t
)

∈ R3
+ where

Us,t = sup
s≤h≤t

(Ws −Wh), (2.1a)

Vs,t = sup
s≤h≤t

(Wt −Wh), (2.1b)

Xs,t = Zs,t(0). (2.1c)

Notice that, equation (*) from the proof of Theorem 4 can be written

Xs,t ≤ Vs,t, (2.2)



and in fact this holds simultaneously for all s ≤ t with probability one. When we compose
such maps we obtain via this identification a semigroup on

{

(x, u, v) ∈ R3
+ : x ≤ v}; the

map z associated with (x, u, v) being

z(ξ) =

{

x if ξ ≤ u,

v − u+ ξ if ξ > u.
(2.3)

Thus when we compose the maps associated with z1 = (x1, u1, v1) and z2 = (x2, u2, v2) we
obtain the map associated with z3 = (x3, u3, v3) = z2 ◦ z1 where

u3 = u1 + (u2 − v1)
+ (2.4a)

v3 = v2 + (v1 − u2)
+ (2.4b)

x3 = x21(u2≥x1) + (x1 + v2 − u2)1(u2<x1). (2.4c)

Using this identification of each map Zs,t with a point in R3
+ we can investigate the continuity

of (s, t) 7→ Zs,t. Discontinuities are caused by jumps in Xs,t which in turn are caused by

jumps in N̂s,t. For a pair of times s0 < t0 let k = N̂s0,t0 + 1. Then if r < k, X
(r)
h > 0 for all

h ∈ [s0, t0], and in fact by continuity all h in some larger open interval containing [s0, t0]. If

there exists h0 ∈ (s0, t0) with X
(k)
h0

= 0 then N̂s,t = N̂s0,t0 for all pairs s, t sufficiently close

to s0, t0. The alternative is that the only h ∈ [s0, t0] such that X
(k)
h = 0 are h = s0 or h = t0

or both. In these cases (s, t) 7→ N̂s,t has a simple discontinuity at (s0, t0). However not all
such discontinuities in N̂ cause discontinuities in (s, t) 7→ Xs,t = Zs,t(0). It is only if the

only h ∈ [s0, t0] such that X
(N̂s0,t0+1)

h = 0 is h = s0 that Xs,t has a point of discontinuity at
(s0, t0) which is of the form:

lim
h,k→0,h≥0

Xs−h,t+k exists and equals Xs,t (2.5a)

lim
h,k→0,h>0

Xs+h,t+k exists . (2.5b)

Another place to worry about the continuity of (s, t) 7→ Xs,t is on the diagonal s = t. Here
the behaviour of (s, t) 7→ N̂s,t is particularly bad. But the inequality Xs,t ≤ Vs,t assuages
our concerns.

3 LOOKING AT THE FLOW BACKWARDS

In this section we study the flow
(

Zs,t; s ≤ t
)

by fixing t and letting s decrease. This reveals
certain random variables which have a Poisson distribution and leads to a verification of the
description of the R∞-valued process X in terms of marked trees which was given in the
introduction. Recently Watanabe [19] has also made a similar study of the flow Z in which
the dual flow is described in terms of elastic Brownian motions. Let us define, for s < t, a
random set Ξs,t via

Ξs,t = {Zh,t(0) : s ≤ h < t}. (3.1)

Recall from Theorem 4 or Lemma 5 that the flow Z is constructed from the R∞-valued
process X in such a way that Zs,t(0) is equal to X

(k)
t for a certain random k. Thus

Ξs,t ⊆ {X(k)
t : k = 1, 2, . . . }, (3.2)

and in view of Lemma 2 we deduce that except for an exceptional set of t having Lebesgue
measure zero Ξs,t contains only a finite number of points. From this, and the stationarity
of Z, it follows that for any fixed t, the probability that Ξs,t is finite for all s is one.



The principal result of this section is the description of the law of Ξs,t conditional on the
driving Brownian motion

(

Wt; t ≥ 0
)

.

Theorem 6. For fixed s < t, the law of Ξs,t conditional on
(

Wt; t ≥ 0
)

is given, by the
following.

• 0 ∈ Ξs,t with probability one;

• Ξs,t \ {0} is distributed as a Poisson point process of intensity 2θ on (0, Vs,t].

In proving this theorem it is helpful to extend the flow to negative time. Thus suppose
(

Zs,t;−∞ < s ≤ t < ∞
)

is a flow defined for all time with stationary independent incre-
ments, and whose restriction to positive time is the flow constructed in Theorem 4. Suppose
also that Z possess the regularity properties (2.5). As in the introduction let Fs,t be the
σ-algebra generated by

(

Zu,v; s ≤ u ≤ v ≤ t
)

which we complete to contain all events with
zero probability.

Lemma 7. Suppose that T is a finite stopping time with respect to the filtration
(

F−t,0
)

t≥0
then

(

Zs−T,t−T ;−∞ < s ≤ t ≤ 0
) law
=
(

Zs,t;−∞ < s ≤ t ≤ 0
)

,

and is moreover independent of F−T,0.

Proof. We mimic the usual proof of the strong Markov property. Suppose the stopping time
T only takes values in a discrete set of times, then, by virtue of the stationarity of the flow
and the fact that F−∞,−ti and F−ti,0 are independent, the result holds for T . An arbritary
stopping time is the limit of a decreasing sequence of such elementary stopping times. Using
this fact we deduce the result for an arbitrary finite T noting that as h ↓ 0, for any s ≤ t ≤ 0,

Zs−(T+h),t−(T+h) → Zs−T,t−T ,

by equation (2.5).

For a flow which is defined for all negative time we extend the driving Brownian motion W
to negative time by the device of considering the doubly indexed process

(

Ws,t;−∞ < s ≤
t <∞

)

defined by

Ws,t = Zs,t(x) for sufficiently large x.

For non-negative s and t this is just the increment Wt −Ws of the Brownian motion W .
The definitions of Us,t and Vs,t can be extended to negative times via:

Us,t = sup
h∈[s,t]

(

−Ws,h

)

and Vs,t = sup
h∈[s,t]

(

Wh,t

)

(3.3)

We may also define a random set Ξ−∞,0 to be {Zs,0(0) : −∞ < s < 0}.

Lemma 8. Ξ−∞,0 \ {0} is a Poisson point process on (0,∞) with intensity 2θ and is inde-
pendent of

(

Ws,t;−∞ < s ≤ t <∞
)

.

Proof. For x ≥ 0 let −Tx = sup{s ≤ 0 : Vs,0 > x}. Then x 7→ Tx is right-continuous, and
each Tx is a

(

F−t,0
)

t≥0
-stopping time by virtue of F−t,0 being complete.

We define a right continuous counting process
(

N(x);x ≥ 0
)

via

N(x) = n
(

Ξ−Tx,0 \ {0}
)

,



where nS counts the number of points belonging to the set S.

Now fix some x and notice that V−Tx,0 = x. If −Tx ≤ s < 0 then

Zs,0(0) ≤ Vs,0 ≤ V−Tx,0 = x.

On the other hand if s < −Tx then Zs,0(0) = Z−Tx,0 ◦ Zs,−Tx(0), which is either equal to
Z−Tx,0(0) or strictly greater than x. From this we deduce two facts. Firstly that

(

N(h);h ≤
x
)

is determined by the set {Zs,0(0) : −Tx ≤ s < 0} and hence is measurable with respect
to F−Tx,0. Secondly that for y ≥ 0,

N(x+ y)−N(x) = n
{

Zs,0(0) ∈ (x, x+ y] : s < 0
}

= n
{

Zs,−Tx(0) ∈ (0, y] : s < Tx
}

.

On applying the previous lemma we deduce that N is a process with independent identically
distributed increments, and since it is constant except for positive jumps of size one, it must
be a Poisson process of with some rate that remains to determine.

Before discussing the rate of N we first prove that it is independent of
(

Ws,t;−∞ < s ≤
t < ∞

)

. In fact because of the independence of flow before and after time 0 it is enough
to show that N is independent of

(

Ws,t;−∞ < s ≤ t ≤ 0
)

. It follows from Lemma 2 and
stationarity that for each fixed s < 0 with probability one, the strict inequality holds

Zs,0(0) < Vs,0.

Nevertheless there exist random s at which equality holds: the times −Tx for x ∈ Ξ−∞,0

in fact. By Fubini’s Theorem, with probability one, the Lebesgue measure of the set of
these exceptional s for which equality holds is zero. Now consider an interval of the form
[−Tx,−Tx−] for which Tx 6= Tx− = limε↓0 Tx−ε. For s belonging to such an interval

Zs,0(0) = Z−Tx−,0 ◦ Zs,−Tx−(0) = Z−Tx−,0(0).

This latter value cannot be equal to x, for if it was then Zs,0(0) = x = Vs,0 for all s in
the interval and the interval would then have to have length zero. Notice that if s < −Tx
or −Tx− < s then Zs,0(0) cannot be equal to 0 either, and so we have shown that any x
such that Tx− < Tx cannot belong to Ξ−∞,0 and is not the time of a jump of the process
(

N(x);x ≥ 0
)

. But x such that Tx− < Tx are exactly the local times at which the reflecting
Brownian motion

(

W−t,0 + V−t,0; t ≥ 0
)

makes excursions from zero. It follows from a
well-known property of Poisson processes (see [9], Chapter XII, Proposition 1.7) that N is
independent of the Poisson point process of excursions from zero made by this reflecting
Brownian motion and hence from the reflecting Brownian motion itself. Finally we note
that we can recover

(

Ws,t;−∞ < s ≤ t ≤ 0
)

from this reflecting Brownian motion and the
proof of independence is complete.

To determine the rate of N we may calculate, using Lemma 2

∫ 0

−∞
e

1

2
λ2sP

(

Zs,0(0) = 0
)

ds =

∫ ∞

0
e−

1

2
λ2tP

(

Z0,t(0) = 0
)

dt =

∫ ∞

0
e−

1

2
λ2tP

(

X
(1)
t = 0

)

dt =

∫ ∞

0
e−

1

2
λ2tdA

(1)
t =

2

λ(2θ + λ)
.

On the other hand, Zs,0(0) = 0 if and only if N(Vs,0) = 0, and so if N has rate β then

∫ 0

−∞
e

1

2
λ2sP

(

Zs,0(0) = 0
)

ds =

∫ 0

−∞
e

1

2
λ2sE

[

e−βVs,0
]

ds =

∫ ∞

0
e−βy

∫ ∞

0
e−

1

2
λ2tP(|Bt| ∈ dy) dt = 2

∫ ∞

0
e−βy

e−λy

λ
dy =

2

λ(β + λ)
,



where we have used the resolvent of Brownian motion and the fact that V0,t has the same
law as |Bt|. This shows that β = 2θ.

Proof of Theorem 6. We have 0 ∈ Ξs,t unless N̂t = ∞ which according to Lemma 2 occurs
only for a set of t having Lebesgue measure zero. Thus by stationarity for any fixed s and t
the probability that 0 ∈ Ξs,t is one. By Fubini’s Theorem it follows 0 ∈ Ξs,t with probability
one having conditioned on W ( except for a null set of possible values for W .)

We consider the extended flow defined for negative time. By stationarity and Lemma 8

Ξ−∞,t \ {0} = {Zs,t(0) : −∞ < s < t} \ {0}

is distributed as a Poisson point process with rate 2θ on (0,∞) and is independent of the
white noise (Ws,t; s ≤ t) and hence of the Brownian motion (Wt; t ≥ 0) = (W0,t; t ≥ 0).
Finally

Ξs,t = Ξ−∞,t ∩ [0, Vs,t],

and Vs,t is measurable with respect to W .

Corollary 9. The law of Zs,t depends only on h = t− s and is given by

(

Zs,t(0), Us,t, Vs,t
) law
=
(

(URh − T )+, (1− U)Rh, URh

)

(3.4)

where U is a variable uniformly distributed on [0, 1], T is an exponential random variable
with mean 1/(2θ), Rh is distributed as

√
hR1 for R1 the modulus of a standard Gaussian

variable in R3, and the three variables U , T and Rh are independent.

Proof. The marginal law of (Us,t, Vs,t) which depends just on the BM W is very well known
see for example [20]. The exponentially distributed contribution describing the conditional
law of Zs,t(0) is a consequence of Theorem 6 above, since Zs,t(0) > x if and only if Ξs,t
contains a point in (x, Vs,t].

We turn now to an examination of the joint law of Ξ0,t1 and Ξ0,t2 when t1 < t2. It is at this
point that the tree structure discussed in the introduction becomes evident.

Proposition 10. For fixed t1 < t2, the joint law of Ξ0,t1 \ {0} and Ξ0,t2 \ {0} conditional
on
(

Wt; t ≥ 0
)

is given by the following.

1. If V0,t1 ≤ Ut1,t2 then Ξ0,t1 \{0} and Ξ0,t2 \{0} are independent Poisson point processes
of intensity 2θ on (0, V0,t1 ] and (0, V0,t2 ] respectively.

2. If V0,t1 > Ut1,t2 then Ξ0,t2 is composed of two pieces, one derived from Ξ0,t1, and the
other independent of it:

(a) the restriction of Ξ0,t2 to (Vt1,t2 , V0,t2 ] is equal to the translation of the restriction
of Ξ0,t1 to (Ut1,t2 , V0,t1 ] by Wt2 −Wt1, that is,

Ξ0,t2 |(Vt1,t2 ,V0,t2 ] = (Wt2 −Wt1) + Ξ0,t1 |(Ut1,t2 ,V0,t1 ];

(b) the restriction of Ξ0,t2 \ {0} to (0, Vt1,t2 ] and Ξ0,t1 \ {0} are independent Poisson
point processes of intensity 2θ on (0, Vt1,t2 ] and (0, V0,t1 ] respectively.



Proof. First observe that Ξ0,t1 \{0} and Ξt1,t2 \{0} are by virtue of Theorem 6, conditionally
on W , distributed as Poisson point processes of rate 2θ on (0, V0,t1 ] and (0, Vt1,t2 ] respectively.
Moreover they are conditionally independent since they are measurable with respect to the
independent σ-algebras: σ

(

Zu,v; 0 ≤ u ≤ v ≤ t1
)

and σ
(

Zu,v; t1 ≤ u ≤ v ≤ t2
)

respectively.

Consider s < t1 and suppose first that Zs,t1(0) > Ut1,t2 then

Zs,t2(0) = Zt1,t2(Zs,t1(0)) = Zs,t1(0) +Wt2 −Wt1 .

On the other hand if Zs,t1(0) ≤ Ut1,t2 then

Zs,t2(0) = Zt1,t2(Zs,t1(0)) = Zt1,t2(0).

Now suppose V0,t1 ≤ Ut1,t2 then since for 0 ≤ s < t1, Zs,t1(0) ≤ V0,t1 , we have Zs,t2(0) =
Zt1,t2(0). Thus

Ξ0,t2 \ {0} = {Zs,t2(0) : 0 ≤ s < t2} \ {0}
= {Zs,t2(0) : t1 ≤ s < t2} \ {0} = Ξt1,t2 \ {0}.

In view of our opening observation that Ξ0,t1 and Ξt1,t2 are independent, statement 1 of the
proposition is proved.

Suppose instead that V0,t1 > Ut1,t2 then we have

Ξ0,t2 \ {0} = {Zs,t2(0) : 0 ≤ s < t2} \ {0}
= {Zs,t2(0) : 0 ≤ s < t1 such that Zs,t1(0) > Ut1,t2} ∪ {Zs,t2(0) : t1 ≤ s < t2} \ {0}

= {Zs,t1(0) +Wt2 −Wt1 : 0 ≤ s < t1 such that Zs,t1(0) > Ut1,t2} ∪ Ξt1,t2 \ {0},

where the first set is supported on (Vt1,t2 , V0,t2 ] = (Ut1,t2 +Wt2 −Wt1 , V0,t1 +Wt2 −Wt1 ] and
the second set is supported on (0, Vt1,t2 ]. Since Ξ0,t1 and Ξt1,t2 are independent, statement
2 of the proposition is proved.

This proposition can be easily extended (by induction on n) to a similar statement concern-
ing the joint law of Ξ0,t1 ,Ξ0,t2 , . . . ,Ξ0,tn when t1 < t2 < . . . < tn: each Ξ0,tk is made from
two pieces, one derived from Ξ0,tk−1

, which may be empty, and one from Ξtk−1,tk which is
independent of Ξ0,t1 ,Ξ0,t2 , . . . ,Ξ0,tk−1

.

We will now re-interpret Proposition 10 in terms of the marked trees as described in the
introduction. Recall that the excursions of the reflecting Brownian motion ξ from zero
determine a family of rooted trees to which we add marks according to a Poisson point
process of intensity 2θ. The random set Ξ0,t \ {0} determines the position of the marks on
the path corresponding to time t. Recall that this path has length ξt = Wt+sups≤t(−Ws). If
x ∈ Ξ0,t\{0} then there is a mark on the path at a distance ξt−x from the root. Part 1 of the
proposition covers the case when the two times t1 and t2 are straddled by different excursions
of ξ, and the paths corresponding to the times are disjoint. Part 2 of the proposition covers
the case when the two times t1 and t2 are straddled by a single excursion of ξ. In this case
the two corresponding paths co-incide from the root for a distance It1,t2 = infh∈[t1,t2] ξh and
part 2(a) of the proposition guarantees that Ξ0,t1 and Ξ0,t2 determine marks in the same
places along this common part of the paths. Then after a distance It1,t2 from the root the
paths separate and the location of marks on the two paths is independent as covered by part
2(b) of the proposition. Note that equation (1.5) in which the positions of the marks were
determined from the R∞-valued process X is equivalent to the rule we have just given for

determining the positions from the sets Ξ0,t by virtue of Lemma 5 with X
(k)
t determining

the position of kth mark along the path counting from the origin.



We can re-cast these results in terms of a snake process of the type considered by Le Gall
[8], with the motion process being a Poisson counting process. As a consequence the SDEs
displayed in the statement of Theorem 1 specify the generator of the this snake process.
Compare with the work of Dhersin and Serlet [4].

For each t we construct a path Nt : [0,∞) 7→ Z+ ∪ {∂} via

Nt(y) =

{

∂ if y ≥ ξt,

n(Ξ0,t ∩ [ξt, ξt − y)) if y < ξt,
(3.5)

where nS counts the number of elements of a set S. The following proposition is a conse-
quence of Proposition 10.

Proposition 11.
(

Nt; t ≥ 0
)

is a path-valued Markov process such that conditional on the
lifetime process (ξt; t ≥ 0):

• y 7→ Nt(y) is a Poisson counting process with rate 2θ on [0, ξt) for each t;

• Nt1(y) = Nt2(y) on [0, It1,t2) for all t1 < t2;

• the Poisson processes y 7→ Nt2(It1,t2 +y)−Nt2(It1,t2) on [0, ξt2−It1,t2) and y 7→ Nt1(y)
on [0, ξt1) are independent for all t1 < t2.

4 THE FLOW AS A NOISE

A probability space
(

Ω,F ,P
)

together with a doubly indexed family of sub-σ-algebras
(

Fs,t;−∞ ≤ s ≤ t ≤ ∞
)

and a group of measure preserving shifts
(

θt; t ∈ R
)

satisfying:

• For any h and any s < t, we have θ−1
h Fs,t = Fs+h,t+h.

• For any s < t and u < v with the intervals (s, t) and (u, v) disjoint, the two σ-algebras
Fs,t and Fu,v are independent.

• For any s < t < u the σ-algebra Fs,u is generated by Fs,t and Ft,u.

is called a noise by Tsirelson, [11] and [10]. The concept has being around in various forms for
some time, for example see Feldman [5]. The most familiar example is that of white noise-
obtained by considering the increments of a Brownian motion. Any stochastic flow with
independent stationary increments gives rise to such an object, but often the corresponding
noise is going to be the white noise associated with some driving Brownian motion.

We now consider the flow of sticky Brownian motions we have constructed as a noise.
Recall that for each s ≤ t the σ-algebra Fs,t is generated by the random maps Zu,v for
s ≤ u ≤ v ≤ t. We refer to a process B as a Fs,t- Brownian motion if it is a Brownian
motion in law, and if for all 0 ≤ s ≤ t the increment Bt − Bs is measurable with respect
to Fs,t. Of course the driving Brownian motion W is an Fs,t- Brownian motion. Now we
define the linear component of the noise to be the family of P-complete σ-algebras, denoted
by
(

F lin
s,t , s ≤ t

)

, generated by the increments of all Fs,t-Brownian motions, thus

F lin
s,t = σ

(

Bv −Bu; s ≤ u ≤ v ≤ t, B is a Fs,t − Brownian motion
)

. (4.1)

In particular F lin
s,t contains the σ-algebra FW

s,t generated by increments of the driving Brow-
nian motion W between times s and t.



Theorem 12. For every 0 ≤ s ≤ t,

F lin
s,t = FW

s,t .

Proof. Suppose B is an Fs,t- Brownian motion. Fix s < t, and then FW
s,t being contained in

Fs,t is independent of F0,s which contains σ(Bs) and FW
0,s. Thus

E
[

Bs|FW
0,t

]

= E
[

Bs|FW
0,s ∨ FW

s,t

]

= E
[

Bs|FW
0,s

]

.

Similarly

E
[

Bt −Bs|FW
0,t

]

= E
[

Bt −Bs|FW
0,s ∨ FW

s,t

]

= E
[

Bt −Bs|FW
s,t

]

.

It follows that

E
[

Bt|FW
0,t

]

− E
[

Bs|FW
0,s

]

= E
[

Bt −Bs|FW
s,t

]

.

Using this we deduce Bt−E
[

Bt|FW
0,t

]

is an
(

F0,t

)

t≥0
- martingale which is orthogonal to the

Brownian motion W , and by virtue of the following proposition identically zero. But this
means that the increment Bt −Bs is FW

s,t -measurable, and we are done.

The following proposition is a consequence of the uniqueness result of Theorem 1 and the
general theory of martingale representations, presented, for example, in Chapter V of [9].

Proposition 13. W has the Ft- predictable representation property.

Thus we have obtained a noise with a nonlinear component: for we know from Theorem 6
that FW

s,t is strictly contained in Fs,t and thus, in light of the above, Fs,t 6= F lin
s,t .

This example of a noise also provides an affirmative answer to the question asked by Tsirelson
in [10]: can a predictable noise generate a non-cosy filtration. This is because we know that
the filtration

(

F0,t; t ≥ 0
)

is non-cosy from [16].

Finally we note that this example of a noise is also time-asymmetric: in view of the martin-
gale representation property just given all martingales in the filtration

(

F0,t

)

t≥0
are contin-

uous whereas in the reverse filtration
(

F−t,0
)

t≥0
there are many discontinuous martingales.
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